Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world. Lamin B1 (LMNB1) is a key component of the nuclear skeleton structure. Recent studies have found that LMNB1 is overexpressed in tumor tissues and is associated with the prognosis of patients. However, the underlying mechanism remains unclear in HCC.

Objective

This study aims to explore the clinical significance and molecular mechanisms of LMNB1 in HCC.

Methods

The expression level of LMNB1 and its clinical values were analyzed with public databases, and the level of LMNB1 in HCC tissues and adjacent normal tissues was confirmed by qRT-PCR and IHC. Functional assays were conducted to explore the impact of LMNB1 knockdown on cell proliferation both and . Additionally, Genes and Genomes enrichment analysis, recovery analysis, and ChIP assays were employed to investigate its underlying molecular mechanisms. Finally, we carried out an analysis of the relationship between LMNB1 and immune cell infiltration in HCC.

Results

LMNB1 was found to be overexpressed in HCC and correlated with the pathological stage and unfavorable prognosis. Functional assays demonstrated that LMNB1 promotes HCC proliferation both and . Further analysis revealed that LMNB1 promotes the progression of HCC by regulating CDKN1A expression. Furthermore, the infiltration of immune cells in HCC tissues suggests a potential correlation between immune infiltration cell markers and the expression of LMNB1.

Conclusions

LMNB1 emerged as a promising therapeutic target and prognostic biomarker for HCC, with its expression showing a correlation with several immune infiltration cell markers.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096299107240427073527
2024-05-21
2025-09-18
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ZhuQ. YuX. ZhouZ.W. ZhouC. ChenX.W. ZhouS.F. Inhibition of aurora a kinase by alisertib induces autophagy and cell cycle arrest and increases chemosensitivity in human hepatocellular carcinoma hepg2 cells.Curr. Cancer Drug Targets201717438640110.2174/156800961666616063018234427396604
    [Google Scholar]
  3. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑436084663
    [Google Scholar]
  4. MarascoG. ColecchiaA. ColliA. RavaioliF. CasazzaG. Bacchi ReggianiM.L. CucchettiA. CesconM. FestiD. Role of liver and spleen stiffness in predicting the recurrence of hepatocellular carcinoma after resection.J. hepatology201970344044810.1016/j.jhep.2018.10.02230389551
    [Google Scholar]
  5. KulikL. El-SeragH.B. Epidemiology and management of hepatocellular carcinoma.Gastroenterology20191562477491.e110.1053/j.gastro.2018.08.06530367835
    [Google Scholar]
  6. RenY.D. YeZ.S. YangL.Z. JinL.X. WeiW.J. DengY.Y. ChenX.X. XiaoC.X. YuX.F. XuH.Z. XuL.Z. TangY.N. ZhouF. WangX.L. ChenM.Y. ChenL.G. HongM.Z. RenJ.L. PanJ.S. Fecal microbiota transplantation induces hepatitis B virus e‐antigen (HBeAg) clearance in patients with positive HBeAg after long‐term antiviral therapy.Hepatology20176551765176810.1002/hep.2900828027582
    [Google Scholar]
  7. SelçukH. Prognostic factors and staging systems in hepatocellular carcinoma.ECT201715Suppl 2454910.6002/ect.TOND16.L11
    [Google Scholar]
  8. WangS. ZhouL. JiN. SunC. SunL. SunJ. Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression.Drug Resist Updat20236910097610.1016/j.drup.2023.100976
    [Google Scholar]
  9. DongR. ZhangD. HanB. XuL. ZhangD. ChengZ. QiuX. DTL is a novel downstream gene of e2f1 that promotes the progression of hepatocellular carcinoma.Curr Cancer Drug Targets 2023231081782810.2174/156800962366623051110024637171007
    [Google Scholar]
  10. VillanuevaA. Hepatocellular CarcinomaTN Engl J Med2019380151450146210.1056/NEJMra171326330970190
    [Google Scholar]
  11. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat Rev Dis Primers.202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  12. Murray-NergerL.A. JusticeJ.L. RekapalliP. HuttonJ.E. CristeaI.M. Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair.Nucleic Acids Res.20214942044206410.1093/nar/gkab01933533922
