Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb , has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these and studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving experiments and toxicity evaluation of withanone.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096290673240223043650
2024-03-14
2025-09-02
Loading full text...

Full text loading...

References

  1. GaoR. ShahN. LeeJ.S. KatiyarS.P. LiL. OhE. SundarD. YunC.O. WadhwaR. KaulS.C. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K.Mol. Cancer Ther.201413122930294010.1158/1535‑7163.MCT‑14‑032425236891
    [Google Scholar]
  2. AniszewskiT. Alkaloids - Secrets of Life1st ed.Elsevier Science20076113910.1016/B978‑044452736‑3/50004‑0
    [Google Scholar]
  3. WaniM.C. TaylorH.L. WallM.E. CoggonP. McPhailA.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J. Am. Chem. Soc.19719392325232710.1021/ja00738a0455553076
    [Google Scholar]
  4. RaiM. JogeeP.S. AgarkarG. SantosC.A. Anticancer activities of Withania somnifera : Current research, formulations, and future perspectives.Pharm. Biol.201654218919710.3109/13880209.2015.102777825845640
    [Google Scholar]
  5. PriyandokoD. IshiiT. KaulS.C. WadhwaR. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.PLoS One201165e1955210.1371/journal.pone.001955221573189
    [Google Scholar]
  6. VaishnaviK. SaxenaN. ShahN. SinghR. ManjunathK. UthayakumarM. KanaujiaS.P. KaulS.C. SekarK. WadhwaR. Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences.PLoS One201279e4441910.1371/journal.pone.004441922973447
    [Google Scholar]
  7. WidodoN. PriyandokoD. ShahN. WadhwaR. KaulS.C. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling.PLoS One2010510e1353610.1371/journal.pone.001353620975835
    [Google Scholar]
  8. SamhitaC. Charaka Samhita.Shree Gulab Kunverba Ayurvedic Society194915
    [Google Scholar]
  9. BuchananR. A Weaver’s Garden.Interweave Press1987
    [Google Scholar]
  10. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152610.22038/ijbms.2020.44254.1037833489024
    [Google Scholar]
  11. AfewerkyH.K. AyodejiA.E. TiamiyuB.B. OregeJ.I. OkekeE.S. OyejobiA.O. BateP.N.N. AdeyemiS.B. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa.Bull. Natl. Res. Cent.202145117610.1186/s42269‑021‑00635‑634697529
    [Google Scholar]
  12. MukherjeeP.K. BanerjeeS. BiswasS. DasB. KarA. KatiyarC.K. Withania somnifera (L.) Dunal - Modern perspectives of an ancient Rasayana from Ayurveda.J. Ethnopharmacol.202126411315711315710.1016/j.jep.2020.11315732783987
    [Google Scholar]
  13. BhishagratnaK. An English Translation of the Sushruta Samhita: Nidāna-sthāna, Śāriri-sthāna, Chikitsta-sthāna and Kalpa-sthāna.Chowkhamba Sanskrit Series Office1963
    [Google Scholar]
  14. ChunekarK.C. GsP. Bhāvaprakāśa-nighaṇṭu. Reprint Edition.Chaukhambha Bharati Academy201359
    [Google Scholar]
  15. VaidyaV.G. GothwadA. GanuG. GirmeA. ModiS.J. HingoraniL. Clinical safety and tolerability evaluation of Withania somnifera (L.) Dunal (Ashwagandha) root extract in healthy human volunteers.J. Ayurveda Integr. Med.202415110085910.1016/j.jaim.2023.10085938154316
    [Google Scholar]
  16. SpeersA.B. CabeyK.A. SoumyanathA. WrightK.M. Effects of Withania somnifera (Ashwagandha) on stress and the stress- related neuropsychiatric disorders anxiety, depression, and insomnia.Curr. Neuropharmacol.20211991468149510.2174/1570159X1966621071215155634254920
    [Google Scholar]
