Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Lung cancer remains a formidable challenge in oncology, necessitating the development of more effective prognostic and diagnostic techniques due to inefficient conventional therapeutic approaches and inadequate methods for early lung cancer diagnosis. Despite immense progress in the development of innovative strategies to alleviate the impact of this devastating disease, the outcomes, unfortunately, remain unsatisfactory, particularly in targeted drug delivery methods. Consequently, nanotechnology has emerged as a revolutionary force in cancer research to develop more effective targeted drug delivery tools due to its extraordinary capacity at the atomic and molecular levels. It has appeared as a beacon of hope in this area of unmet need, providing innovative ways for the prognosis and diagnosis of lung carcinoma. Therefore, this comprehensive review delves into the evolving field of nano-based therapeutics, shedding light on their potential to transform lung cancer treatment. This study meticulously explores the most promising nano-based strategies that have been extensively linked with the treatment of lung carcinoma and mainly emphasizes targeted drug delivery methods and therapies. Additionally, this review encapsulates the favorable results of clinical trials, which support the potential pathways for further development of nanotherapeutics in lung cancer management.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096302203240308104740
2024-03-29
2025-09-03
Loading full text...

Full text loading...

References

  1. WangD.C. WangW. ZhuB. WangX. Lung cancer heterogeneity and new strategies for drug therapy.Annu. Rev. Pharmacol. Toxicol.201858153154610.1146/annurev‑pharmtox‑010716‑10452328977762
    [Google Scholar]
  2. ThandraC.K. BarsoukA. SaginalaK. AluruS.J. BarsoukA. Epidemiology of lung cancer.Contemp. Oncol.2021251455210.5114/wo.2021.10382933911981
    [Google Scholar]
  3. ZhouX. LeiC. WeiX. DaiW. XuW. AoY. LiX. QiaoG. ShiQ. Patient’s experiences of coughing after lung cancer surgery: A multicenter qualitative study.Cancer Med.2024132e699310.1002/cam4.699338348918
    [Google Scholar]
  4. TestaU. CastelliG. PelosiE. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells.Cancers201810824810.3390/cancers1008024830060526
    [Google Scholar]
  5. UpadhyaA. YadavK.S. MisraA. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-Part I.Expert Opin. Drug Deliv.20211817310210.1080/17425247.2021.182537732954834
    [Google Scholar]
  6. BarJ. UrbanD. AmitU. AppelS. OnnA. MargalitO. BellerT. KuznetsovT. LawrenceY. Long-term survival of patients with metastatic non-small-cell lung cancer over five decades.J. Oncol.2021202111010.1155/2021/783626433519934
    [Google Scholar]
  7. LiJ. ZhuL. KwokH.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment.Drug Resist. Updat.20236610090410.1016/j.drup.2022.10090436462375
    [Google Scholar]
  8. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.03331226287
    [Google Scholar]
  9. SharmaA. ShambhwaniD. PandeyS. SinghJ. LalhlenmawiaH. KumarasamyM. SinghS.K. ChellappanD.K. GuptaG. PrasherP. DuaK. KumarD. Advances in lung cancer treatment using nanomedicines.ACS Omega202381104110.1021/acsomega.2c0407836643475
    [Google Scholar]
  10. OmietimiH.B. AfolaluS.A. KayodeJ.F. MonyeS.I. LawalS.L. EmetereM. An overview of nanotechnology and its application.4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)20231710.1051/e3sconf/202339101079
    [Google Scholar]
