Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

The discovery of effective breast cancer therapy is both urgent and daunting, beset by a myriad of challenges that range from the disease's inherent heterogeneity to its complex molecular underpinnings. Drug resistance, the intricacies of the tumor microenvironment, and patient-specific variables further complicate this landscape. The stakes are even higher when dealing with subtypes like triple-negative breast cancer, which eludes targeted hormonal therapies due to its lack of estrogen, progesterone, and HER2 receptors. Strategies to overcome such challenges include combinations of drugs and identifying new drug targets. Developing new drugs based on such targets could be a better solution than relying on costly immunotherapy or combinational therapies. In this review, we have endeavored to comprehensively examine the proven therapeutic drug targets associated with breast cancer and elucidate their respective molecular mechanisms and current clinical status. This study aims to facilitate researchers in conducting a comparative analysis of different targets to select single and multi-targeted drug discovery approaches for breast cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096289260240311062343
2024-04-02
2025-10-25
Loading full text...

Full text loading...

References

  1. AnandasabapathyS. AsirwaC. GroverS. MungoC. Cancer burden in low-income and middle-income countries.Nat. Rev. Cancer202424316717010.1038/s41568‑023‑00659‑238332323
    [Google Scholar]
  2. BrodyJ.G. RudelR.A. MichelsK.B. MoysichK.B. BernsteinL. AttfieldK.R. GrayS. Environmental pollutants, diet, physical activity, body size, and breast cancer.Cancer2007109S122627263410.1002/cncr.2265617503444
    [Google Scholar]
  3. DentS.F. The role of VEGF in triple-negative breast cancer: Where do we go from here?Ann. Oncol.200920101615161710.1093/annonc/mdp41019690059
    [Google Scholar]
  4. HsuJ.L. HungM.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer.Cancer Metastasis Rev.201635457558810.1007/s10555‑016‑9649‑627913999
    [Google Scholar]
  5. WesolowskiR. RamaswamyB. Gene expression profiling: Changing face of breast cancer classification and management.Gene Expr.201115310511510.3727/105221611X1317666447924122268293
    [Google Scholar]
  6. EliyatkinN. YalçınE. ZengelB. AktaşS. VardarE. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way.J. Breast Health2015112596610.5152/tjbh.2015.166928331693
    [Google Scholar]
  7. VoducK.D. CheangM.C.U. TyldesleyS. GelmonK. NielsenT.O. KenneckeH. Breast cancer subtypes and the risk of local and regional relapse.J. Clin. Oncol.201028101684169110.1200/JCO.2009.24.928420194857
    [Google Scholar]
  8. Comprehensive molecular portraits of human breast tumours.Nature20124907418617010.1038/nature1141223000897
    [Google Scholar]
  9. KaleemM. PerwaizM. NurS.M. AbdulrahmanA.O. AhmadW. Al-AbbasiF.A. KumarV. KamalM.A. AnwarF. Epigenetics of triple-negative breast cancer via natural compounds.Curr. Med. Chem.20222981436145810.2174/092986732866621070716553034238140
    [Google Scholar]
  10. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  11. YipG.W. BayB.H. Novel therapeutics in breast cancer.Curr. Med. Chem.202128255032503310.2174/09298673282521081610555334433392
    [Google Scholar]
  12. SongY. KeX. ChenL. The potential use of rna-based therapeutics for breast cancer treatment.Curr. Med. Chem.202128255110513610.2174/092986732766620111710033633208059
    [Google Scholar]
  13. PaplomataE. O’ReganR. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers.Ther. Adv. Med. Oncol.20146415416610.1177/175883401453002325057302
    [Google Scholar]
  14. ShariatiM. BernstamM.F. Targeting AKT for cancer therapy.Expert Opin. Investig. Drugs2019281197798810.1080/13543784.2019.167672631594388
    [Google Scholar]
  15. HinzN. JückerM. Distinct functions of AKT isoforms in breast cancer: A comprehensive review.Cell Commun. Signal.201917115410.1186/s12964‑019‑0450‑331752925
    [Google Scholar]
  16. SongM. BodeA.M. DongZ. LeeM.H. AKT as a therapeutic target for cancer.Cancer Res.20197961019103110.1158/0008‑5472.CAN‑18‑273830808672
    [Google Scholar]
  17. MolehinD. FilleurS. PruittK. Regulation of aromatase expression: Potential therapeutic insight into breast cancer treatment.Mol. Cell. Endocrinol.202153111132110.1016/j.mce.2021.11132133992735
    [Google Scholar]
  18. DaldorffS. MathiesenR.M.R. YriO.E. ØdegårdH.P. GeislerJ. Cotargeting of CYP-19 (aromatase) and emerging, pivotal signalling pathways in metastatic breast cancer.Br. J. Cancer20171161102010.1038/bjc.2016.40527923036
    [Google Scholar]
  19. ChumsriS. HowesT. BaoT. SabnisG. BrodieA. Aromatase, aromatase inhibitors, and breast cancer.J. Steroid Biochem. Mol. Biol.20111251-2132210.1016/j.jsbmb.2011.02.00121335088
    [Google Scholar]
  20. EomY.H. KimH.S. LeeA. SongB.J. ChaeB.J. BCL2 as a subtype-specific prognostic marker for breast cancer.J. Breast Cancer201619325226010.4048/jbc.2016.19.3.25227721874
    [Google Scholar]
  21. ReedJ.C. Bcl-2–family proteins and hematologic malignancies: History and future prospects.Blood200811173322333010.1182/blood‑2007‑09‑07816218362212
    [Google Scholar]
  22. LindemanG.J. VisvaderJ.E. Targeting BCL-2 in breast cancer: Exploiting a tumor lifeline to deliver a mortal blow?Breast Cancer Manag.2013211410.2217/bmt.12.60
    [Google Scholar]
  23. DuC. ZhangX. YaoM. LvK. WangJ. ChenL. ChenY. WangS. FuP. Bcl‑2 promotes metastasis through the epithelial‑to‑mesenchymal transition in the BCap37 medullary breast cancer cell line.Oncol. Lett.20181568991889810.3892/ol.2018.845529844816
    [Google Scholar]
  24. InaoT. IidaY. MoritaniT. OkimotoT. TaninoR. KotaniH. HaradaM. Bcl-2 inhibition sensitizes triple-negative human breast cancer cells to doxorubicin.Oncotarget2018939255452555610.18632/oncotarget.2537029876007