  17. BashirA. NabiM. TabassumN. AfzalS. AyoubM. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha).Front. Pharmacol.202314104933410.3389/fphar.2023.104933437063285
    [Google Scholar]
  18. SinghN. BhallaM. De JagerP. GilcaM. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda.Afr. J. Tradit. Complement. Altern. Med.201185S20821310.4314/ajtcam.v8i5S.922754076
    [Google Scholar]
  19. VaidyaV.G. NaikN.N. GanuG. ParmarV. JagtapS. SasteG. BhattA. MulayV. GirmeA. ModiS.J. HingoraniL. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis.J. Ethnopharmacol.202432211760310.1016/j.jep.2023.11760338122911
    [Google Scholar]
  20. SinghG. SharmaP.K. DudheR. SinghS. Biological activities of Withania somnifera.Ann. Biol. Res.2010135663
    [Google Scholar]
  21. Atta-ur-Rahman AbbasS. Dur-e-Shahwar JamalS.A. ChoudharyM.I. AbbasS. New withanolides from Withania spp.J. Nat. Prod.19935671000100610.1021/np50097a003
    [Google Scholar]
  22. GanzeraM. ChoudharyM.I. KhanI.A. Quantitative HPLC analysis of withanolides in Withania somnifera.Fitoterapia2003741-2687610.1016/S0367‑326X(02)00325‑812628397
    [Google Scholar]
  23. GuptaG.L. RanaA.C. Withania somnifera (Ashwagandha): A review.Pharmacogn. Rev.200711
    [Google Scholar]
  24. AbrahamA. KirsonI. GlotterE. LavieD. A chemotaxonomic study of Withania somnifera (L.) dun.Phytochemistry19687695796210.1016/S0031‑9422(00)82182‑2
    [Google Scholar]
  25. GrandhiA. MujumdarA.M. PatwardhanB. A comparative pharmacological investigation of Ashwagandha and Ginseng.J. Ethnopharmacol.199444313113510.1016/0378‑8741(94)01119‑27898119
    [Google Scholar]
  26. DarNJ HamidA AhmadM Pharmacologic overview of Withania somnifera, the Indian ginseng.Cell Mol Life Sci.201572234445446010.1007/s00018‑015‑2012‑1
    [Google Scholar]
  27. GroverA. SinghR. ShandilyaA. PriyandokoD. AgrawalV. BisariaV.S. WadhwaR. KaulS.C. SundarD. Ashwagandha derived withanone targets TPX2-Aurora A complex: computational and experimental evidence to its anticancer activity.PLoS One201271e30890e3089010.1371/journal.pone.003089022303466
    [Google Scholar]
  28. WadsworthP. TPX2.Curr. Biol.20152524R1156R115810.1016/j.cub.2015.10.00326702647
    [Google Scholar]
  29. WadegaonkarV.P. WadegaonkarP.A. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy.J. Biotechnol.2013168222923310.1016/j.jbiotec.2013.08.02823994265
    [Google Scholar]
  30. Martínez-GarcíaD. Manero-RupérezN. QuesadaR. Korrodi-GregórioL. Soto-CerratoV. Therapeutic strategies involving survivin inhibition in cancer.Med. Res. Rev.201939388790910.1002/med.2154730421440
    [Google Scholar]
  31. KreisN.N. LouwenF. YuanJ. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy.Cancers2019119122010.3390/cancers1109122031438587
    [Google Scholar]
  32. ModiS.J. TiwariA. GhuleC. PawarS. SasteG. JagtapS. SinghR. DeshmukhA. GirmeA. HingoraniL. Pharmacokinetic study of withanosides and withanolides from withania somnifera using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS).Molecules20222751476147610.3390/molecules2705147635268576
    [Google Scholar]
  33. SinghS.K. ValicherlaG.R. BikkasaniA.K. CheruvuS.H. HossainZ. TanejaI. AhmadH. RajuK.S.R. SangwanN.S. SinghS.K. DwivediA.K. WahajuddinM. GayenJ.R. Elucidation of plasma protein binding, blood partitioning, permeability, CYP phenotyping and CYP inhibition studies of Withanone using validated UPLC method: An active constituent of neuroprotective herb Ashwagandha.J. Ethnopharmacol.202127011381911381910.1016/j.jep.2021.11381933460762
    [Google Scholar]