  11. NasrollahzadehM. SajadiS.M. SajjadiM. IssaabadiZ. An introduction to nanotechnology.Interface Sci. Technol.20192812710.1016/B978‑0‑12‑813586‑0.00001‑8
    [Google Scholar]
  12. JinC. WangK. GyebiO.A. HuJ. Application of nanotechnology in cancer diagnosis and therapy - A mini-review.Int. J. Med. Sci.202017182964297310.7150/ijms.4980133173417
    [Google Scholar]
  13. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  14. KarimiM. GhasemiA. ZangabadS.P. RahighiR. BasriM.S.M. MirshekariH. AmiriM. PishabadS.Z. AslaniA. BozorgomidM. GhoshD. BeyzaviA. VaseghiA. ArefA.R. HaghaniL. BahramiS. HamblinM.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.Chem. Soc. Rev.20164551457150110.1039/C5CS00798D26776487
    [Google Scholar]
  15. LiF. QinY. LeeJ. LiaoH. WangN. DavisT.P. QiaoR. LingD. Stimuli-responsive nano-assemblies for remotely controlled drug delivery.J. Control. Release202032256659210.1016/j.jconrel.2020.03.05132276006
    [Google Scholar]
  16. ChakrabortyM. JainS. RaniV. Nanotechnology: Emerging tool for diagnostics and therapeutics.Appl. Biochem. Biotechnol.20111655-61178118710.1007/s12010‑011‑9336‑621847590
    [Google Scholar]
  17. PapadimitriouS.A. SalinasY. ResminiM. Smart polymeric nanoparticles as emerging tools for imaging—The parallel evolution of materials.Chemistry201622113612362010.1002/chem.20150261026563829
    [Google Scholar]
  18. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed. Technol.2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  19. SinghD. Nanotechnology-based assays for the detection of cancer through sputum.Curr. Anal. Chem.202319963364110.2174/0115734110279115231102060741
    [Google Scholar]
  20. GandhiS. RoyI. Lipid-based inhalable micro- and nanocarriers of active agents for treating non-small-cell lung cancer.Pharmaceutics20231551457145710.3390/pharmaceutics1505145737242697
    [Google Scholar]
  21. RaiA. RawatS.S. ChopraH. SinghI. EmranT.B. Nano-based approaches for diagnosis and therapy of gastric cancer.Int J Surg.202310972151215210.1097/JS9.0000000000000116
    [Google Scholar]
  22. GholamiL. IvariJ.R. NasabN.K. OskueeR.K. SathyapalanT. SahebkarA. Recent advances in lung cancer therapy based on nanomaterials: A review.Curr. Med. Chem.20212810.2174/092986732866621081016090134375182
    [Google Scholar]
  23. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
  24. KimS.J. PuranikN. YadavD. JinJ.O. LeeP.C.W. Lipid nanocarrier-based drug delivery systems: Therapeutic advances in the treatment of lung cancer.Int. J. Nanomedicine2023182659267610.2147/IJN.S40641537223276
    [Google Scholar]
  25. YadavK.S. UpadhyaA. MisraA. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers).Expert Opin. Drug Deliv.202118110311810.1080/17425247.2021.183298933017541
    [Google Scholar]
  26. AblaK.K. MehannaM.M. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives.J. Control. Release2023362709610.1016/j.jconrel.2023.08.01837591463
    [Google Scholar]
  27. DaveR. PatelR. PatelM. Hybrid lipid-polymer nanoplatform: A systematic review for targeted colorectal cancer therapy.Eur. Polym. J.202318611187710.1016/j.eurpolymj.2023.111877
    [Google Scholar]
  28. PriyaS. DesaiV.M. SinghviG. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery.ACS Omega202381748610.1021/acsomega.2c0597636643539
    [Google Scholar]
  29. LimS.B. BanerjeeA. ÖnyükselH. Improvement of drug safety by the use of lipid-based nanocarriers.J. Control. Release20121631344510.1016/j.jconrel.2012.06.00222698939
    [Google Scholar]
  30. MishraD.K. ShandilyaR. MishraP.K. Lipid based nanocarriers: A translational perspective.Nanomedicine20181472023205010.1016/j.nano.2018.05.02129944981