    [Google Scholar]
  25. RomagnoloA. RomagnoloD. SelminO. BRCA1 as target for breast cancer prevention and therapy.Anticancer. Agents Med. Chem.201415141410.2174/187152061466614102015354325329591
    [Google Scholar]
  26. NicolasE. BertucciF. SabatierR. GonçalvesA. Targeting BRCA deficiency in breast cancer: What are the clinical evidences and the next perspectives?Cancers2018101250610.3390/cancers1012050630544963
    [Google Scholar]
  27. ImyanitovE.N. Cytotoxic and targeted therapy for BRCA1/2-driven cancers.Hered. Cancer Clin. Pract.20211913610.1186/s13053‑021‑00193‑y34454564
    [Google Scholar]
  28. ZhangC. ZhangM. SongS. CathepsinD. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation.Cancer Lett.201843810511510.1016/j.canlet.2018.09.02130227221
    [Google Scholar]
  29. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  30. SloninaO.D. MatewskiD. JungS. OlszewskiK.J. CzajkowskiR. BraszkiewiczJ. WozniakA. KowaliszynB. The activity of cathepsin D and alpha-1 antitrypsin in hip and knee osteoarthritis.Acta Biochim. Pol.20136019910610.18388/abp.2013_195723520575
    [Google Scholar]
  31. BchirS. BoumizaS. ben NasrH. GarrouchA. KallelI. TabkaZ. ChahedK. Impact of cathepsin D activity and C224T polymorphism (rs17571) on chronic obstructive pulmonary disease: Correlations with oxidative and inflammatory markers.Clin. Exp. Med.202121345746510.1007/s10238‑021‑00692‑133611777
    [Google Scholar]
  32. BunkJ. HuarcayaP.S. DrobnyA. DobertJ.P. WaltherL. Rose-JohnS. ArnoldP. ZunkeF. CathepsinD. Cathepsin D variants associated with neurodegenerative diseases show dysregulated functionality and modified α-synuclein degradation properties.Front. Cell Dev. Biol.2021958180510.3389/fcell.2021.58180533681191
    [Google Scholar]
  33. SeoS.U. WooS.M. ImS.S. JangY. HanE. KimS.H. LeeH. LeeH.S. NamJ.O. GabrielsonE. MinK. KwonT.K. Cathepsin D as a potential therapeutic target to enhance anticancer drug-induced apoptosis via RNF183-mediated destabilization of Bcl-xL in cancer cells.Cell Death Dis.202213211510.1038/s41419‑022‑04581‑735121737
    [Google Scholar]
  34. GrädlerU. CzodrowskiP. TsaklakidisC. KleinM. WerkmannD. LindemannS. MaskosK. LeuthnerB. Structure-based optimization of non-peptidic cathepsin D inhibitors.Bioorg. Med. Chem. Lett.201424174141415010.1016/j.bmcl.2014.07.05425086681
    [Google Scholar]
  35. HoušteckáR. HadzimaM. FanfrlíkJ. BryndaJ. PallováL. HánováI. KaiserováM.H. LepšíkM. HornM. SmrčinaM. MajerP. MarešM. Biomimetic macrocyclic inhibitors of human cathepsin D: Structure–activity relationship and binding mode analysis.J. Med. Chem.20206341576159610.1021/acs.jmedchem.9b0135132003991
    [Google Scholar]
  36. HuL. RothJ.M. BrooksP. LutyJ. KarpatkinS. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis.Cancer Res.200868124666467310.1158/0008‑5472.CAN‑07‑627618559512
    [Google Scholar]
  37. PranjolM. GutowskiN. HannemannM. WhatmoreJ. The potential role of the proteases cathepsin D and cathepsin L in the progression and metastasis of epithelial ovarian cancer.Biomolecules2015543260327910.3390/biom504326026610586
    [Google Scholar]
  38. KettererS. MitschkeJ. KetscherA. SchlimpertM. ReichardtW. BaeuerleN. HessM.E. MetzgerP. BoerriesM. PetersC. KammererB. BrummerT. SteinbergF. ReinheckelT. CathepsinD. Cathepsin D deficiency in mammary epithelium transiently stalls breast cancer by interference with mTORC1 signaling.Nat. Commun.2020111513310.1038/s41467‑020‑18935‑233046706
    [Google Scholar]
  39. KnopfováL. BenešP. PekarčíkováL. HermanováM. MasaříkM. PernicováZ. SoučekK. ŠmardaJ. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: Implications for matrix-dependent breast cancer cell invasion and metastasis.Mol. Cancer20121111510.1186/1476‑4598‑11‑1522439866
    [Google Scholar]
  40. BriukhovetskaD. DörrJ. EndresS. LibbyP. DinarelloC.A. KoboldS. Interleukins in cancer: From biology to therapy.Nat. Rev. Cancer202121848149910.1038/s41568‑021‑00363‑z34083781
    [Google Scholar]
  41. JhaN.K. ArfinS. JhaS.K. KarR. DeyA. GundamarajuR. AshrafG.M. GuptaP.K. DhanasekaranS. AbomughaidM.M. DasS.S. SinghS.K. DuaK. RoychoudhuryS. KumarD. RuokolainenJ. OjhaS. KesariK.K. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling.Semin. Cancer Biol.202286Pt 21086110410.1016/j.semcancer.2022.02.02235218902
    [Google Scholar]
  42. MamunA.A. UddinM.S. PerveenA. JhaN.K. AlghamdiB.S. JeandetP. ZhangH-J. AshrafG.M. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments.Semin. Cancer Biol.20228610111610.1016/j.semcancer.2022.08.007
    [Google Scholar]
  43. StippM.C. AccoA. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review.Cancer Chemother. Pharmacol.202187329530910.1007/s00280‑020‑04181‑233112969
    [Google Scholar]
  44. DavidsonS. ColesM. ThomasT. KolliasG. LudewigB. TurleyS. BrennerM. BuckleyC.D. Fibroblasts as immune regulators in infection, inflammation and cancer.Nat. Rev. Immunol.2021211170471710.1038/s41577‑021‑00540‑z33911232
    [Google Scholar]
  45. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  46. SelimagicA. DozicA. SelimovicH.A. TucakovicN. CehajicA. SuboA. SpahicA. VanisN. The role of inflammation in anal cancer.Diseases20221022710.3390/diseases1002002735645248
    [Google Scholar]
  47. HouJ. KarinM. SunB. Targeting cancer-promoting inflammation — Have anti-inflammatory therapies come of age?Nat. Rev. Clin. Oncol.202118526127910.1038/s41571‑020‑00459‑933469195
    [Google Scholar]
  48. NebenfuehrS. KollmannK. SexlV. The role of CDK6 in cancer.Int. J. Cancer2020147112988299510.1002/ijc.3305432406095
    [Google Scholar]
  49. TadesseS. YuM. KumarasiriM. LeB.T. WangS. Targeting CDK6 in cancer: State of the art and new insights.Cell Cycle201514203220323010.1080/15384101.2015.108444526315616
    [Google Scholar]
  50. DingL. CaoJ. LinW. ChenH. XiongX. AoH. YuM. LinJ. CuiQ. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer.Int. J. Mol. Sci.2020216196010.3390/ijms2106196032183020