    [Google Scholar]
  13. DittmerT.A. MisteliT. The lamin protein family.Genome biology201112522210.1186/gb‑2011‑12‑5‑22221639948
    [Google Scholar]
  14. ChangL. LiM. ShaoS. LiC. AiS. XueB. HouY. ZhangY. LiR. FanX. HeA. LiC. SunY. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells.Protein Cell202213425828010.1007/s13238‑020‑00794‑833155082
    [Google Scholar]
  15. CampsJ. ErdosM.R. RiedT. The role of lamin B1 for the maintenance of nuclear structure and function.Nucleus20156181410.1080/19491034.2014.100351025602590
    [Google Scholar]
  16. PeiS. WangX. WangX. HuangH. TaoH. XieB. Aberrant nuclear lamina contributes to the malignancy of human gliomas.J Genet Genomics202249213214410.1016/j.jgg.2021.08.013
    [Google Scholar]
  17. JiJ. LiH. ChenJ. WangW. Lamin B2 contributes to the proliferation of bladder cancer cells via activating the expression of cell division cycle‑associated protein 3.Int J Mol Med . 202250311110.3892/ijmm.2022.516835775376
    [Google Scholar]
  18. DongC.H. JiangT. YinH. SongH. ZhangY. GengH. ShiP.C. XuY.X. GaoH. LiuL.Y. ZhouL. ZhangZ.H. SongJ. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression.Cell death & disease202112433110.1038/s41419‑021‑03602‑133782407
    [Google Scholar]
  19. SunS. XuM.Z. PoonR.T. DayP.J. LukJ.M. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients.J. Proteome Res.201091707810.1021/pr900211819522540
    [Google Scholar]
  20. YangY. GaoL. ChenJ. XiaoW. LiuR. KanH. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma.Bioengineered20221349211923110.1080/21655979.2022.205789635436411
    [Google Scholar]
  21. VashisthM. ChoS. IriantoJ. XiaY. WangM. HayesB. WielandD. WellsR. JafarpourF. LiuA. DischerD.E. Scaling concepts in ‘omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis.Proc Natl Acad Sci U S A202111848e211294011810.1073/pnas.211294011834810266
    [Google Scholar]
  22. LuoF. HanJ. ChenY. YangK. ZhangZ. LiJ. Lamin B1 promotes tumor progression and metastasis in primary prostate cancer patients.Future Oncol202117666367310.2217/fon‑2020‑082533112662
    [Google Scholar]
  23. WuH. GengQ. ShiW. QiuC. Comprehensive pan-cancer analysis reveals CCDC58 as a carcinogenic factor related to immune infiltration.Apoptosis2024293-453655510.1007/s10495‑023‑01919‑0
    [Google Scholar]
  24. LiW. ZhangB. CaoW. ZhangW. LiT. LiuL. XuL. GaoF. WangY. WangF. XingH. JiangZ. ShiJ. BianZ. SongY. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing.Exp Hematol Oncol20231214410.1186/s40164‑023‑00402‑537158921
    [Google Scholar]
  25. CaoW. FanW. WangF. ZhangY. WuG. ShiX. ShiJ. GaoF. YanM. GuoR. LiY. LiW. DuC. JiangZ. GM-CSF impairs erythropoiesis by disrupting erythroblastic island formation via macrophages.J Transl Med20222011110.1186/s12967‑021‑03214‑534980171
    [Google Scholar]
  26. LiL. LiS. WangH. LiL. WangP. ShenD. DangX. GSG2 promotes tumor growth through regulating cell proliferation in hepatocellular carcinoma.Biochem Biophys Res Commun202262510911510.1016/j.bbrc.2022.07.09335952607
    [Google Scholar]
  27. YangH. YanM. LiW. XuL. SIRPα and PD1 expression on tumor-associated macrophage predict prognosis of intrahepatic cholangiocarcinoma.J Transl Med.202220114010.1186/s12967‑022‑03342‑635317832
    [Google Scholar]
  28. ZhouC. LiuC. LiuW. ChenW. YinY. LiC.W. HsuJ.L. SunJ. ZhouQ. LiH. HuB. FuP. AtyahM. MaQ. XuY. DongQ. HungM.C. RenN. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway.Theranostics202010104627464310.7150/thno.4286932292519
    [Google Scholar]
  29. KochD.T. YuH. BeirithI. SchirrenM. DrefsM. LiuY. KnoblauchM. KoliogiannisD. ShengW. De ToniE.N. BazhinA.V. RenzB.W. GubaM.O. WernerJ. IlmerM. Tigecycline causes loss of cell viability mediated by mitochondrial OXPHOS and RAC1 in hepatocellular carcinoma cells.J Transl Med.202321187610.1186/s12967‑023‑04615‑438041179