    [Google Scholar]
  31. OliverP.M. OrtegaS.M.J. LozanoM.V. Current approaches in lipid-based nanocarriers for oral drug delivery.Drug Deliv. Transl. Res.202111247149710.1007/s13346‑021‑00908‑733528830
    [Google Scholar]
  32. AbdulbaqiI.M. AssiR.A. YaghmurA. DarwisY. MohtarN. ParumasivamT. SaqallahF.G. WahabH.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update.Pharmaceuticals (Basel)202114872572510.3390/ph1408072534451824
    [Google Scholar]
  33. Zununi VahedS. SalehiR. DavaranS. SharifiS. Liposome-based drug co-delivery systems in cancer cells.Mater. Sci. Eng. C2017711327134110.1016/j.msec.2016.11.07327987688
    [Google Scholar]
  34. ShahrivarR.Y. FakhrZ.A. AbbasgholinejadE. DoroudianM. Smart lipid‐based nanoparticles in lung cancer treatment: Current status and future directions.Adv. Ther.2023612230027510.1002/adtp.202300275
    [Google Scholar]
  35. LeT.N.T. NguyenN.H. HoangM.C. NguyenK.C. NguyenH.D. TranD.L. Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel.J. Bioact. Compat. Polym.202237131610.1177/08839115211053926
    [Google Scholar]
  36. MohtarN. ParumasivamT. GazzaliA.M. TanC.S. TanM.L. OthmanR. RahimanF.S.S. WahabH.A. Advanced nanoparticle-based drug delivery systems and their cellular evaluation for non-small cell lung cancer treatment.Cancers20211314353910.3390/cancers1314353934298753
    [Google Scholar]
  37. HasC. SuntharP. A comprehensive review on recent preparation techniques of liposomes.J. Liposome Res.202030433636510.1080/08982104.2019.166801031558079
    [Google Scholar]
  38. GuimarãesD. PauloC.A. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  39. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms2403264336768966
    [Google Scholar]
  40. RazakA.S.A. GazzaliM.A. FisolF.A. AbdulbaqiM.I. ParumasivamT. MohtarN. WahabA.H. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview.Cancers202113340010.3390/cancers1303040033499040
    [Google Scholar]
  41. VanzaJ.D. PatelR.B. PatelM.R. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer.J. Drug Deliv. Sci. Technol.20206010207010.1016/j.jddst.2020.102070
    [Google Scholar]
  42. XiaoZ. ZhuangB. ZhangG. LiM. JinY. Pulmonary delivery of cationic liposomal hydroxycamptothecin and 5-aminolevulinic acid for chemo-sonodynamic therapy of metastatic lung cancer.Int. J. Pharm.202160112057212057210.1016/j.ijpharm.2021.12057233831485
    [Google Scholar]
  43. PastorizaL.C. VanvarenbergK. UcakarB. FrancoM.M. StaubA. LemaireM. RenauldJ.C. VanbeverR. Encapsulation of a CpG oligonucleotide in cationic liposomes enhances its local antitumor activity following pulmonary delivery in a murine model of metastatic lung cancer.Int. J. Pharm.202160012050412050410.1016/j.ijpharm.2021.12050433753161
    [Google Scholar]
  44. ZhangM. LiM. DuL. ZengJ. YaoT. JinY. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer.Int. J. Pharm.202057811917710.1016/j.ijpharm.2020.11917732105724
    [Google Scholar]
  45. BuX. JiN. DaiL. DongX. ChenM. XiongL. SunQ. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients.Trends Food Sci. Technol.202111438639810.1016/j.tifs.2021.06.001
    [Google Scholar]
  46. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  47. OrdaniniS. CellesiF. Complex polymeric architectures self-assembling in unimolecular micelles: Preparation, characterization and drug nanoencapsulation.Pharmaceutics201810420910.3390/pharmaceutics1004020930388744
    [Google Scholar]
  48. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  49. MajumderN. G DasN. DasS.K. Polymeric micelles for anticancer drug delivery.Ther. Deliv.2020111061363510.4155/tde‑2020‑000832933425