    [Google Scholar]
  51. GoelS. BergholzJ.S. ZhaoJ.J. Targeting CDK4 and CDK6 in cancer.Nat. Rev. Cancer202222635637210.1038/s41568‑022‑00456‑335304604
    [Google Scholar]
  52. GaoX. LeoneG.W. WangH. Cyclin D-CDK4/6 functions in cancer.Adv Cancer Res202014814716910.1016/bs.acr.2020.02.002
    [Google Scholar]
  53. XuB. FanY. CDK4/6 inhibition in early-stage breast cancer: How far is it from becoming standard of care?Lancet Oncol.202122215916010.1016/S1470‑2045(20)30757‑933460573
    [Google Scholar]
  54. BronnerS.M. MerrickK.A. MurrayJ. SalphatiL. MoffatJ.G. PangJ. SneeringerC.J. DompeN. CyrP. PurkeyH. BoenigG.L. LiJ. KolesnikovA. GauthierL.R. LaiK.W. ShenX. NicolA.S. ChenY.C. CheongJ. CrawfordJ.J. HafnerM. HaghshenasP. JakalianA. LeclercJ.P. LimN.K. O’BrienT. PliseE.G. ShalanH. SturinoC. WaiJ. XiaoY. YinJ. ZhaoL. GouldS. OliveroA. HeffronT.P. Design of a brain-penetrant CDK4/6 inhibitor for glioblastoma.Bioorg. Med. Chem. Lett.201929162294230110.1016/j.bmcl.2019.06.02131307887
    [Google Scholar]
  55. RanaS. BendjennatM. KourS. KingH.M. KizhakeS. ZahidM. NatarajanA. Selective degradation of CDK6 by a palbociclib based PROTAC.Bioorg. Med. Chem. Lett.201929111375137910.1016/j.bmcl.2019.03.03530935795
    [Google Scholar]
  56. FinnR.S. AleshinA. SlamonD.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers.Breast Cancer Res.20161811710.1186/s13058‑015‑0661‑526857361
    [Google Scholar]
  57. BockstaeleL. BisteauX. PaternotS. RogerP.P. Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation.Mol. Cell. Biol.200929154188420010.1128/MCB.01823‑0819487459
    [Google Scholar]
  58. CrownJ. CDK8: A new breast cancer target.Oncotarget201789142691427010.18632/oncotarget.1535428209918
    [Google Scholar]
  59. McDermottM.S.J. ChumanevichA.A. LimC. LiangJ. ChenM. AltiliaS. OliverD. RaeJ.M. ShtutmanM. KiarisH. GyőrffyB. RoninsonI.B. BroudeE.V. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer.Oncotarget201788125581257510.18632/oncotarget.1489428147342
    [Google Scholar]
  60. KnabV.M. GotthardtD. KleinK. GrausenburgerR. HellerG. MenzlI. PrinzD. TrifinopoulosJ. ListJ. FuxD. SieprackaW.A. SexlV. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance.Cell Death Dis.2021121199110.1038/s41419‑021‑04279‑234689158
    [Google Scholar]
  61. HarrisR.E. CastoB.C. HarrisZ.M. Cyclooxygenase-2 and the inflammogenesis of breast cancer.World J. Clin. Oncol.20145467769210.5306/wjco.v5.i4.67725302170
    [Google Scholar]
  62. JanaD. SarkarD.K. GangulyS. SahaS. SaG. MannaA.K. BanerjeeA. MandalS. Role of cyclooxygenase 2 (COX-2) in prognosis of breast cancer.Indian J. Surg. Oncol.201451596510.1007/s13193‑014‑0290‑y24669166
    [Google Scholar]
  63. KernR. PanisC. CTLA-4 expression and its clinical significance in breast cancer.Arch. Immunol. Ther. Exp.20216911610.1007/s00005‑021‑00618‑534148159
    [Google Scholar]
  64. PengZ. SuP. YangY. YaoX. ZhangY. JinF. YangB. Identification of CTLA-4 associated with tumor microenvironment and competing interactions in triple negative breast cancer by co-expression network analysis.J. Cancer202011216365637510.7150/jca.4630133033520
    [Google Scholar]
  65. LiW. SangM. HaoX. WuY. ShanB. CTLA‑4 blockade combined with 5‑aza‑2′‑deoxycytidine enhances the killing effect of MAGE‑A family common antigen peptide‑specific cytotoxic T cells on breast cancer.Oncol. Rep.20204441758177010.3892/or.2020.770132700745
    [Google Scholar]
  66. SinghS. MazumderR. PadhiS. RaniS. DebnathA. MishraR. Immune checkpoint inhibitors targeting CTLA-4 in cutaneous malignancies: Recent updates.Int. J. Drug Deliv. Technol.202212144645310.25258/ijddt.12.1.79
    [Google Scholar]
  67. PageD.B. BealK. LinchS.N. SpinelliK.J. RodineM. HalpennyD. ModiS. PatilS. YoungR.J. KaleyT. MerghoubT. RedmondD. WongP. BarkerC.A. DiabA. NortonL. McArthurH.L. Brain radiotherapy, tremelimumab-mediated CTLA-4-directed blockade +/− trastuzumab in patients with breast cancer brain metastases.NPJ Breast Cancer2022815010.1038/s41523‑022‑00404‑235440655
    [Google Scholar]
  68. RaimondiM. RandazzoO. La FrancaM. BaroneG. VignoniE. RossiD. CollinaS. DHFR inhibitors: Reading the past for discovering novel anticancer agents.Molecules2019246114010.3390/molecules2406114030909399
    [Google Scholar]
  69. SinghA. DeshpandeN. PramanikN. JhunjhunwalaS. RangarajanA. AtreyaH.S. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer.Sci. Rep.201881319010.1038/s41598‑018‑21435‑529453377
    [Google Scholar]
  70. GalassiR. LucianiL. GambiniV. VincenzettiS. LupidiG. AmiciA. MarchiniC. WangJ. PucciarelliS. Multi-targeted anticancer activity of imidazolate phosphane gold(I) compounds by inhibition of DHFR and TrxR in breast cancer cells.Front Chem.2021860284510.3389/fchem.2020.60284533490036
    [Google Scholar]
  71. BansalS. BajajP. PandeyS. TandonV. Topoisomerases: Resistance versus sensitivity, how far we can go?Med. Res. Rev.201737240443810.1002/med.2141727687257
    [Google Scholar]
  72. BuzunK. BielawskaA. BielawskiK. GornowiczA. DNA topoisomerases as molecular targets for anticancer drugs.J. Enzyme Inhib. Med. Chem.20203511781179910.1080/14756366.2020.182167632975138
    [Google Scholar]
  73. TesauroC. SimonsenA.K. AndersenM.B. PetersenK.W. KristoffersenE.L. AlgreenL. HansenN.Y. AndersenA.B. JakobsenA.K. StougaardM. GromovP. KnudsenB.R. GromovaI. TopoisomeraseI. Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: A comparative study.BMC Cancer2019191115810.1186/s12885‑019‑6371‑031783818
    [Google Scholar]
  74. HevenerK. VerstakT.A. LutatK.E. RiggsbeeD.L. MooneyJ.W. Recent developments in topoisomerase-targeted cancer chemotherapy.Acta Pharm. Sin. B20188684486110.1016/j.apsb.2018.07.00830505655
    [Google Scholar]
  75. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms2103110232046099
    [Google Scholar]