    [Google Scholar]
  30. SunD. NassalM. Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.J Hepatol.200645563664510.1016/j.jhep.2006.05.01916935386
    [Google Scholar]
  31. LouG. ChenL. XiaC. WangW. QiJ. LiA. ZhaoL. ChenZ. ZhengM. LiuY. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway.J Exp Clin Cancer Res2020391410.1186/s13046‑019‑1512‑531898515
    [Google Scholar]
  32. FolloC. VidoniC. MoraniF. FerraresiA. SecaC. IsidoroC. Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR.Cell Commun Signal20191713910.1186/s12964‑019‑0354‑231046771
    [Google Scholar]
  33. DomonB. AebersoldR. Mass spectrometry and protein analysis.Science2006312577121221710.1126/science.112461916614208
    [Google Scholar]
  34. XuJ. GuanX. JiaX. LiH. ChenR. LuY. In-depth profiling and quantification of the lysine acetylome in hepatocellular carcinoma with a trapped ion mobility mass spectrometer.Mol Cell Proteomics.202221810025510.1016/j.mcpro.2022.10025535688384
    [Google Scholar]
  35. ChenJ. ZhangL. SunZ. LiH. LiJ. XueX. ZhuQ. DongB. WangY. YangY. DongY. GuoG. JiangH. ZhangA. ZhangG. HouZ. LiX. YangJ.H. Open search-based proteomics reveals widespread tryptophan modifications associated with hypoxia in lung cancer.Oxid Med Cell Longev202220222590198,10.1155/2022/259019835535361
    [Google Scholar]
  36. CaoL. CliftonJ.G. ReutterW. JosicD. Mass spectrometry-based analysis of rat liver and hepatocellular carcinoma Morris hepatoma 7777 plasma membrane proteome.Anal Chem.201385178112812010.1021/ac400774g23909495
    [Google Scholar]
  37. CaoW.Q. JiangB.Y. HuangJ.M. ZhangL. LiuM.Q. YaoJ. WuM.X. ZhangL.J. KongS.Y. WangY. YangP.Y. Straightforward and highly efficient strategy for hepatocellular carcinoma glycoprotein biomarker discovery using a nonglycopeptide-based mass spectrometry pipeline.Anal Chem.20199119124351244310.1021/acs.analchem.9b0307431453685
    [Google Scholar]
  38. ChenX. ZhouS. ChenY. TongK. HuangW. LncRNA MIR22HG/microRNA-9-3p/IGF1 in nonalcoholic steatohepatitis, the ceRNA network increases fibrosis by inhibiting autophagy and promoting pyroptosis.Clin Nutr.2024431526410.1016/j.clnu.2023.11.004
    [Google Scholar]
  39. HongX. LiQ. LiJ. ChenK. HeQ. ZhaoY. LiangY. ZhaoY. QiaoH. LiuN. MaJ. LiY. CircIPO7 promotes nasopharyngeal carcinoma metastasis and cisplatin chemoresistance by facilitating YBX1 nuclear localization.Clin Cancer Res202228204521453510.1158/1078‑0432.CCR‑22‑099135917517
    [Google Scholar]
  40. DangX.W. PanQ. LinZ.H. WangH.H. LiL.H. LiL. ShenD.Q. WangP.J. Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1.Aging20211316200942011510.18632/aging.20301634032605
    [Google Scholar]
  41. EinafsharE. MobasheriL. HasanpourM. RashidiR. GhorbaniA. Pro-apoptotic effect of chloroform fraction of Moraea sisyrinchium bulb against glioblastoma cells.Biomed Pharmacother.202417011593110.1016/j.biopha.2023.115931
    [Google Scholar]
  42. WangX. WangC. TianH. ChenY. WuB. ChengW. IR-820@NBs combined with MG-132 enhances the anti-hepatocellular carcinoma effect of sonodynamic therapy.Int J Nanomedicine2023186199621210.2147/ijn.S43191037933299
    [Google Scholar]
  43. RenH. ChenY. ZhuZ. XiaJ. LiuS. HuY. QinX. ZhangL. DingY. XiaS. WangJ. FOXO1 regulates Th17 cell-mediated hepatocellular carcinoma recurrence after hepatic ischemia-reperfusion injury.Cell Death Dis.202314636710.1038/s41419‑023‑05879‑w37330523
    [Google Scholar]
  44. WangK. JiangX. JiangY. LiuJ. DuY. ZhangZ. LiY. ZhaoX. LiJ. ZhangR. EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A.J Exp Clin Cancer Res202342132010.1186/s13046‑023‑02855‑238008711
    [Google Scholar]
  45. DhallA. PatiyalS. KaurH. RaghavaG.P.S. Risk assessment of cancer patients based on HLA-I alleles, neobinders and expression of cytokines.Comput Biol Med.202316710759410.1016/j.compbiomed.2023.10759437918263
    [Google Scholar]