    [Google Scholar]
  50. TorchilinV.P. Structure and design of polymeric surfactant-based drug delivery systems.J. Control. Release2001732-313717210.1016/S0168‑3659(01)00299‑111516494
    [Google Scholar]
  51. BiswasS. KumariP. LakhaniP.M. GhoshB. Recent advances in polymeric micelles for anti-cancer drug delivery.Eur. J. Pharm. Sci.20168318420210.1016/j.ejps.2015.12.03126747018
    [Google Scholar]
  52. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics1408163636015262
    [Google Scholar]
  53. KwonG.S. KataokaK. Block copolymer micelles as long-circulating drug vehicles.Adv. Drug Deliv. Rev.1995162-329530910.1016/0169‑409X(95)00031‑2
    [Google Scholar]
  54. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. AriasA.F. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  55. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: a comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  56. LimaA.C. FerreiraH. ReisR.L. NevesN.M. Biodegradable polymers: An update on drug delivery in bone and cartilage diseases.Expert Opin. Drug Deliv.201916879581310.1080/17425247.2019.163511731220958
    [Google Scholar]
  57. AzizZ. AhmadA. SetaparM.S. HassanH. LokhatD. KamalM. AshrafG. Recent advances in drug delivery of polymeric nano-micelles.Curr. Drug Metab.2017181162910.2174/138920021766616092114361627654898
    [Google Scholar]
  58. OerlemansC. BultW. BosM. StormG. NijsenJ.F.W. HenninkW.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release.Pharm. Res.201027122569258910.1007/s11095‑010‑0233‑420725771
    [Google Scholar]
  59. WangJ. MaoW. LockL.L. TangJ. SuiM. SunW. CuiH. XuD. ShenY. The role of micelle size in tumor accumulation, penetration, and treatment.ACS Nano2015977195720610.1021/acsnano.5b0201726149286
    [Google Scholar]
  60. AtkinsonS. AndreuZ. VicentM. Polymer therapeutics: Biomarkers and new approaches for personalized cancer treatment.J. Pers. Med.201881610.3390/jpm801000629360800
    [Google Scholar]
  61. SarcanE.T. GunayS.M. OzerA.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy.Int. J. Pharm.20185511-232933810.1016/j.ijpharm.2018.09.01930244148
    [Google Scholar]
  62. WangY. LiP. Truong-Dinh TranT. ZhangJ. KongL. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer.Nanomaterials2016622610.3390/nano602002628344283
    [Google Scholar]
  63. VauthierC. BouchemalK. Methods for the preparation and manufacture of polymeric nanoparticles.Pharm. Res.20092651025105810.1007/s11095‑008‑9800‑319107579
    [Google Scholar]
  64. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.00428866227
    [Google Scholar]
  65. ChengR. MengF. DengC. KlokH.A. ZhongZ. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.Biomaterials201334143647365710.1016/j.biomaterials.2013.01.08423415642
    [Google Scholar]
  66. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑732537239
    [Google Scholar]
  67. BasakD. ArrighiS. DarwicheY. DebS. Comparison of anticancer drug toxicities: Paradigm shift in adverse effect profile.Life20211214810.3390/life1201004835054441
    [Google Scholar]
  68. MakvandiP. JosicU. DelfiM. PinelliF. JahedV. KayaE. AshrafizadehM. ZarepourA. RossiF. ZarrabiA. AgarwalT. ZareE.N. GhomiM. MaitiK.T. BreschiL. TayF.R. Drug delivery (Nano)platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management.Adv. Sci.202188200401410.1002/advs.20200401433898183
    [Google Scholar]
  69. SukumarU.K. BhushanB. DubeyP. MataiI. SachdevA. PackirisamyG. Emerging applications of nanoparticles for lung cancer diagnosis and therapy.Int. Nano Lett.2013314510.1186/2228‑5326‑3‑45