  76. KohnoM. PouyssegurJ. Targeting the ERK signaling pathway in cancer therapy.Ann. Med.200638320021110.1080/0785389060055103716720434
    [Google Scholar]
  77. LiY. ZhanZ. YinX. FuS. DengX. Targeted therapeutic strategies for triple-negative breast cancer.Front. Oncol.20211173153510.3389/fonc.2021.73153534778045
    [Google Scholar]
  78. RoccaA. BragaL. VolpeM.C. MaiocchiS. GeneraliD. The predictive and prognostic role of ras–raf–mek–erk pathway alterations in breast cancer: Revision of the literature and comparison with the analysis of cancer genomic datasets.Cancers20221421530610.3390/cancers1421530636358725
    [Google Scholar]
  79. GagliardiM. PitnerM.K. ParkJ. XieX. SasoH. LarsonR.A. SammonsR.M. ChenH. WeiC. MasudaH. ChauhanG. KondoK. TripathyD. UenoN.T. DalbyK.N. DebebB.G. BartholomeuszC. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer.Sci. Rep.2020101853710.1038/s41598‑020‑65250‑332444778
    [Google Scholar]
  80. YuS. ZhangM. HuangL. MaZ. GongX. LiuW. ZhangJ. ChenL. YuZ. ZhaoW. LiuY. ERK1 indicates good prognosis and inhibits breast cancer progression by suppressing YAP1 signaling.Aging20191124122951231410.18632/aging.10257231848326
    [Google Scholar]
  81. BuscàR. ChristenR. LovernM. CliffordA.M. YueJ.X. GossG.G. PouysségurJ. LenormandP. ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1.BMC Evol. Biol.201515117910.1186/s12862‑015‑0450‑x26336084
    [Google Scholar]
  82. BuscàR. PouysségurJ. LenormandP. ERK1 and ERK2 map kinases: Specific roles or functional redundancy?Front. Cell Dev. Biol.201645310.3389/fcell.2016.0005327376062
    [Google Scholar]
  83. XingZ. WangX. LiuJ. LiuG. ZhangM. FengK. WangX. Effects of ulinastatin on proliferation and apoptosis of breast cancer cells by inhibiting the ERK signaling pathway.BioMed Res. Int.202120211610.1155/2021/999926834373837
    [Google Scholar]
  84. MorenoS.A. PalomerasS. PedersenK. MoranchoB. PascualT. GalvánP. BenítezS. MiragayaG.J. CiscarM. JimenezM. PernasS. PetitA. MonsóS.M.T. ViñasG. AlsaleemM. RakhaE.A. GreenA.R. SantamariaP.G. MulderC. LemeerS. ArribasJ. PratA. PuigT. SuarezG.E. RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer.Breast Cancer Res.20212314210.1186/s13058‑021‑01390‑233785053
    [Google Scholar]
  85. ShanleE.K. XuW. Selectively targeting estrogen receptors for cancer treatment.Adv. Drug Deliv. Rev.201062131265127610.1016/j.addr.2010.08.00120708050
    [Google Scholar]
  86. KumarN. GulatiH.K. SharmaA. HeerS. JassalA.K. AroraL. KaurS. SinghA. BhagatK. KaurA. SinghH. SinghJ.V. BediP.M.S. Most recent strategies targeting estrogen receptor alpha for the treatment of breast cancer.Mol. Divers.202125160362410.1007/s11030‑020‑10133‑y32886304
    [Google Scholar]
  87. LiuY. MaH. YaoJ. ERα, a key target for cancer therapy: A review.OncoTargets Ther.2020132183219110.2147/OTT.S23653232210584
    [Google Scholar]
  88. MayF. Novel drugs that target the estrogen-related receptor alpha: Their therapeutic potential in breast cancer.Cancer Manag. Res.2014622525210.2147/CMAR.S3502424904222
    [Google Scholar]
  89. KaparaA. BruntonV.G. GrahamD. FauldsK. Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS.Analyst2020145227225723310.1039/D0AN01532F33164013
    [Google Scholar]
  90. D’AbreoN. HindenburgA.A. Sex hormone receptors in breast cancer.Vitam Horm2013939913310.1016/B978‑0‑12‑416673‑8.00001‑0
    [Google Scholar]
  91. QinH. ZhangY. LouY. PanZ. SongF. LiuY. XuT. ZhengX. HuX. HuangP. Overview of PROTACs targeting the estrogen receptor: Achievements for biological and drug discovery.Curr. Med. Chem.202229223922394410.2174/092986732866621111010101834758713
    [Google Scholar]
  92. DasA. LavanyaK.J. Effectiveness of selective estrogen receptor modulators in breast cancer therapy: An update.Curr. Med. Chem.20222912810.2174/092986732966622100611052836201273
    [Google Scholar]
  93. DuZ. LovlyC.M. Mechanisms of receptor tyrosine kinase activation in cancer.Mol. Cancer20181715810.1186/s12943‑018‑0782‑429455648
    [Google Scholar]
  94. VogelsteinB. PapadopoulosN. VelculescuV.E. ZhouS. DiazL.A.Jr KinzlerK.W. Cancer genome landscapes.Science201333961271546155810.1126/science.123512223539594
    [Google Scholar]
  95. WangZ. ErbB. Receptors and cancer.Methods Mol. Biol.2017165233510.1007/978‑1‑4939‑7219‑7_128791631
    [Google Scholar]
  96. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  97. WeinbergF. PeckysD.B. de JongeN. EGFR expression in HER2-driven breast cancer cells.Int. J. Mol. Sci.20202123900810.3390/ijms2123900833260837
    [Google Scholar]
  98. LluchA. ErolesP. FidalgoP.J.A. Emerging EGFR antagonists for breast cancer.Expert Opin. Emerg. Drugs201419216518110.1517/14728214.2014.90391924831079
    [Google Scholar]
  99. LiX. ZhaoL. ChenC. NieJ. JiaoB. Can EGFR be a therapeutic target in breast cancer?Biochim. Biophys. Acta Rev. Cancer20221877518878910.1016/j.bbcan.2022.18878936064121
    [Google Scholar]
  100. TanM. YuD. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance.Adv Exp Med Biol200760811912910.1007/978‑0‑387‑74039‑3_9
    [Google Scholar]
  101. OhD.Y. BangY.J. HER2-targeted therapies — A role beyond breast cancer.Nat. Rev. Clin. Oncol.2020171334810.1038/s41571‑019‑0268‑331548601
    [Google Scholar]
  102. BarnesN.L.P. KhavariS. BolandG.P. CramerA. KnoxW.F. BundredN.J. Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast.Clin. Cancer Res.20051162163216810.1158/1078‑0432.CCR‑04‑163315788662
    [Google Scholar]
  103. KoyamaK. IshikawaH. AbeM. ShioseY. UenoS. QiuY. NakamaruK. MurakamiM. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression.PLoS One2022175e026702710.1371/journal.pone.026702735503762
    [Google Scholar]
  104. MianoC. MorselliA. PontisF. BongiovanniC. SacchiF. Da PraS. RomanielloD. TassinariR. SgarziM. PantanoE. VenturaC. LauriolaM. D’UvaG. NRG1/ERBB3/ERBB2 axis triggers anchorage-independent growth of basal-like/triple-negative breast cancer cells.Cancers2022147160310.3390/cancers1407160335406375