  46. ZhouH. ChenJ. FanM. CaiH. DongY. QiuY. ZhuangQ. LeiZ. LiM. DingX. YanP. LinA. ZhengS. YanQ. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2.J Exp Clin Cancer Res2023421510.1186/s13046‑022‑02562‑436600258
    [Google Scholar]
  47. YuH. WangC. KeS. BaiM. XuY. LuS. FengZ. QianB. XuY. ZhouM. LiZ. YinB. LiX. HuaY. ZhouY. PanS. FuY. MaY. Identification of CFHR4 as a potential prognosis biomarker associated with lmmune infiltrates in hepatocellular carcinoma.Front Immunol.20221389275010.3389/fimmu.2022.89275035812416
    [Google Scholar]
  48. JiX. YangZ. LiC. ZhuS. ZhangY. XueF. Mitochondrial ribosomal protein L12 potentiates hepatocellular carcinoma by regulating mitochondrial biogenesis and metabolic reprogramming.Metabolism2023202315576110.1016/j.metabol.2023.15576138104924
    [Google Scholar]
  49. XiaY. ZhenL. LiH. WangS. ChenS. WangC. YangX. MIRLET7BHG promotes hepatocellular carcinoma progression by activating hepatic stellate cells through exosomal SMO to trigger Hedgehog pathway.Cell Death Dis.202112432610.1038/s41419‑021‑03494‑133771969
    [Google Scholar]
  50. TongQ. YiM. KongP. XuL. HuangW. NiuY. GanX. ZhanH. TianR. YanD. TRIM36 inhibits tumorigenesis through the Wnt/β-catenin pathway and promotes caspase-dependent apoptosis in hepatocellular carcinoma.Cancer Cell international.202222127810.1186/s12935‑022‑02692‑x36068629
    [Google Scholar]
  51. FengZ. YuX. JiangM. ZhuL. ZhangY. YangW. XiW. LiG. QianJ. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor.Theranostics20199195706571910.7150/thno.3133231534513
    [Google Scholar]
  52. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  53. LiuK. ChenJ. ZhaoY. BolandJ. TingK.K. LockwoodG. McKenzieC. KenchJ. VadasM.A. GambleJ.R. McCaughanG.W. Novel miRNA-based drug CD5-2 reduces liver tumor growth in diethylnitrosamine-treated mice by normalizing tumor vasculature and altering immune infiltrate.Front Immunol.202314124570810.3389/fimmu.2023.124570837795103
    [Google Scholar]
  54. LeiT. LiX. WangF. HuangQ. LiuT. LiuC. HuQ. Immune landscape of viral cancers: Insights from single-cell sequencing.J Med Virol2023951e2834810.1002/jmv.2834836436921
    [Google Scholar]
  55. OlivaM. SpreaficoA. TabernaM. AlemanyL. CoburnB. MesiaR. SiuL.L. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma.Ann Oncol2019301576710.1093/annonc/mdy50730462163
    [Google Scholar]
  56. AbbasT. DuttaA. p21 in cancer: Intricate networks and multiple activities.Nat Rev Cancer20099640041410.1038/nrc265719440234
    [Google Scholar]
  57. Wade HarperJ. AdamiG.R. WeiN. KeyomarsiK. ElledgeS.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.Cell199375480581610.1016/0092‑8674(93)90499‑G8242751
    [Google Scholar]
  58. LodyginD. MenssenA. HermekingH. Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner.J Clin Invest2002110111717172710.1172/jci1658812464677
    [Google Scholar]
  59. ZhangL. ChenJ. NingD. LiuQ. WangC. ZhangZ. ChuL. YuC. LiangH. ZhangB. ChenX. FBXO22 promotes the development of hepatocellular carcinoma by regulating the ubiquitination and degradation of p21.J Exp Clin Cancer Res201938110110.1186/s13046‑019‑1058‑630808376
    [Google Scholar]
  60. CheuJ.W.S. WongC.C.L. Mechanistic rationales guiding combination hepatocellular carcinoma therapies involving immune checkpoint inhibitors.Hepatology20217442264227610.1002/hep.3184033811765
    [Google Scholar]
  61. ZhengJ. ShaoM. YangW. RenJ. ChenX. YangH. Benefits of combination therapy with immune checkpoint inhibitors and predictive role of tumour mutation burden in hepatocellular carcinoma: A systematic review and meta-analysis.Int Immunopharmacol202211210924410.1016/j.intimp.2022.10924436126410
    [Google Scholar]
  62. IcardP. SimulaL. WuZ. BerzanD. SogniP. DohanA. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma?Drug Resist Updat20215910079010.1016/j.drup.2021.100790
    [Google Scholar]