    [Google Scholar]
  70. JoshiM.D. PatravaleV. PrabhuR. Polymeric nanoparticles for targeted treatment in oncology: Current insights.Int. J. Nanomedicine2015101001101810.2147/IJN.S5693225678788
    [Google Scholar]
  71. AmreddyN. BabuA. MuralidharanR. MunshiA. RameshR. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment.Top. Curr. Chem.201737523510.1007/s41061‑017‑0128‑528290155
    [Google Scholar]
  72. KimD.W. KimS.Y. KimH.K. KimS.W. ShinS.W. KimJ.S. ParkK. LeeM.Y. HeoD.S. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer.Ann. Oncol.200718122009201410.1093/annonc/mdm37417785767
    [Google Scholar]
  73. ChoE.K. KangS.M. JungM. AhnH.K. ParkI. KimY.S. HongJ. SymS.J. ParkJ. ShinD.B. LeeJ.H. A phase II trial of a cremophor-free, polymeric micelle formulation of paclitaxel and gemcitabine in patients with advanced non-small cell lung cancer.Clin. Oncol.20133115
    [Google Scholar]
  74. ZhaoT. ChenH. YangL. JinH. LiZ. HanL. LuF. XuZ. DDAB-modified TPGS- b -(PCL- ran -PGA) nanoparticles as oral anticancer drug carrier for lung cancer chemotherapy.Nano2013821350014135001410.1142/S1793292013500148
    [Google Scholar]
  75. MehrotraA. NagarwalR.C. PanditJ.K. Lomustine loaded chitosan nanoparticles: Characterization and in-vitro cytotoxicity on human lung cancer cell line L132.Chem. Pharm. Bull.201159331532010.1248/cpb.59.31521372411
    [Google Scholar]
  76. LiuR. KhullarO.V. GrisetA.P. WadeJ.E. ZubrisK.A.V. GrinstaffM.W. ColsonY.L. Paclitaxel-loaded expansile nanoparticles delay local recurrence in a heterotopic murine non-small cell lung cancer model.Ann. Thorac. Surg.20119141077108410.1016/j.athoracsur.2010.12.04021440127
    [Google Scholar]
  77. ElzoghbyA.O. SaadN.I. HelmyM.W. SamyW.M. ElgindyN.A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats.Eur. J. Pharm. Biopharm.201385344445110.1016/j.ejpb.2013.07.00323872177
    [Google Scholar]
  78. ElzoghbyA.O. HelmyM.W. SamyW.M. ElgindyN.A. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model.Pharm. Res.201330102654266310.1007/s11095‑013‑1091‑723739989
    [Google Scholar]
  79. ElzoghbyA. HelmyM.W. SamyW.M. ElgindyN.A. Novel ionically crosslinked casein nanoparticles for flutamide delivery: Formulation, characterization, and in vivo pharmacokinetics.Int. J. Nanomedicine201381721173210.2147/IJN.S4067423658490
    [Google Scholar]
  80. ThomasA. TeicherB.A. HassanR. Antibody–drug conjugates for cancer therapy.Lancet Oncol.2016176e254e26210.1016/S1470‑2045(16)30030‑427299281
    [Google Scholar]
  81. NasiriH. ValedkarimiZ. MalekiA.L. MajidiJ. Antibody‐drug conjugates: Promising and efficient tools for targeted cancer therapy.J. Cell. Physiol.201823396441645710.1002/jcp.2643529319167
    [Google Scholar]
  82. NguyenT.D. BordeauB.M. BalthasarJ.P. Mechanisms of ADC toxicity and strategies to increase ADC tolerability.Cancers202315371371310.3390/cancers15030713
    [Google Scholar]
  83. AlitappehA.M. LotfiniaM. GharibiT. MardanehJ. FarhadihosseinabadiB. LarkiP. FaghfourianB. SepehrK.S. GoudarziA.K. GoudarziA.G. JohariB. ZaliM.R. BagheriN. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes.J. Cell. Physiol.201923455628564210.1002/jcp.2741930478951
    [Google Scholar]
  84. DragoJ.Z. ModiS. ChandarlapatyS. Unlocking the potential of antibody–drug conjugates for cancer therapy.Nat. Rev. Clin. Oncol.202118327–34411810.1038/s41571‑021‑00470‑8
    [Google Scholar]
  85. NongkhlawR. Biologics: Delivery options and formulation strategies.Drug Delivery AspectsElsevier202011515510.1016/B978‑0‑12‑821222‑6.00006‑3
