Current Bioinformatics - Online First
Description text for Online First listing goes here...
21 - 35 of 35 results
-
-
An Analysis of the Interactions between the 5' UTR and Introns in Mitochondrial Ribosomal Protein Genes
Authors: Junchao Deng, Ruifang Li, Xinwei Song, Shan Gao, Shiya Peng and Xu TianAvailable online: 10 February 2025More LessBackgroundThe 5' UTR plays a crucial role in gene regulation, which may be through its interaction with introns. Hence, there is a need to further study this interaction.
ObjectiveThis study aimed to investigate the interactions between 5' UTR and introns and their correlation with species evolution.
MethodsThe optimally matched segments between 5' UTR and introns were identified using Smith-Waterman local similarity matching, and the biological statistical methods were applied to compare the optimally matched segments between different species.
ResultsThe interactions between 5' UTR and introns were found to be primarily mediated by weak bonds and demonstrated a directional change with species evolution. Additionally, a large proportion of the optimally matched segments were very similar to miRNA and siRNA in terms of length and matching rate characteristics.
ConclusionThe weak bonds in the interactions between the 5' UTR and the introns could enhance the flexibility of expression regulation, and an important correlation was found between the characteristic distributions of the optimally matched segments and species evolution. Additionally, the length and matching rate of a large proportion of optimally matched segments were very similar to those of miRNA and siRNA. In conclusion, it is highly probable that quite a few of the optimally matched segments are some kinds of functional non-coding RNAs.
-
-
-
PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network
Authors: Lei Chen and Jingdong LiAvailable online: 10 February 2025More LessBackgroundDisease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations.
ObjectiveThis study proposes a computational model named PDTDAHN to predict drug-target-disease triple associations.
MethodSix association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM.
ResultsCross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions.
ConclusionThe proposed model effectively predicts drug-target-disease triple associations.
-
-
-
Integrative Multi-Omics Approaches for Personalized Medicine and Health
Authors: Prateek Tiwari, Raghvendra Pandey and Sonia ChadhaAvailable online: 10 February 2025More LessIntroductionMulti-omics data integration has transformed personalized medicine, providing a comprehensive understanding of disease mechanisms and informed precision therapeutic options. Multi-omics data generated for the same samples/patients can help in getting insights into the flow of biological information at several levels, thereby providing in-depth information regarding the molecular mechanisms underlying pathological conditions. Multi-omics integration plays a pivotal role in personalized medicine by providing comprehensive insights into the complex biological systems of individual patients. This review provides a comprehensive account of the current and future progress brought into multi-omics methodologies, promising to refine diagnostics and therapeutic strategy by integrating genomic, transcriptomic analyses, proteomics approaches and metabolome screens.
MethodsA literature search was performed in PubMed using keywords like genomics, proteomics, transcriptomics, metabolomics, multi-omics, and precision medicine to identify published research articles. A thorough review of all results was then conducted, and their results and conclusions were compiled and summarized.
ResultBy analyzing various omics layers, such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics approaches enable the identification of patient-specific molecular traits and the discovery of new clinical therapeutics for diseases. Integration of various data types augments diagnostics, optimizes therapeutic regimens and supports personalized medicine according to an individual patient profile.
ConclusionIntegration of multi-omics data and its applications in various fields, such as cancer research, helps in optimizing patient-specific treatment and improvement of patient health. With time, as these technologies reach more people, they stand to democratize precision medicine and hopefully bridge health disparities. In conclusion, the present review highlights multiomics data integration as a transformative step towards personalized medicine and ultimately changing patient care from empirical-based to precision or individualized.
-
-
-
An Overview of Spatial Transcriptomics Methodologies in Traversing the Biological System
Available online: 30 January 2025More LessTranscriptomics covers the in-depth analysis of RNA molecules in cells or tissues and plays an essential role in understanding cellular functions and disease mechanisms. Advances in spatial transcriptomics (ST) in recent times have revolutionized the field by combining gene expression data with spatial information, enabling the analysis of RNA molecules within their tissue context. The evolution of spatial transcriptomics, particularly the integration of artificial intelligence (AI) in data analysis, and its diverse applications have been found to be superior methods in developmental research. Spatial transcriptomics technologies, along with single-cell RNA sequencing (scRNA-seq), offer unprecedented possibilities to unravel intricate cellular interactions within tissues. It emphasizes the importance of accurate cell localization for in-depth discoveries and developments via high-throughput spatial transcriptome profiling. The integration of artificial intelligence in spatial transcriptomics analysis is a key focus, showcasing its role in detecting spatially variable genes, clustering cell populations, communication analysis, and enhancing data interpretation. The evolution of AI methods tailored for spatial transcriptomics is highlighted, addressing the unique challenges posed by spatially resolved transcriptomic data. Applications of spatial transcriptomics integrated with other omics data, such as genomics, proteomics, and metabolomics, provide a detailed view of molecular processes within tissues and emerge in diverse applications. Integrating spatial transcriptomics with AI represents a transformative approach to understanding tissue architecture and cellular interactions. This innovative synergy not only enhances our understanding of gene expression patterns but also offers a holistic view of molecular processes within tissues, with profound implications for disease mechanisms and therapeutic development.