    [Google Scholar]
  105. MaJ. LyuH. HuangJ. LiuB. Targeting of erbB3 receptor to overcome resistance in cancer treatment.Mol. Cancer201413110510.1186/1476‑4598‑13‑10524886126
    [Google Scholar]
  106. ZhangL. QuJ. QiY. DuanY. HuangY.W. ZhouZ. LiP. YaoJ. HuangB. ZhangS. YuD. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation.Nat. Commun.2022131254310.1038/s41467‑022‑30105‑035538070
    [Google Scholar]
  107. LiuL.C. ChienY.C. WuG.W. HuaC.H. TsaiI.C. HungC.C. WuT.K. PanY.R. YangS.F. YuY.L. Analysis of EZH2 genetic variants on triple-negative breast cancer susceptibility and pathology.Int. J. Med. Sci.20221961023102810.7150/ijms.7193135813302
    [Google Scholar]
  108. DuanR. DuW. GuoW. EZH2: A novel target for cancer treatment.J. Hematol. Oncol.202013110410.1186/s13045‑020‑00937‑832723346
    [Google Scholar]
  109. VermaA. SinghA. SinghM.P. NengrooM.A. SainiK.K. SatrusalS.R. KhanM.A. ChaturvediP. SinhaA. MeenaS. SinghA.K. DattaD. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis.Nat. Commun.2022131734410.1038/s41467‑022‑35059‑x36446780
    [Google Scholar]
  110. GaoH. WuY. SunY. YangY. ZhouG. RaoY. Design, synthesis, and evaluation of highly potent FAK-targeting PROTACs.ACS Med. Chem. Lett.202011101855186210.1021/acsmedchemlett.9b0037233062164
    [Google Scholar]
  111. IwataniM. IwataH. OkabeA. SkeneR.J. TomitaN. HayashiY. AramakiY. HosfieldD.J. HoriA. BabaA. MikiH. Discovery and characterization of novel allosteric FAK inhibitors.Eur. J. Med. Chem.201361496010.1016/j.ejmech.2012.06.03522819505
    [Google Scholar]
  112. WuX. WangJ. LiangQ. TongR. HuangJ. YangX. XuY. WangW. SunM. ShiJ. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment.Biomed. Pharmacother.202215111311610.1016/j.biopha.2022.11311635598365
    [Google Scholar]
  113. ZhangC. StockwellS.R. ElbannaM. KettelerR. FreemanJ. LazikaniA.B. EcclesS. BrandonD.H.A. RaynaudF. HayesA. ClarkeP.A. WorkmanP. MittnachtS. Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases.Oncogene201938305905592010.1038/s41388‑019‑0850‑231296956
    [Google Scholar]
  114. MurphyJ.M. RodriguezY.A.R. JeongK. AhnE.Y.E. LimS.T.S. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment.Exp. Mol. Med.202052687788610.1038/s12276‑020‑0447‑432514188
    [Google Scholar]
  115. ChenG. GaoC. GaoX. ZhangD.H. KuanS.F. BurnsT.F. HuJ. Wnt/β-catenin pathway activation mediates adaptive resistance to BRAF inhibition in colorectal cancer.Mol. Cancer Ther.201817480681310.1158/1535‑7163.MCT‑17‑056129167314
    [Google Scholar]
  116. CrommP.M. SamarasingheK.T.G. HinesJ. CrewsC.M. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation.J. Am. Chem. Soc.201814049170191702610.1021/jacs.8b0800830444612
    [Google Scholar]
  117. RobertsW.G. UngE. WhalenP. CooperB. HulfordC. AutryC. RichterD. EmersonE. LinJ. KathJ. ColemanK. YaoL. AlsinaM.L. LorenzenM. BerlinerM. LuzzioM. PatelN. SchmittE. LaGrecaS. JaniJ. WesselM. MarrE. GrifforM. VajdosF. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271.Cancer Res.20086861935194410.1158/0008‑5472.CAN‑07‑515518339875
    [Google Scholar]
  118. QuispeP.A. LavecchiaM.J. LeónI.E. Focal adhesion kinase inhibitors in the treatment of solid tumors: Preclinical and clinical evidence.Drug Discov. Today202227266467410.1016/j.drudis.2021.11.02534856395
    [Google Scholar]
  119. YangF. XuK. ZhangS. ZhangJ. QiuY. LuoJ. TanG. ZouZ. WangW. KangF. Discovery of novel chloropyramine-cinnamic acid hybrids as potential FAK inhibitors for intervention of metastatic triple-negative breast cancer.Bioorg. Med. Chem.20226611680910.1016/j.bmc.2022.11680935569251
    [Google Scholar]
  120. GolubovskayaV.M. Focal adhesion kinase as a cancer therapy target.Anticancer. Agents Med. Chem.2010101073574110.2174/18715201079472864821214510
    [Google Scholar]
  121. HeinrichT. SeenisamyJ. EmmanuvelL. KulkarniS.S. BomkeJ. RohdichF. GreinerH. EsdarC. KrierM. GrädlerU. MusilD. Fragment-based discovery of new highly substituted 1H-pyrrolo[2,3-b]- and 3H-imidazolo[4,5-b]-pyridines as focal adhesion kinase inhibitors.J. Med. Chem.20135631160117010.1021/jm301601423294348
    [Google Scholar]
  122. ShaoF. PangX. BaegG.H. Targeting the JAK/STAT signaling pathway for breast cancer.Curr. Med. Chem.202128255137515110.2174/1875533XMTEyxMTM6x33290193
    [Google Scholar]
  123. HoyaG.A. CruzS.I. Role of the JAK/STAT pathway in cervical cancer: Its relationship with HPV E6/E7 oncoproteins.Cells2020910229710.3390/cells910229733076315
    [Google Scholar]
  124. HuX. liJ. FuM. ZhaoX. WangW. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  125. GalièM. RAS as supporting actor in breast cancer.Front. Oncol.20199119910.3389/fonc.2019.0119931781501
    [Google Scholar]
  126. MustachioL.M. RaicuC.A. SzekvolgyiL. RoszikJ. Targeting KRAS in cancer: Promising therapeutic strategies.Cancers2021136120410.3390/cancers1306120433801965
    [Google Scholar]
  127. RicoultS.J.H. YeciesJ.L. Ben-SahraI. ManningB.D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP.Oncogene201635101250126010.1038/onc.2015.17926028026
    [Google Scholar]
  128. HoJ.Y. HsuR.J. LiuJ.M. ChenS.C. LiaoG.S. GaoH.W. YuC.P. MicroRNA-382-5p aggravates breast cancer progression by regulating the RERG/Ras/ERK signaling axis.Oncotarget2017814224432245910.18632/oncotarget.1233827705918
    [Google Scholar]
  129. ZhuC. GuanX. ZhangX. LuanX. SongZ. ChengX. ZhangW. QinJ.J. Targeting KRAS mutant cancers: From druggable therapy to drug resistance.Mol. Cancer202221115910.1186/s12943‑022‑01629‑235922812
    [Google Scholar]
  130. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑1021372320
    [Google Scholar]
  131. VoisinL. JulienC. DuhamelS. GopalbhaiK. ClaveauI. LeilS.E.M.K. GervaisR.I.G. GabouryL. LamarreD. BasikM. MelocheS. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors.BMC Cancer20088133710.1186/1471‑2407‑8‑33719014680
    [Google Scholar]