    [Google Scholar]
  86. YaghoubiS. KarimiM.H. LotfiniaM. GharibiT. BirjandM.M. KaviE. HosseiniF. SepehrS.K. KhatamiM. BagheriN. AlitappehA.M. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy.J. Cell. Physiol.20202351316410.1002/jcp.2896731215038
    [Google Scholar]
  87. CruzE. KayserV. Monoclonal antibody therapy of solid tumors: Clinical limitations and novel strategies to enhance treatment efficacy.Biologics201913335110.2147/BTT.S16631031118560
    [Google Scholar]
  88. RenS. ShaoY. ZhaoX. HongC.S. WangF. LuX. LiJ. YeG. YanM. ZhuangZ. XuC. XuG. SunY. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer.Mol. Cell. Proteomics201615115416310.1074/mcp.M115.05238126545398
    [Google Scholar]
  89. RosnerS. ValdiviaA. HoeH.J. MurrayJ.C. LevyB. FelipE. SolomonB.J. Antibody-drug conjugates for lung cancer: Payloads and progress.Am. Soc. Clin. Oncol. Educ. Book20234343e38996810.1200/EDBK_38996837163707
    [Google Scholar]
  90. AbuhelwaZ. AlloghbiA. NagasakaM. A comprehensive review on antibody-drug conjugates (ADCs) in the treatment landscape of non-small cell lung cancer (NSCLC).Cancer Treat. Rev.202210610239310.1016/j.ctrv.2022.10239335472631
    [Google Scholar]
  91. DesaiA. AbdayemP. AdjeiA.A. PlanchardD. Antibody-drug conjugates: A promising novel therapeutic approach in lung cancer.Lung Cancer20221639610610.1016/j.lungcan.2021.12.00234942494
    [Google Scholar]
  92. MamdaniH. MatosevicS. KhalidA.B. DurmG. JalalS.I. Immunotherapy in lung cancer: Current landscape and future directions.Front. Immunol.20221382361810.3389/fimmu.2022.82361835222404
    [Google Scholar]
  93. IlieM. BenzaquenJ. HofmanV. LassalleS. YazbeckN. LeroyS. HeekeS. BenceC. MograbiB. GlaichenhausN. MarquetteC.H. HofmanP. Immunotherapy in non-small cell lung cancer: Biological principles and future opportunities.Curr. Mol. Med.201817852754010.2174/156652401866618022211403829473504
    [Google Scholar]
  94. HerzbergB. CampoM.J. GainorJ.F. Immune checkpoint inhibitors in non-small cell lung cancer.Oncologist2017221818810.1634/theoncologist.2016‑018927534574
    [Google Scholar]
  95. SanaeiM-J. SigaroodiP.A. KavehV. AbolghasemiH. GhaffariS.H. MomenyM. BashashD. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy.Eur. J. Pharmacol.202190917440417440410.1016/j.ejphar.2021.174404
    [Google Scholar]
  96. PersanoS. DasP. PellegrinoT. Magnetic nanostructures as emerging therapeutic tools to boost anti-tumour immunity.Cancers20211311273510.3390/cancers1311273534073106
    [Google Scholar]
  97. DoroshowD.B. SanmamedM.F. HastingsK. PolitiK. RimmD.L. ChenL. MeleroI. SchalperK.A. HerbstR.S. Immunotherapy in non–small cell lung cancer: Facts and hopes.Clin. Cancer Res.201925154592460210.1158/1078‑0432.CCR‑18‑153830824587
    [Google Scholar]
  98. LiX. HuW. ZhengX. ZhangC. DuP. ZhengZ. YangY. WuJ. JiM. JiangJ. WuC. Emerging immune checkpoints for cancer therapy.Acta Oncol.201554101706171310.3109/0284186X.2015.107191826361073
    [Google Scholar]
  99. SadreddiniS. BaradaranB. MalekiA.A. SadreddiniS. ShanehbandiD. FotouhiA. MalekiA.L. Immune checkpoint blockade opens a new way to cancer immunotherapy.J. Cell. Physiol.201923468541854910.1002/jcp.2781630511409
    [Google Scholar]
  100. RotteA. JinJ.Y. LemaireV. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy.Ann. Oncol.2018291718310.1093/annonc/mdx68629069302
    [Google Scholar]
  101. QinS. XuL. YiM. YuS. WuK. LuoS. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4.Mol. Cancer201918115510.1186/s12943‑019‑1091‑231690319
    [Google Scholar]