-
-
-
Exploring Coding Sequence Length Distributions Across Taxonomic Kingdoms Based on Maximum Information Principle
Available online: 30 January 2025More LessBackgroundGenetic information about organisms' traits is stored and encoded in deoxyribonucleic acid (DNA) sequences. The fundamental inquiry into the storage mechanisms of this genetic information within genomes has long been of interest to geneticists and biophysicists.
ObjectiveThe objective of this study was to investigate the distribution of coding sequence (CDS) lengths in species genomes across different kingdoms.
MethodsIn this study, we used the maximum entropy principle and the gamma distribution model based on a comprehensive dataset including viruses, archaea, bacteria, and eukaryote species.
ResultsOur study result revealed unique patterns in CDS length distributions among kingdoms and CDS lengths exhibit a right-skewed distribution, with varying preferences among kingdoms. Eukaryotes displayed bimodal distributions, with CDS sequences longer than those of prokaryotes. Fitting the gamma distribution model revealed differences in shape and scale parameters among kingdoms, with eukaryotes exhibiting larger scale parameters, indicating longer CDS sequences. Additionally, analysis of moments highlighted the complexity of eukaryotic genomes relative to prokaryotes.
ConclusionThis study result deepens our understanding of genome evolution and provides valuable insights for biological research.
-
-
-
A Deep Learning Method for Identifying G-Protein Coupled Receptors based on a Feature Pyramid Network and Attention Mechanism
Authors: Zhe Lv, Siqin Hu, Xin Wei and Wangren QiuAvailable online: 08 January 2025More LessBackgroundG-protein coupled receptors (GPCRs) represent a large family of membrane proteins, distinguished by their seven-transmembrane helical structures. These receptors play a pivotal role in numerous physiological processes. Nowadays, many researchers have proposed computational methods to identify GPCRs. In the past, we introduced a powerful method, EMCBOW-GPCR, which was designed for this purpose. However, the feature extraction technique employed is susceptible to out-of-vocabulary errors, indicating the potential for enhanced accuracy in GPCR identification.
MethodsTo solve the challenges, we propose a novel approach termed GPCR-AFPN. This method leverages the FastText algorithm to effectively extract features from protein sequences. Additionally, it employs a powerful deep neural network as the predictive model to improve prediction accuracy.
ResultsTo validate the efficacy of the proposed GPCR-AFPN method, we conducted five-fold cross-validation and independent tests, respectively. The experimental results indicate that GPCR-AFPN outperforms existing methods.
ConclusionOverall, our proposed method, GPCR-AFPN, can improve the accuracy of GPCR identification. For the convenience of researchers interested in applying our latest advancements, a user-friendly webserver for GPCR-AFPN is available at www.lzzzlab.top/gpcrafpn/, and the corresponding code can be downloaded at https://github.com/454170054/GPCR-AFPN.
-
-
-
Screening of Candidate Chemical Regulators for the m6A Writer MTA in Arabidopsis
Authors: Beilei Lei, Chengchao Jia, Cuixia Tan, Pengjun Ding, Zenglin Li, Jing Yang, Jiyuan Liu, XiaoMin Wei, Shiheng Tao and Chuang MaAvailable online: 07 January 2025More LessBackgroundThe MTA gene encodes a core component of m6A methyltransferase complex, which plays a crucial role in the post-transcriptional modification of RNA that influences many vital processes in plants. However, due to the constraint of embryonic lethality in MTA knockout mutation, the molecular function of MTA gene has yet to be comprehensively investigated.
ObjectiveThe aim of this study is to investigate the expression and regulation of MTA in Arabidopsis.
