Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Endogenous small RNAs (miRNA) are the key regulators of numerous eukaryotic lineages playing an important role in a broad range of plant development. Computational analysis of miRNAs facilitates the understanding of miRNA-based regulations in plants. The discovery of small non-coding RNAs has led to a greater understanding of gene regulation, and the development of bioinformatic tools has enabled the identification of microRNAs (miRNAs) and their targets. The need for comprehensive miRNA analysis is being accomplished by the development of advanced computational tools/algorithms and databases. Each resource has its own specificity and limitations for the analysis. This review provides a comprehensive overview of various algorithms used by computational tools, software, and databases for plant miRNA analysis. However, over a period of about two decades, a lot of knowledge has been added to our understanding of the biogenesis and functioning of miRNAs in other plants. Several parameters were already integrated and others need to be incorporated in order to give more accurate and efficient results. The reassessment of computational recourses (based on old algorithms) is required on the basis of new miRNA research and development. Generally, computational methods, including ab-initio and homology search-based methods, are used for miRNA identification and target prediction. This review presents the new challenges faced by the existing computational methods and the need to develop new tools and advanced algorithms and highlight the limitations of existing computational tools and methods, and emphasizing the need for a comprehensive platform for miRNA gene exploration.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936341082241015124457
2024-11-04
2026-02-20
Loading full text...

Full text loading...

References

  1. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell1993755843854 8252621
    [Google Scholar]
  2. RuvkunG. GiustoJ. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch.Nature19893386213313319 2922060
    [Google Scholar]
  3. MossE.G. LeeR.C. AmbrosV. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA.Cell199788563764610.1016/S0092‑8674(00)81906‑6 9054503
    [Google Scholar]
  4. ReinhartB.J. SlackF.J. BassonM. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature2000403677290190610.1038/35002607 10706289
    [Google Scholar]
  5. AbrahanteJ.E. DaulA.L. LiM. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs.Dev. Cell20034562563710.1016/S1534‑5807(03)00127‑8 12737799
    [Google Scholar]
  6. LinS.Y. JohnsonS.M. AbrahamM. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target.Dev. Cell20034563965010.1016/S1534‑5807(03)00124‑2 12737800
    [Google Scholar]
  7. SlackF.J. BassonM. LiuZ. AmbrosV. HorvitzH.R. RuvkunG. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell20005465966910.1016/S1097‑2765(00)80245‑2 10882102
    [Google Scholar]
  8. AraziT. Talmor-NeimanM. StavR. RieseM. HuijserP. BaulcombeD.C. Cloning and characterization of micro‐RNAs from moss.Plant J.200543683784810.1111/j.1365‑313X.2005.02499.x 16146523
    [Google Scholar]
  9. HeX. ZhangQ. LiuY. PanX. Cloning and identification of novel microRNAs from rat hippocampus.Acta Biochim. Biophys. Sin. (Shanghai)200739970871410.1111/j.1745‑7270.2007.00324.x 17805466
    [Google Scholar]
  10. LongJ.E. ChenH.X. Identification and characteristics of cattle microRNAs by homology searching and small RNA cloning.Biochem. Genet.2009475-632934310.1007/s10528‑009‑9234‑6 19267191
    [Google Scholar]
  11. LuoX. GaoZ. ShiT. ChengZ. ZhangZ. NiZ. Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis.PLoS One2013811e7909010.1371/journal.pone.0079090 24236092
    [Google Scholar]
  12. PrakashP. GhosliyaD. GuptaV. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.Gene2015554218119510.1016/j.gene.2014.10.046 25445288
    [Google Scholar]
  13. WangC. HanJ. LiuC. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.BMC Genomics201213112210.1186/1471‑2164‑13‑122 22455456
    [Google Scholar]
  14. YeX. SongT. LiuC. FengH. LiuZ. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.Hereditas2014151622022810.1111/hrd2.00057 25588308
    [Google Scholar]
  15. BonnetE. HeY. BilliauK. Van de PeerY. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.Bioinformatics201026121566156810.1093/bioinformatics/btq233 20430753
    [Google Scholar]