  102. SanchisL.A. ZúñigaÁ. EstorsM. HernándezM.N.J. CremadesA. CuencaM. GalbisJ.M. Association of PD-1, PD-L1, and CTLA-4 gene expression and clinicopathologic characteristics in patients with non–small-cell lung cancer.Clin. Lung Cancer2017182e109e11610.1016/j.cllc.2016.09.01027816393
    [Google Scholar]
  103. YonedaK. ImanishiN. IchikiY. TanakaF. Immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC).J. UOEH201840217318910.7888/juoeh.40.17329925736
    [Google Scholar]
  104. KiaieS.H. ShadkamiS.H. SanaeiM.J. AziziM. BaroughS.M. NasrM.S. SheibaniM. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy.J. Nanobiotechnology202321133910.1186/s12951‑023‑02083‑y
    [Google Scholar]
  105. G LahoriD. VaraminiP. Nanotechnology-based platforms to improve immune checkpoint blockade efficacy in cancer therapy.Future Oncol.202117671172210.2217/fon‑2020‑072033136464
    [Google Scholar]
  106. BajpaiS. TiwaryS.K. SonkerM. JoshiA. GuptaV. KumarY. ShreyashN. BiswasS. Recent advances in nanoparticle-based cancer treatment: A review.ACS Appl. Nano Mater.2021476441647010.1021/acsanm.1c00779
    [Google Scholar]
  107. LiuY. CrawfordB.M. Vo-DinhT. Gold nanoparticles-mediated photothermal therapy and immunotherapy.Immunotherapy201810131175118810.2217/imt‑2018‑002930236026
    [Google Scholar]
  108. ChenQ. WenJ. LiH. XuY. LiuF. SunS. Recent advances in different modal imaging-guided photothermal therapy.Biomaterials201610614416610.1016/j.biomaterials.2016.08.02227561885
    [Google Scholar]
  109. HouX. TaoY. PangY. LiX. JiangG. LiuY. Nanoparticle‐based photothermal and photodynamic immunotherapy for tumor treatment.Int. J. Cancer2018143123050306010.1002/ijc.3171729981170
    [Google Scholar]
  110. LiZ. DengJ. SunJ. MaY. Hyperthermia targeting the tumor microenvironment facilitates immune checkpoint inhibitors.Front. Immunol.20201159520710.3389/fimmu.2020.59520733240283
    [Google Scholar]
  111. XuP. LiangF. Nanomaterial-based tumor photothermal immunotherapy.Int. J. Nanomedicine2020159159918010.2147/IJN.S24925233244232
    [Google Scholar]
  112. KongC. ChenX. Combined photodynamic and photothermal therapy and immunotherapy for cancer treatment: A review.Int. J. Nanomedicine2022176427644610.2147/IJN.S38899636540374
    [Google Scholar]
  113. ZhuangJ. HolayM. ParkJ.H. FangR.H. ZhangJ. ZhangL. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy.Theranostics20199257826784810.7150/thno.3721631695803
    [Google Scholar]
  114. PapaioannouN.E. BeniataO.V. VitsosP. TsitsilonisO. SamaraP. Harnessing the immune system to improve cancer therapy.Ann. Transl. Med.201641426126110.21037/atm.2016.04.0127563648
    [Google Scholar]
  115. McKernanP. ViraniN.A. FariaG.N.F. KarchC.G. Prada SilvyR. ResascoD.E. ThompsonL.F. HarrisonR.G. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer.Nanoscale Res. Lett.2021161910.1186/s11671‑020‑03459‑x33411055
    [Google Scholar]
  116. YasothamaniV. KarthikeyanL. ShyamsivappanS. HaldoraiY. SeethaD. VivekR. Synergistic effect of photothermally targeted NIR-responsive nanomedicine-induced immunogenic cell death for effective triple negative breast cancer therapy.Biomacromolecules20212262472249010.1021/acs.biomac.1c0024434014660
    [Google Scholar]
  117. RotteA. Combination of CTLA-4 and PD-1 blockers for treatment of cancer.J. Exp. Clin. Cancer Res.201938125510.1186/s13046‑019‑1259‑z31196207
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096302203240308104740
Loading
/content/journals/ccdt/10.2174/0115680096302203240308104740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test