MethodsA large-scale transcriptome and genome analysis were carried out for the expression and nsSNP (non-synonymous Single Nucleotide Polymorphism) studies. Structured-based virtual screening, molecular dynamics simulation, binding free energy calculation and m6A modification level assay were employed to mine and validate MTA regulators from COCONUT natural product database.
ResultsTissue-specific expression and stress-responsive expression patterns of MTA were observed in Arabidopsis. nsSNPs from the 1,001 Arabidopsis project were not detected in the binding site of the methyl-donor substrate S-adenosylmethionine (SAM) in MTA. 10 small molecules were identified as potential regulators, among which CNP0251613 (adenosine diphosphate glucose, ADPG) was selected and validated to decrease m6A levels at 10µM vs. the control in Arabidopsis.
ConclusionOur results provide a new insight and chemical entity into the in-depth study of RNA m6A writer MTA in plants.
-
-
-
DSPE: An End-to-End Drug Synergy Combination Prediction Algorithm for Echinococcosis
Authors: Haitao Li, Liyuan Jiang, Yuanyuan Chu, Yuansheng Liu, Chunhou Zheng and Yansen SuAvailable online: 07 January 2025More LessBackgroundEchinococcosis, a parasitic disease caused by the larvae of the Echinococcus parasite, poses a serious threat to human health. Medication is an indispensable means of treatment for Echinococcosis; however, due to the less satisfactory efficacy of single drugs, identifying effective drug combinations for the treatment of Echinococcosis is essential. Yet, current predictive models for drug synergy in Echinococcosis face accuracy challenges due to data scarcity, method limitations, and insufficient feature representation.
ObjectiveThis work aims to design an end-to-end method to predict drug synergistic combinations, which enables efficient and accurate identification of drug combinations against Echinococcosis.
MethodsIn this work, an end-to-end method, named DSPE, is proposed for predicting anti-Echinococcosis drug synergistic combinations. In DSPE, a dataset of Echinococcosis drug synergistic combinations is constructed by retrieving and extracting information from related scientific articles. Further, DSPE employs a residual graph attention network to deeply analyze drug characteristics and their interactions, thereby enhancing the performance of deep learning models. It also explores the protein-protein interaction network related to Echinococcosis, using node2vec combined with an attention mechanism to efficiently encode disease features. Finally, it predicts the synergy of drug combinations based on the Bliss score by integrating drug combinations and disease features.
ResultsExperimental evidence shows that DSPE outperforms five state-of-the-art algorithms in predicting drug combination effects by leveraging disease-target information and single-agents for the treatment.
ConclusionDSPE improves prediction accuracy and addresses the issue of data scarcity for new diseases, offering new insights and methods for the development of treatment plans for parasitic diseases in the future.
-
-
-
A Method of Enhancing Heterogeneous Graph Representation for Predicting the Associations between lncRNAs and Diseases
Authors: Dengju Yao, Yuehu Wu and Xiaojuan ZhanAvailable online: 06 November 2024More LessBackgroundLong non-coding RNAs (lncRNAs) are a category of more extended RNA strands that lack protein-coding abilities. Although they are not involved in the translation of proteins, studies have shown that they play essential regulatory functions in cells, regulating gene expression and cell biological processes. However, it is both costly and inefficient to determine the associations between lncRNAs and diseases through biological experiments. Therefore, there is an urgent need to develop convenient and fast computational methods to predict lncRNA-disease associations (LDAs) more efficiently.
ObjectivePredicting disease-associated lncRNAs can help explore the mechanisms of action of lncRNAs in diseases, and this is crucial for early intervention and treatment of diseases.
MethodsIn this paper, we propose an enhanced heterogeneous graph representation method for predicting LDAs, named GCGALDA. The GCGALDA first obtains the topological structure features of nodes by a biased random walk. Based on this, the neighboring nodes of a node are weighted using the attention mechanism to further mine the semantic association relationships between nodes in the graph data. Then, a graph convolution network (GCN) is used to transfer the neighborhood features of the node to the central node and combine them with the node's features so that the final node representation contains not only structural information but also semantic association information. Finally, the association score between lncRNA and disease is obtained by multilayer perceptron (MLP).
ResultsAs evidenced by the experimental findings, the GCGALDA outperforms other advanced models in terms of prediction accuracy on openly accessible databases. In addition, case studies on several human diseases further confirm the predictive ability of the GCGALDA.