  132. García-GómezR. BusteloX.R. CrespoP. Protein–protein interactions: Emerging oncotargets in the RAS-ERK pathway.Trends Cancer20184961663310.1016/j.trecan.2018.07.00230149880
    [Google Scholar]
  133. RobertsP.J. DerC.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.Oncogene200726223291331010.1038/sj.onc.121042217496923
    [Google Scholar]
  134. KocieniewskiP. LipniackiT. MEK1 and MEK2 differentially control the duration and amplitude of the ERK cascade response.Phys. Biol.201310303500610.1088/1478‑3975/10/3/03500623735655
    [Google Scholar]
  135. RottenbergS. JonkersJ. MEK inhibition as a strategy for targeting residual breast cancer cells with low DUSP4 expression.Breast Cancer Res.201214632410.1186/bcr332723127286
    [Google Scholar]
  136. FranklinD.A. JamesJ.L. AxelrodM.L. BalkoJ.M. MEK inhibition activates STAT signaling to increase breast cancer immunogenicity via MHC-I expression.Cancer Drug Resist.20203360361210.20517/cdr.2019.10933062958
    [Google Scholar]
  137. DuffyM.J. O’GradyS. TangM. CrownJ. MYC as a target for cancer treatment.Cancer Treat. Rev.20219410215410.1016/j.ctrv.2021.10215433524794
    [Google Scholar]
  138. AlSultanD. KavanaghE. O’GradyS. EustaceA.J. CastellA. LarssonL.G. CrownJ. MaddenS.F. DuffyM.J. The novel low molecular weight MYC antagonist MYCMI-6 inhibits proliferation and induces apoptosis in breast cancer cells.Invest. New Drugs202139258759410.1007/s10637‑020‑01018‑w33052557
    [Google Scholar]
  139. Massó-VallésD. SoucekL. Blocking myc to treat cancer: Reflecting on two decades of omomyc.Cells20209488310.3390/cells904088332260326
    [Google Scholar]
  140. YinX. GiapC. LazoJ.S. ProchownikE.V. Low molecular weight inhibitors of Myc–Max interaction and function.Oncogene200322406151615910.1038/sj.onc.120664113679853
    [Google Scholar]
  141. MustataG. FollisA.V. HammoudehD.I. MetalloS.J. WangH. ProchownikE.V. LazoJ.S. BaharI. Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model.J. Med. Chem.20095251247125010.1021/jm801278g19215087
    [Google Scholar]
  142. LocalA. ZhangH. BenbatoulK.D. FolgerP. ShengX. TsaiC.Y. HowellS.B. RiceW.G. APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression, and induces DNA damage in acute myeloid leukemia cells.Mol. Cancer Ther.20181761177118610.1158/1535‑7163.MCT‑17‑120929626127
    [Google Scholar]
  143. TsaiC.Y. SunS. ZhangH. LocalA. SuY. GrossL.A. RiceW.G. HowellS.B. APTO-253 is a new addition to the repertoire of drugs that can exploit DNA BRCA1/2 deficiency.Mol. Cancer Ther.20181761167117610.1158/1535‑7163.MCT‑17‑083429626126
    [Google Scholar]
  144. WangC. ZhangJ. YinJ. GanY. XuS. GuY. HuangW. Alternative approaches to target Myc for cancer treatment.Signal Transduct. Target. Ther.20216111710.1038/s41392‑021‑00500‑y33692331
    [Google Scholar]
  145. LlombartV. MansourM.R. Therapeutic targeting of “undruggable” MYC.EBioMedicine20227510375610.1016/j.ebiom.2021.10375634942444
    [Google Scholar]
  146. HuaH. KongQ. ZhangH. WangJ. LuoT. JiangY. Targeting mTOR for cancer therapy.J. Hematol. Oncol.20191217110.1186/s13045‑019‑0754‑131277692
    [Google Scholar]
  147. LiuJ. LiH.Q. ZhouF.X. YuJ.W. SunL. HanZ.H. Targeting the mTOR pathway in breast cancer.Tumour Biol.201739610.1177/101042831771082528639903
    [Google Scholar]
  148. HareS.H. HarveyA.J. mTOR function and therapeutic targeting in breast cancer.Am. J. Cancer Res.20177338340428400999
    [Google Scholar]
  149. HollowayR.W. MarignaniP.A. Targeting mTOR and glycolysis in HER2-positive breast cancer.Cancer20211312292210.3390/cancers1312292234208071
    [Google Scholar]
  150. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  151. XuK. LiuP. WeiW. mTOR signaling in tumorigenesis.Biochim. Biophys. Acta Rev. Cancer20141846263865410.1016/j.bbcan.2014.10.00725450580
    [Google Scholar]
  152. WangW. NagS. ZhangR. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.Curr. Med. Chem.201422226428910.2174/092986732166614110612431525386819
    [Google Scholar]
  153. ZengA. LiangX. ZhuS. LiuC. LuoX. ZhangQ. SongL. Baicalin, a potent inhibitor of NF-κB signaling pathway, enhances chemosensitivity of breast cancer cells to docetaxel and inhibits tumor growth and metastasis both in vitro and in vivo. Front. Pharmacol.20201187910.3389/fphar.2020.0087932625089
    [Google Scholar]
  154. HuJ. CaoJ. TopatanaW. JuengpanichS. LiS. ZhangB. ShenJ. CaiL. CaiX. ChenM. Targeting mutant p53 for cancer therapy: Direct and indirect strategies.J. Hematol. Oncol.202114115710.1186/s13045‑021‑01169‑034583722
    [Google Scholar]
  155. DuffyM.J. SynnottN.C. CrownJ. Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker.Breast Cancer Res. Treat.2018170221321910.1007/s10549‑018‑4753‑729564741
    [Google Scholar]
  156. SabapathyK. LaneD.P. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others.Nat. Rev. Clin. Oncol.2018151133010.1038/nrclinonc.2017.15128948977
    [Google Scholar]
  157. OlivierM. HollsteinM. HainautP. TP53 mutations in human cancers: Origins, consequences, and clinical use.Cold Spring Harb. Perspect. Biol.201021a001008a00100810.1101/cshperspect.a00100820182602
    [Google Scholar]
  158. ChenZ. WangX. LiX. ZhouY. ChenK. Deep exploration of PARP inhibitors in breast cancer: Monotherapy and combination therapy.J. Int. Med. Res.202149210.1177/030006052199101933541181
    [Google Scholar]
  159. ManasaryanG. SuplatovD. PushkarevS. DrobotV. KuimovA. ŠvedasV. NilovD. Bioinformatic analysis of the nicotinamide binding site in poly(ADP-Ribose) polymerase family proteins.Cancers2021136120110.3390/cancers1306120133801950
    [Google Scholar]
  160. van BeekL. McClayÉ. PatelS. SchimplM. SpagnoloL. de OliveiraM.T. PARP power: A structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling.Int. J. Mol. Sci.20212210511210.3390/ijms2210511234066057
    [Google Scholar]