  34. Yaseen MalikM. TanejaI. RajuK.S.R. Rahaman GayenJ. SinghS.P. SangwandN.S. WahajuddinM. RP-HPLC separation of isomeric withanolides: Method development, validation and application to in situ rat permeability determination.J. Chromatogr. Sci.201755772973510.1093/chromsci/bmx02728407087
    [Google Scholar]
  35. BodhankarS.L. DevkarS.T. KandhareA.D. SloleyB.D. JagtapS.D. LinJ. TamY.K. KatyareS.S. HegdeM. Evaluation of the bioavailability of major withanolides of Withania somnifera using an in vitro absorption model system.J. Adv. Pharm. Technol. Res.20156415916410.4103/2231‑4040.16502326605156
    [Google Scholar]
  36. WangD. GuoY. WrightonS.A. CookeG.E. SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs.Pharmacogenomics J.201111427428610.1038/tpj.2010.2820386561
    [Google Scholar]
  37. SiddiquiS. AhmedN. GoswamiM. ChakrabartyA. ChowdhuryG. DNA damage by Withanone as a potential cause of liver toxicity observed for herbal products of Withania somnifera (Ashwagandha).Chem. Res. Toxicol.20212728110.1016/j.crtox.2021.02.00234345852
    [Google Scholar]
  38. InagakiK. MoriN. HondaY. TakakiS. TsujiK. ChayamaK. A case of drug-induced liver injury with prolonged severe intrahepatic cholestasis induced by Ashwagandha.Kanzo201758844845410.2957/kanzo.58.448
    [Google Scholar]
  39. BjörnssonH.K. BjörnssonE.S. AvulaB. KhanI.A. JonassonJ.G. GhabrilM. HayashiP.H. NavarroV. Ashwagandha‐induced liver injury: A case series from Iceland and the US Drug‐Induced Liver Injury Network.Liver Int.202040482582910.1111/liv.1439331991029
    [Google Scholar]
  40. GargS. HuifuH. KumariA. SundarD. KaulS.C. WadhwaR. Induction of senescence in cancer cells by a novel combination of cucurbitacin B and withanone: Molecular mechanism and therapeutic potential.J. Gerontol. A Biol. Sci. Med. Sci.20207561031104110.1093/gerona/glz07731112603
    [Google Scholar]
  41. WidodoN. TakagiY. ShresthaB.G. IshiiT. KaulS.C. WadhwaR. Selective killing of cancer cells by leaf extract of Ashwagandha: Components, activity and pathway analyses.Cancer Lett.20082621374710.1016/j.canlet.2007.11.03718191020
    [Google Scholar]
  42. GroverA. PriyandokoD. GaoR. ShandilyaA. WidodoN. BisariaV.S. KaulS.C. WadhwaR. SundarD. Withanone binds to mortalin and abrogates mortalin–p53 complex: Computational and experimental evidence.Int. J. Biochem. Cell Biol.201244349650410.1016/j.biocel.2011.11.02122155302
    [Google Scholar]
  43. MalikV. RadhakrishnanN. KaulS.C. WadhwaR. SundarD. Computational identification of BCR-ABL oncogenic signaling as a candidate target of withaferin A and withanone.Biomolecules202212221210.3390/biom1202021235204712
    [Google Scholar]
  44. SundarD. YuY. KatiyarS.P. PutriJ.F. DhanjalJ.K. WangJ. SariA.N. KolettasE. KaulS.C. WadhwaR. Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence.J. Exp. Clin. Cancer Res.201938110310.1186/s13046‑019‑1099‑x30808373
    [Google Scholar]
  45. AsteritiI.A. RensenW.M. LindonC. LaviaP. GuarguagliniG. The Aurora-A/TPX2 complex: A novel oncogenic holoenzyme?Biochim. Biophys. Acta20101806223023920708655
    [Google Scholar]
  46. FlachbartováZ. KovacechB. Mortalin – a multipotent chaperone regulating cellular processes ranging from viral infection to neurodegeneration.Acta Virol.201357131510.4149/av_2013_01_323530819
    [Google Scholar]
  47. IchikawaH TakadaY ShishodiaS JayaprakasamB NairMG AggarwalBB Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression.Mol Cancer Therapeut.2006514341445
    [Google Scholar]