ConclusionIn conclusion, the proposed GCGALDA model extracts multi-perspective features, such as topology, semantic association, and node attributes, obtains high-quality heterogeneous graph node representations, and effectively improves the performance of the LDA prediction model.
-
-
-
Identification and Analysis of Plant miRNAs: Evolution of In-silicoResources and Future Challenges
Authors: Abhishek Kushwaha, Hausila Prasad Singh and Noopur SinghAvailable online: 04 November 2024More LessEndogenous small RNAs (miRNA) are the key regulators of numerous eukaryotic lineages playing an important role in a broad range of plant development. Computational analysis of miRNAs facilitates the understanding of miRNA-based regulations in plants. The discovery of small non-coding RNAs has led to a greater understanding of gene regulation, and the development of bioinformatic tools has enabled the identification of microRNAs (miRNAs) and their targets. The need for comprehensive miRNA analysis is being accomplished by the development of advanced computational tools/algorithms and databases. Each resource has its own specificity and limitations for the analysis. This review provides a comprehensive overview of various algorithms used by computational tools, software, and databases for plant miRNA analysis. However, over a period of about two decades, a lot of knowledge has been added to our understanding of the biogenesis and functioning of miRNAs in other plants. Several parameters were already integrated and others need to be incorporated in order to give more accurate and efficient results. The reassessment of computational recourses (based on old algorithms) is required on the basis of new miRNA research and development. Generally, computational methods, including ab-initio and homology search-based methods, are used for miRNA identification and target prediction. This review presents the new challenges faced by the existing computational methods and the need to develop new tools and advanced algorithms and highlight the limitations of existing computational tools and methods, and emphasizing the need for a comprehensive platform for miRNA gene exploration.
-
-
-
GVNNVAE: A Novel Microbe-Drug Association Prediction Model based on an Improved Graph Neural Network and the Variational Auto-Encoder
Authors: Yiming Chen, Zhen Zhang, Xin Liu, Bin Zeng and Lei WangAvailable online: 31 October 2024More LessMicroorganisms play a crucial role in human health and disease. Identifying potential microbe-drug associations is essential for drug discovery and clinical treatment. In this manuscript, we proposed a novel prediction model named GVNNVAE by combining an Improved Graph Neural Network (GNN) and the Variational Auto-Encoder (VAE) to infer potential microbe-drug associations. In GVNNVAE, we first established a heterogeneous microbe-drug network N by integrating multiple similarity metrics of microbes, drugs, and diseases. Subsequently, we introduced an improved GNN and the VAE to extract topological and attribute representations for nodes in N respectively. Finally, through incorporating various original attributes of microbes and drugs with above two kinds of newly obtained topological and attribute representations, predicted scores of potential microbe-drug associations would be calculated. Furthermore, To evaluate the prediction performance of GVNNVAE, intensive experiments were done and comparative results showed that GVNNVAE could achieve a satisfactory AUC value of 0.9688, which outperformed existing competitive state-of-the-art methods. And moreover, case studies of known microbes and drugs confirmed the effectiveness of GVNNVAE as well, which highlighted its potential for predicting latent microbe-drug associations.
-
-
-
Predicting Molecular Subtypes of Breast Cancer Using Gene Expression Profiling and Random Forest Classifier
Available online: 14 October 2024More LessBackgroundOne of the main causes of cancer-related mortality in women is breast cancer [BC]. There were four molecular subtypes of this malignancy, and adjuvant therapy efficacy differed based on these subtypes. Gene expression profiles provide valuable information that is helpful for patients whose prognosis is not clear from clinical markers and immunohistochemistry.
ObjectiveIn this study, we aim to predict molecular types of BC using a gene expression dataset of patients with BC and normal samples using six well-known ensemble machine-learning techniques.
MethodsTwo microarray datasets were downloaded; [GSE45827] and [GSE140494] from the Gene Expression Omnibus [GEO] database. These datasets comprise 21 samples of normal tissues that were part of a cohort analysis of primary invasive breast cancer [57 basal, 36 HER2, 56 Luminal A, and 66 Luminal B]. Namely, we used AdaBoost, Random Forest [RF], Artificial Neural Network [ANN], Naïve Bayes [NB], Classification and Regression Tree [CART], and Linear Discriminant Analysis [LDA] classifiers.