  161. SonnenblickA. de AzambujaE. AzimH.A.Jr PiccartM. An update on PARP inhibitors—moving to the adjuvant setting.Nat. Rev. Clin. Oncol.2015121274110.1038/nrclinonc.2014.16325286972
    [Google Scholar]
  162. GonçalvesA. BertucciA. BertucciF. PARP inhibitors in the treatment of early breast cancer: The step beyond?Cancers2020126137810.3390/cancers1206137832471249
    [Google Scholar]
  163. TuttA. RobsonM. GarberJ.E. DomchekS.M. AudehM.W. WeitzelJ.N. FriedlanderM. ArunB. LomanN. SchmutzlerR.K. WardleyA. MitchellG. EarlH. WickensM. CarmichaelJ. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial.Lancet2010376973723524410.1016/S0140‑6736(10)60892‑620609467
    [Google Scholar]
  164. SchützF. StefanovicS. MayerL. von AuA. DomschkeC. SohnC. PD-1/PD-L1 pathway in breast cancer.Oncol. Res. Treat.201740529429710.1159/00046435328346916
    [Google Scholar]
  165. BandayA.H. AbdallaM. Immune checkpoint inhibitors: Recent clinical advances and future prospects.Curr. Med. Chem.20222912310.2174/092986732966622081911584935986535
    [Google Scholar]
  166. HartkopfA.D. TaranF.A. WallwienerM. WalterC.B. KrämerB. GrischkeE.M. BruckerS.Y. PD-1 and PD-L1 immune checkpoint blockade to treat breast cancer.Breast Care201611638539010.1159/00045356928228704
    [Google Scholar]
  167. Planes-LaineG. RochigneuxP. BertucciF. ChrétienA-S. ViensP. SabatierR. GonçalvesA. PD-1/PD-L1 targeting in breast cancer: The first clinical evidences are emerging. A literature review.Cancers2019117103310.3390/cancers1107103331336685
    [Google Scholar]
  168. ChenF. ChenN. GaoY. JiaL. LyuZ. CuiJ. Clinical progress of PD-1/L1 inhibitors in breast cancer immunotherapy.Front. Oncol.20221172442410.3389/fonc.2021.72442435070955
    [Google Scholar]
  169. MukoharaT. PI3K mutations in breast cancer: Prognostic and therapeutic implications.Breast Cancer2015711112310.2147/BCTT.S6069626028978
    [Google Scholar]
  170. FuscoN. MalapelleU. FassanM. MarchiòC. BuglioniS. ZupoS. CriscitielloC. VigneriP. Dei TosA.P. MaioranoE. VialeG. PIK3CA mutations as a molecular target for hormone receptor-positive, HER2-negative metastatic breast cancer.Front. Oncol.20211164473710.3389/fonc.2021.64473733842357
    [Google Scholar]
  171. CizkovaM. VacherS. MeseureD. TrassardM. SusiniA. MlcuchovaD. CallensC. RouleauE. SpyratosF. LidereauR. BiècheI. PIK3R1 underexpression is an independent prognostic marker in breast cancer.BMC Cancer201313154510.1186/1471‑2407‑13‑54524229379
    [Google Scholar]
  172. ZhuY.F. YuB.H. LiD.L. KeH.L. GuoX.Z. XiaoX.Y. PI3K expression and PIK3CA mutations are related to colorectal cancer metastases.World J. Gastroenterol.201218283745375110.3748/wjg.v18.i28.374522851869
    [Google Scholar]
  173. AndréF. CiruelosE. RubovszkyG. CamponeM. LoiblS. RugoH.S. IwataH. ConteP. MayerI.A. KaufmanB. YamashitaT. LuY.S. InoueK. TakahashiM. PápaiZ. LonginA.S. MillsD. WilkeC. HirawatS. JuricD. Alpelisib for PIK3CA -mutated, hormone receptor–positive advanced breast cancer.N. Engl. J. Med.2019380201929194010.1056/NEJMoa181390431091374
    [Google Scholar]
  174. JuricD. JankuF. RodónJ. BurrisH.A. MayerI.A. SchulerM. BernhardtS.R. MartinG.M. MiddletonM.R. BaselgaJ. BootleD. DemanseD. BlumensteinL. SchumacherK. HuangA. QuadtC. RugoH.S. Alpelisib plus fulvestrant in PIK3CA -altered and PIK3CA -wild-type estrogen receptor–positive advanced breast cancer.JAMA Oncol.201952e18447510.1001/jamaoncol.2018.447530543347
    [Google Scholar]
  175. GiulianelliS. MolinoloA. LanariC. Targeting progesterone receptors in breast cancer.Vitam Horm20139316118410.1016/B978‑0‑12‑416673‑8.00009‑5
    [Google Scholar]
  176. DressingG.E. ThomasP. Identification of membrane progestin receptors in human breast cancer cell lines and biopsies and their potential involvement in breast cancer.Steroids200772211111610.1016/j.steroids.2006.10.00617157338
    [Google Scholar]
  177. SiddiquiA. GollavilliP.N. SchwabA. VazakidouM.E. ErsanP.G. RamakrishnanM. PluimD. CogginsS.A. SaatciO. AnnaratoneL. HM SchellensJ. KimB. AsanganiI.A. RasheedS.A.K. MarchiòC. SahinO. CeppiP. Thymidylate synthase maintains the de-differentiated state of triple negative breast cancers.Cell Death Differ.201926112223223610.1038/s41418‑019‑0289‑630737477
    [Google Scholar]
  178. HarithaN.H. NawabA. VijayakurupV. AntoN.P. LijuV.B. AlexV.V. AmruthaA.N. AiswaryaS.U. SwethaM. VinodB.S. SundaramS. GuijarroM.V. HerlevichT. KrishnaA. NestoryN.K. BavaS.V. SadasivanC. Zajac-KayeM. AntoR.J. Targeting thymidylate synthase enhances the chemosensitivity of triple-negative breast cancer towards 5-FU-based combinatorial therapy.Front. Oncol.20211165680410.3389/fonc.2021.65680434336653
    [Google Scholar]
  179. SnajdaufM. HavlovaK. VachtenheimJ.Jr OzaniakA. LischkeR. BartunkovaJ. SmrzD. StrizovaZ. The TRAIL in the treatment of human cancer: An update on clinical trials.Front. Mol. Biosci.2021862833210.3389/fmolb.2021.62833233791337
    [Google Scholar]
  180. RahmanM. PumphreyJ.G. LipkowitzS. The TRAIL to targeted therapy of breast cancer.Adv Cancer Res2009103437310.1016/S0065‑230X(09)03003‑6
    [Google Scholar]
  181. ParkerA.L. KavallarisM. McCarrollJ.A. Microtubules and their role in cellular stress in cancer.Front. Oncol.2014415310.3389/fonc.2014.0015324995158
    [Google Scholar]
  182. TakahashiS. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy.Biol. Pharm. Bull.201134121785178810.1248/bpb.34.178522130231
    [Google Scholar]
  183. SuarezC.S. FjällmanZ.A. HoferB.K. The role of VEGF receptors in angiogenesis; complex partnerships.Cell. Mol. Life Sci.200663560161510.1007/s00018‑005‑5426‑316465447
    [Google Scholar]
  184. LiuY. TamimiR.M. CollinsL.C. SchnittS.J. GilmoreH.L. ConnollyJ.L. ColditzG.A. The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: Results from the Nurses’ Health Study.Breast Cancer Res. Treat.2011129117518410.1007/s10549‑011‑1432‑321390493
    [Google Scholar]