  63. NagarajuG.P. DariyaB. KasaP. PeelaS. El-RayesB.F. Epigenetics in hepatocellular carcinoma.Semin Cancer Biol202286Pt 362263210.1016/j.semcancer.2021.07.017
    [Google Scholar]
  64. Butin-IsraeliV. AdamS.A. JainN. OtteG.L. NeemsD. WiesmüllerL. BergerS.L. GoldmanR.D. Role of lamin b1 in chromatin instability.Mol Cell Biol201535588489810.1128/mcb.01145‑1425535332
    [Google Scholar]
  65. KarimianA. AhmadiY. YousefiB. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.DNA Repair201642637110.1016/j.dnarep.2016.04.00827156098
    [Google Scholar]
  66. KreisN.N. LouwenF. YuanJ. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy.Cancers2019119122010.3390/cancers1109122031438587
    [Google Scholar]
  67. TicliG. CazzaliniO. StivalaL.A. ProsperiE. Revisiting the Function of p21CDKN1A in DNA Repair: The influence of protein interactions and stability.Int J Mol Sci20222313705810.3390/ijms2313705835806061
    [Google Scholar]
  68. DuttoI. TillhonM. CazzaliniO. StivalaL.A. ProsperiE. Biology of the cell cycle inhibitor p21CDKN1A: Molecular mechanisms and relevance in chemical toxicology.Arch Toxicol201589215517810.1007/s00204‑014‑1430‑425514883
    [Google Scholar]
  69. HuangY. ZhuY. YangJ. PanQ. ZhaoJ. SongM. YangC. HanY. TangY. WangQ. HeJ. LiY. HeJ. ChenH. WengD. XiangT. XiaJ.C. CMTM6 inhibits tumor growth and reverses chemoresistance by preventing ubiquitination of p21 in hepatocellular carcinoma.Cell Death Dis.202213325110.1038/s41419‑022‑04676‑135304440
    [Google Scholar]
  70. LiB. LiA. YouZ. XuJ. ZhuS. Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle, migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma.Cell Death Dis.2020111082310.1038/s41419‑020‑03031‑633009370
    [Google Scholar]
  71. DominguesP. González-TablasM. OteroÁ. PascualD. MirandaD. RuizL. SousaP. CiudadJ. GonçalvesJ.M. LopesM.C. OrfaoA. TaberneroM.D. Tumor infiltrating immune cells in gliomas and meningiomas.Brain Behav Immun20165311510.1016/j.bbi.2015.07.01926216710
    [Google Scholar]
  72. ZhaoX. ZhangH. HanY. FangC. LiuJ. Navigating the immunometabolic heterogeneity of B cells in murine hepatocellular carcinoma at single cell resolution.Int Immunopharmacol202312011025710.1016/j.intimp.2023.11025737182447
    [Google Scholar]
  73. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat Rev Clin Oncol202219315117210.1038/s41571‑021‑00573‑234764464
    [Google Scholar]
  74. ObiS. SatoT. SatoS. Immune checkpoint inhibitor in liver cancer—unique regional differences.Ann Transl Med2020821133610.21037/atm‑20‑337833313081
    [Google Scholar]
  75. CuiC. ChakrabortyK. TangX.A. ZhouG. SchoenfeltK.Q. BeckerK.M. HoffmanA. ChangY.F. BlankA. ReardonC.A. KennyH.A. VaisarT. LengyelE. GreeneG. BeckerL. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis.Cell20211841231633177.e2110.1016/j.cell.2021.04.01633964209
    [Google Scholar]
  76. RoudiR. D'AngeloA. SiricoM. SobhaniN. Immunotherapeutic treatments in hepatocellular carcinoma; achievements, challenges and future prospects.Int Immunopharmacol.2021125Pt A11101610.1016/j.intimp.2021.108322
    [Google Scholar]
  77. YueM. YangZ. SunJ. LiuZ. A candidate prognostic biomarker: TFEB inhibits tumor progression via elevating CDKN1A in bladder cancer.Int Immunopharmacol.2023125Pt A11101610.1016/j.intimp.2023.111016
    [Google Scholar]
  78. Dal BoM. De MattiaE. BabociL. MezzaliraS. CecchinE. AssarafY. G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma.Drug Resist Updat20205110.1016/j.drup.2020.100702
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096299107240427073527
Loading
/content/journals/ccdt/10.2174/0115680096299107240427073527
Loading

Data & Media loading...

Supplements

Supplementary material can be found on the website of the publisher, along with the published article.


  • Article Type:
    Research Article
Keyword(s): CDKN1A; cell cycle; hepatocellular carcinoma; immune infiltration; LMNB1; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test