ResultThe results of the data analysis show that the RF and NB classifiers outperform the other models in the prediction of the BC subtype. The RF shows superior performance with an accuracy range between 0.89 and 1.0 in contrast to its competitor NB, which has an average accuracy of 0.91. Our approach perfectly discriminates un-affected cases [normal] from the carcinoma. In this case, the RF provides perfect prediction with zero errors. Additionally, we used PCA, DHWT low-frequency, and DHWT high-frequency to perform a dimensional reduction for the numerous gene expression values. Consequently, the LDA achieves up to 95% improvement in performance through data reduction. Moreover, feature selection allowed for the best performance, which is recorded by the RF with classification accuracy 98%.
ConclusionOverall, we provide a successful framework that leads to shorter computation times and smaller ML models, especially where memory and time restrictions are crucial.
-
-
-
NEXT-GEN Medicine: Designing Drugs to Fit Patient Profiles
Authors: Raj Kamal, Diksha, Priyanka Paul, Ankit Awasthi and Amandeep SinghAvailable online: 14 October 2024More LessBackground : Personalized medicine, with its focus on tailoring drug formulations to individual patient profiles, has made significant strides in healthcare. The integration of genomics, biomarkers, nanotechnology, 3D printing, and real-time monitoring provides a comprehensive approach to optimizing drug therapies on an individual basis. This review aims to highlight the recent advancements in personalized medicine and its applications in various diseases, such as cancer, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. The review explores the integration of multiple technologies in the field of personalized medicine, including genomics, biomarkers, nanotechnology, 3D printing, and real-time monitoring. As these technologies continue to evolve, we are entering an era of truly personalized medicine that promises improved treatment outcomes, reduced adverse effects, and a more patient-centric approach to healthcare. The advancements in personalized medicine hold great promise for improving patient outcomes and reducing adverse effects, heralding a new era in patient-centric healthcare.
-
-
-
Artificial Intelligence in Diabetes Mellitus Prediction: Advancements and Challenges - A Review
Authors: Rohit Awasthi, Anjali Mahavar, Shraddha Shah, Darshana Patel, Mukti Patel, Drashti Shah and Ashish PatelAvailable online: 11 October 2024More LessPoor dietary habits and a lack of understanding are contributing to the rapid global increase in the number of diabetic people. Therefore, a framework that can accurately forecast a large number of patients based on clinical details is needed. Artificial intelligence (AI) is a rapidly evolving field, and its implementations to diabetes, a worldwide pandemic, have the potential to revolutionize the strategy of diagnosing and forecasting this chronic condition. Algorithms based on artificial intelligence fundamentals have been developed to support predictive models for the risk of developing diabetes or its complications. In this review, we will discuss AI-based diabetes prediction. Thus, AI-based new-onset diabetes prediction has not beaten the statistically based risk stratification models, in traditional risk stratification models. Despite this, it is anticipated that in the near future, a vast quantity of well-organized data and an abundance of processing power will optimize AI's predictive capabilities, greatly enhancing the accuracy of diabetic illness prediction models.
-
-
-
scADCA: An Anomaly Detection-Based scRNA-seq Dataset Cell Type Annotation Method for Identifying Novel Cells
Authors: Yongle Shi, Yibing Ma, Xiang Chen and Jie GaoAvailable online: 10 October 2024More LessBackgroundWith the rapid evolution of single-cell RNA sequencing technology, the study of cellular heterogeneity in complex tissues has reached an unprecedented resolution. One critical task of the technology is cell-type annotation. However, challenges persist, particularly in annotating novel cell types.
ObjectiveCurrent methods rely heavily on well-annotated reference data, using correlation comparisons to determine cell types. However, identifying novel cells remains unstable due to the inherent complexity and heterogeneity of scRNA-seq data and cell types. To address this problem, we propose scADCA, a method based on anomaly detection, for identifying novel cell types and annotating the entire dataset.
MethodsThe convolutional modules and fully connected networks are integrated into an autoencoder, and the reference dataset is trained to obtain the reconstruction errors. The threshold based on these errors can distinguish between novel and known cells in the query dataset. After novel cells are identified, a multinomial logistic regression model fully annotates the dataset.
ResultsUsing a simulation dataset, three real scRNA-seq pancreatic datasets, and a real scRNA-seq lung cancer cell line dataset, we compare scADCA with six other cell-type annotation methods, demonstrating competitive performance in terms of distinguished accuracy, full accuracy, -score, and confusion matrix.
ConclusionIn conclusion, the scADCA method can be further improved and expanded to achieve better performance and application effects in cell type annotation, which is helpful to improve the accuracy and reliability of cytology research and promote the development of single-cell omics.
-