  48. SariA.N. BhargavaP. DhanjalJ.K. PutriJ.F. RadhakrishnanN. ShefrinS. IshidaY. TeraoK. SundarD. KaulS.C. WadhwaR. Combination of withaferin-A and CAPE provides superior anticancer potency: bioinformatics and experimental evidence to their molecular targets and mechanism of action.Cancers2020125116010.3390/cancers1205116032380701
    [Google Scholar]
  49. PhamM.Q. Le ThiT.H. PhamQ.L. LeL.T. DaoH.T. Thi DangT.L. In silico assessment and molecular docking studies of some phyto-triterpenoid for potential disruption of mortalin-p53 interaction.Processes198320219
    [Google Scholar]
  50. MalikV KumarV KaulSC WadhwaR SundarD Withanone and caffeic acid phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study.CRSB 3.20212021301311
    [Google Scholar]
  51. KaulSC DeocarisCC WadhwaR Three faces of mortalin: A housekeeper, guardian and killer.Exp Gerontol.20074226327410.1016/j.exger.2006.10.020
    [Google Scholar]
  52. WadhwaR TairaK KaulSC An Hsp70 family chaperone, mortalin/ mthsp70/PBP74/Grp75: What, when, and where?Cell Stress Chaperones.20027309316
    [Google Scholar]
  53. LuWJ LeeNP KaulSC LanF PoonRT Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy.Cell Death Differ.2011181046105610.1038/cdd.2010.177
    [Google Scholar]
  54. GuY TurckCW MorganDO Inhibition of CDK2 activity in vivo by an associated 20 K regulatory subunit.Nature1993366707710
    [Google Scholar]
  55. HarperJW AdamiGR WeiN KeyomarsiK ElledgeSJ The p21 Cdk interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.Cell.19937580581610.1016/0092‑8674(93)90499‑G
    [Google Scholar]
  56. LiW KongAN Molecular mechanisms of Nrf2-mediated antioxidant response.Mol Carcinog.2009489110410.1002/mc.20465
    [Google Scholar]
  57. NguyenT NioiP PickettCB The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.J Biol Chem.2009284132911329510.1074/jbc.R900010200
    [Google Scholar]
  58. RadhakrishnanN. KaulS.C. WadhwaR. SundarD. Phosphatidylserine exposed lipid bilayer models for understanding cancer cell selectivity of natural compounds: A molecular dynamics simulation study.Membranes20221216410.3390/membranes1201006435054590
    [Google Scholar]
  59. ShahN. KatariaH. KaulS.C. IshiiT. KaurG. WadhwaR. Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation.Cancer Sci.200910091740174710.1111/j.1349‑7006.2009.01236.x19575749
    [Google Scholar]
  60. HamidU.Z. SimM.S. GuadR.M. SubramaniyanV. SekarM. FuloriaN.K. FuloriaS. ChoyK.W. FareezI.M. BonamS.R. WuY.S. Molecular regulatory roles of long non-coding RNA HOTTIP: An overview in gastrointestinal cancers.Curr. Mol. Med.202222647849010.2174/156652402166621080616284834365949
    [Google Scholar]
  61. RamliS. SimM.S. GuadR.M. GopinathS.C.B. SubramaniyanV. FuloriaS. FuloriaN.K. ChoyK.W. RanaS. WuY.S. Long noncoding RNA UCA1 in gastrointestinal cancers: Molecular regulatory roles and patterns, mechanisms, and interactions.J. Oncol.2021202111510.1155/2021/551972033936199
    [Google Scholar]
  62. TuneB.X.J. SimM.S. PohC.L. GuadR.M. WoonC.K. HazarikaI. DasA. GopinathS.C.B. RajanM. SekarM. SubramaniyanV. FuloriaN.K. FuloriaS. BatumalaieK. WuY.S. Matrix metalloproteinases in chemoresistance: Regulatory roles, molecular interactions, and potential inhibitors.J. Oncol.2022202212510.1155/2022/324976635586209
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096290673240223043650
Loading
/content/journals/ccdt/10.2174/0115680096290673240223043650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test