  185. OlssonA.K. DimbergA. KreugerJ. WelshC.L. VEGF receptor signalling? in control of vascular function.Nat. Rev. Mol. Cell Biol.20067535937110.1038/nrm191116633338
    [Google Scholar]
  186. ZhangJ. LiuC. ShiW. YangL. ZhangQ. CuiJ. FangY. LiY. RenG. YangS. XiangR. The novel VEGF receptor 2 inhibitor YLL545 inhibits angiogenesis and growth in breast cancer.Oncotarget2106727410674108010.18632/oncotarget.939227203384
    [Google Scholar]
  187. MitsopoulosC. Di MiccoP. FernandezE.V. DolciamiD. HoltE. MicaI.L. CokerE.A. TymJ.E. CampbellJ. CheK.H. OzerB. KannasC. AntolinA.A. WorkmanP. LazikaniA.B. canSAR: Update to the cancer translational research and drug discovery knowledgebase.Nucleic Acids Res.202149D1D1074D108210.1093/nar/gkaa105933219674
    [Google Scholar]
  188. FumarolaC. BonelliM.A. PetroniniP.G. AlfieriR.R. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer.Biochem. Pharmacol.201490319720710.1016/j.bcp.2014.05.01124863259
    [Google Scholar]
  189. MoteP.A. LearyJ.A. AveryK.A. SandelinK. Chenevix-TrenchG. KirkJ.A. ClarkeC.L. Germ‐line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen‐responsive proteins and the predominance of progesterone receptor A.Genes Chromosomes Cancer200439323624810.1002/gcc.1032114732925
    [Google Scholar]
  190. CongF. YuH. GaoX. Expression of CD24 and B7-H3 in breast cancer and the clinical significance.Oncol. Lett.20171467185719010.3892/ol.2017.714229344150
    [Google Scholar]
  191. DebnathA. ChaudharyH. KumarR. ShokeenA. KhuranaR. Discovery of novel cathepsin D inhibitors by high- throughput virtual screening.Biointerface Res. Appl. Chem.2023135483
    [Google Scholar]
  192. ThompsonR. EastmanA. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design.Br. J. Clin. Pharmacol.201376335836910.1111/bcp.1213923593991
    [Google Scholar]
  193. LiuT.T. LiR. HuoC. LiJ.P. YaoJ. JiX. QuY.Q. Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis.Front. Cell Dev. Biol.2021968200210.3389/fcell.2021.68200234409029
    [Google Scholar]
  194. WhittakerS.R. MallingerA. WorkmanP. ClarkeP.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics.Pharmacol. Ther.20171738310510.1016/j.pharmthera.2017.02.00828174091
    [Google Scholar]
  195. WangD. DuBoisR.N. Cyclooxygenase-2: A potential target in breast cancer.Semin. Oncol.2004311647310.1053/j.seminoncol.2004.01.00815052544
    [Google Scholar]
  196. BaillyC. The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives.Biochem. Pharmacol.202219711489510.1016/j.bcp.2021.11489534968491
    [Google Scholar]
  197. ChuY.H. HuangY.C. ChiuP.Y. KuoW.H. PanY.R. KuoY.T. WangR.H. KaoY.C. WangY.H. LinY.F. LinK.T. Combating breast cancer progression through combination therapy with hypomethylating agent and glucocorticoid.iScience202326510659710.1016/j.isci.2023.10659737128608
    [Google Scholar]
  198. YardenY. SliwkowskiM.X. Untangling the ErbB signalling network.Nat. Rev. Mol. Cell Biol.20012212713710.1038/3505207311252954
    [Google Scholar]
  199. NaiduR. YadavM. NairS. KuttyM.K. Expression of c-erbB3 protein in primary breast carcinomas.Br. J. Cancer199878101385139010.1038/bjc.1998.6899823984
    [Google Scholar]
  200. LiuP. SunY. LiuS. NiuJ. LiuX. ChuQ. SY-707, an ALK/FAK/IGF1R inhibitor, suppresses growth and metastasis of breast cancer cells.Acta Biochim. Biophys. Sin.202254225226010.3724/abbs.202200835538024
    [Google Scholar]
  201. OsmanM.A. AntonisamyW.J. YakirevichE. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer.Oncotarget202011262493251110.18632/oncotarget.2762332655836
    [Google Scholar]
  202. BuruguS. GaoD. LeungS. ChiaS.K. NielsenT.O. LAG-3+ tumor infiltrating lymphocytes in breast cancer: Clinical correlates and association with PD-1/PD-L1+ tumors.Ann. Oncol.201728122977298410.1093/annonc/mdx55729045526
    [Google Scholar]
  203. KabakovA.E. GabaiV.L. HSP70s in breast cancer: Promoters of tumorigenesis and potential targets/tools for therapy.Cells20211012344610.3390/cells1012344634943954
    [Google Scholar]
  204. KumarH. KumarR.M. BhattacharjeeD. SomannaP. JainV. Role of Nrf2 signaling cascade in breast cancer: Strategies and treatment.Front. Pharmacol.20221372007610.3389/fphar.2022.72007635571115
    [Google Scholar]
  205. RittigS.M. LutzM.S. ClarK.L. ZhouY. KroppK.N. KochA. HartkopfA.D. HinterleitnerM. ZenderL. SalihH.R. MaurerS. HinterleitnerC. Controversial role of the immune checkpoint OX40L expression on platelets in breast cancer progression.Front. Oncol.20221291783410.3389/fonc.2022.91783435875148
    [Google Scholar]
  206. PengF. LiQ. SunJ.Y. LuoY. ChenM. BaoY. PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis.Int. J. Oncol.201852394595410.3892/ijo.2018.425729393396
    [Google Scholar]
  207. MarholdM. Current state of clinical development of TROP2-directed antibody–drug conjugates for triple-negative breast cancer.Mag. Eur. Med. Oncol.202215212913210.1007/s12254‑021‑00781‑7
    [Google Scholar]
  208. DongC. ZhangL. SunR. LiuJ. YinH. LiX. ZhengX. ZengH. Role of thioredoxin reductase 1 in dysplastic transformation of human breast epithelial cells triggered by chronic oxidative stress.Sci. Rep.2016613686010.1038/srep3686027845427
    [Google Scholar]
  209. SmoterM. BodnarL. DuchnowskaR. StecR. GralaB. SzczylikC. The role of Tau protein in resistance to paclitaxel.Cancer Chemother. Pharmacol.201168355355710.1007/s00280‑011‑1696‑721713447
    [Google Scholar]
  210. SledgeG.W.Jr VEGF-targeting therapy for breast cancer.J. Mammary Gland Biol. Neoplasia200510431932310.1007/s10911‑006‑9005‑516924373
    [Google Scholar]
  211. MouJ. ChenJ. WuY. HeY. ZhouG. YuanC. WDFY3-AS2: A potential prognostic factor and therapeutic target related to cancer.Curr. Med. Chem.2022291810.2174/092986732966622090911441636093824
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096289260240311062343
Loading
/content/journals/ccdt/10.2174/0115680096289260240311062343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test