  16. DaiX ZhaoPX psRNATarget: A plant small RNA target analysis server.Nucleic Acids Res.201139Web Server issue)(Suppl. 2W155W15910.1093/nar/gkr31921622958
    [Google Scholar]
  17. Griffiths-JonesS. miRBase: microRNA sequences and annotation.In: Current protocols in bioinformatics.John Wiley & Sons, Inc201010.1002/0471250953.bi1209s29
    [Google Scholar]
  18. HackenbergM Rodríguez-EzpeletaN AransayAM miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments.Nucleic Acids Res.201139Web Server issue)(Suppl.W132W13810.1093/nar/gkr24721515631
    [Google Scholar]
  19. SunX. DongB. YinL. PMTED: A plant microRNA target expression database.BMC Bioinformatics201314117410.1186/1471‑2105‑14‑174 23725466
    [Google Scholar]
  20. YangX. LiL. miRDeep-P: A computational tool for analyzing the microRNA transcriptome in plants.Bioinformatics201127182614261510.1093/bioinformatics/btr430 21775303
    [Google Scholar]
  21. LiJ. ReichelM. LiY. MillarA.A. The functional scope of plant microRNA-mediated silencing.Trends Plant Sci.2014191275075610.1016/j.tplants.2014.08.006 25242049
    [Google Scholar]
  22. TongY. PengH. ZhanC. FanL. AiT. WangS. Genome-wide analysis reveals diversity of rice intronic miRNAs in sequence structure, biogenesis and function.PLoS One201385e6393810.1371/journal.pone.0063938 23717514
    [Google Scholar]
  23. HanY. HuZ. ZhengD. GaoY. Analysis of promoters of microRNAs from a Glycine max degradome library.J. Zhejiang Univ. Sci. B201415212513210.1631/jzus.B1300179 24510705
    [Google Scholar]
  24. ZhaoX. LiL. Comparative analysis of microRNA promoters in Arabidopsis and rice.Genomics Proteomics Bioinformatics2013111566010.1016/j.gpb.2012.12.004 23453017
    [Google Scholar]
  25. ZhaoX. ZhangH. LiL. Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis.Genomics2013101318719410.1016/j.ygeno.2012.12.004 23295247
    [Google Scholar]
  26. KurtogluK.Y. KantarM. LucasS.J. BudakH. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing.PLoS One201387e6980110.1371/journal.pone.0069801 23936103
    [Google Scholar]
  27. ThiebautF. RojasC.A. GrativolC. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.BMC Genomics201415176610.1186/1471‑2164‑15‑766 25194793
    [Google Scholar]
  28. CreaseyK.M. ZhaiJ. BorgesF. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.Nature2014508749641141510.1038/nature13069 24670663
    [Google Scholar]
  29. ZhangB. PanX. CannonC.H. CobbG.P. AndersonT.A. Conservation and divergence of plant microRNA genes.Plant J.200646224325910.1111/j.1365‑313X.2006.02697.x 16623887
    [Google Scholar]
  30. PandaD. DehuryB. SahuJ. BarooahM. SenP. ModiM.K. Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags.Gene2014537233334210.1016/j.gene.2014.01.010 24434367
    [Google Scholar]
  31. SinghN. SrivastavaS. SharmaA. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach.Gene2016575257057610.1016/j.gene.2015.09.036 26392033
    [Google Scholar]
  32. CatalanoD. PignoneD. SonnanteG. Finetti-SialerM.M. In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus.BMC Bioinformatics201213S4Suppl. 4S1210.1186/1471‑2105‑13‑S4‑S12 22536958
    [Google Scholar]
  33. GébelinV. ArgoutX. EngchuanW. Identification of novel microRNAs in Hevea brasiliensisand computational prediction of their targets.BMC Plant Biol.20121211810.1186/1471‑2229‑12‑18 22330773
    [Google Scholar]
  34. BarozaiM.Y.K. BalochI.A. DinM. Identification of MicroRNAs and their targets in Helianthus.Mol. Biol. Rep.20123932523253210.1007/s11033‑011‑1004‑y 21670966
    [Google Scholar]
  35. PaniA. MahapatraR.K. BeheraN. NaikP.K. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets.Genomics Proteomics Bioinformatics20119620021010.1016/S1672‑0229(11)60023‑5 22289476
    [Google Scholar]
  36. PaniA. MahapatraR.K. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags.Genom. Data201312610.1016/j.gdata.2013.06.001 26484050
    [Google Scholar]
  37. UnverT. Parmaksızİ. DündarE. Identification of conserved micro-RNAs and their target transcripts in opium poppy (Papaver somniferum L.).Plant Cell Rep.201029775776910.1007/s00299‑010‑0862‑4 20443006
    [Google Scholar]
  38. WangM. WangQ. WangB. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.).PLoS One201274e3369610.1371/journal.pone.0033696 22493671
    [Google Scholar]
  39. XieF.L. HuangS.Q. GuoK. Computational identification of novel microRNAs and targets in Brassica napus.FEBS Lett.200758171464147410.1016/j.febslet.2007.02.074 17367786
    [Google Scholar]
  40. XueC. LiF. HeT. LiuG.P. LiY. ZhangX. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine.BMC Bioinformatics20056131010.1186/1471‑2105‑6‑310 16381612
    [Google Scholar]
  41. AjilaV. ColleyL. Ste-CroixD.T. P-TarPmiR accurately predicts plant-specific miRNA targets.Sci. Rep.202313133210.1038/s41598‑022‑27283‑8 36609461
    [Google Scholar]
  42. AtaeiS. AhmadiJ. MarashiS.A. AbolhasaniI. AmiR-P3: An AI-based microRNA prediction pipeline in plants.PLoS One2024198e030801610.1371/journal.pone.0308016 39088479
    [Google Scholar]
  43. MeherP.K. BegamS. SahuT.K. ASRmiRNA: Abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo k-tuple nucleotide compositional features.Int. J. Mol. Sci.2022233161210.3390/ijms23031612 35163534
    [Google Scholar]
  44. GuoZ. KuangZ. ZhaoY. PmiREN2.0: from data annotation to functional exploration of plant microRNAs.Nucleic Acids Res.202250D1D1475D148210.1093/nar/gkab811 34554254
    [Google Scholar]
  45. HuL.L. HuangY. WangQ.C. ZouQ. JiangY. Benchmark comparison of Ab initio microRNA identification methods and software.Genet. Mol. Res.20121144525453810.4238/2012.October.17.4 23096922
    [Google Scholar]
  46. SrivastavaP.K. MoturuT.R. PandeyP. BaldwinI.T. PandeyS.P. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction.BMC Genomics201415134810.1186/1471‑2164‑15‑348 24885295
    [Google Scholar]
  47. LeiJ. SunY. miR-PREFeR: An accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data.Bioinformatics201430192837283910.1093/bioinformatics/btu380 24930140
    [Google Scholar]
  48. GuanD.G. LiaoJ.Y. QuZ.H. ZhangY. QuL.H. mirExplorer: Detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features.RNA Biol.20118592293410.4161/rna.8.5.16026 21881406
    [Google Scholar]
  49. WangW.C. LinF.M. ChangW.C. LinK.Y. HuangH.D. LinN.S. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression.BMC Bioinformatics200910132810.1186/1471‑2105‑10‑328 19821977
    [Google Scholar]
  50. KadriS. HinmanV. BenosP.V. HHMMiR: Efficient de novo prediction of microRNAs using hierarchical hidden Markov models.BMC Bioinformatics200910S1Suppl. 1S3510.1186/1471‑2105‑10‑S1‑S35 19208136
    [Google Scholar]
  51. MathelierA. CarboneA. MIReNA: Finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data.Bioinformatics201026182226223410.1093/bioinformatics/btq329 20591903
    [Google Scholar]
  52. TempelS. TahiF. A fast Ab-initio method for predicting miRNA precursors in genomes.Nucleic Acids Res.20124011e8010.1093/nar/gks146 22362754
    [Google Scholar]
  53. BajczykM. JarmolowskiA. JozwiakM. Recent insights into plant miRNA biogenesis: Multiple layers of miRNA level regulation.Plants202312234210.3390/plants12020342 36679055
    [Google Scholar]
  54. YangJ.S. LaiE.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants.Mol. Cell201143689290310.1016/j.molcel.2011.07.024 21925378
    [Google Scholar]
  55. SatoK. AkiyamaM. SakakibaraY. RNA secondary structure prediction using deep learning with thermodynamic integration.Nat. Commun.202112194110.1038/s41467‑021‑21194‑4 33574226
    [Google Scholar]
  56. ColaiacovoM. BernardoL. CentomaniI. A survey of MicroRNA length variants contributing to miRNome complexity in peach (Prunus persica L.).Front Plant Sci2012316510.3389/fpls.2012.00165 22855688
    [Google Scholar]
  57. JeongD.H. GreenP.J. Methods for validation of miRNA sequence variants and the cleavage of their targets.Methods201258213514310.1016/j.ymeth.2012.08.005 22922269
    [Google Scholar]
  58. SchmartzG.P. KernF. FehlmannT. WagnerV. FrommB. KellerA. Encyclopedia of tools for the analysis of miRNA isoforms.Brief. Bioinform.2021224bbaa34610.1093/bib/bbaa346 33313643
    [Google Scholar]
  59. YangK. WenX. MudunuriS. VarmaG.P.S. SablokG. Diff isomiRs: Large-scale detection of differential isomiRs for understanding non-coding regulated stress omics in plants.Sci. Rep.201991140610.1038/s41598‑019‑38932‑w 30723229
    [Google Scholar]
  60. YangK. WenX. MudunuriS.B. SablokG. Plant IsomiR Atlas: large scale detection, profiling, and target repertoire of IsomiRs in plants.Front Plant Sci20199188110.3389/fpls.2018.01881 30723486
    [Google Scholar]
  61. YangK. SablokG. QiaoG. NieQ. WenX. isomiR2Function: An integrated workflow for identifying microRNA variants in plants.Front Plant Sci2017832210.3389/fpls.2017.00322 28377776
    [Google Scholar]
  62. ZhangY. ZangQ. XuB. IsomiR Bank: A research resource for tracking IsomiRs.Bioinformatics201632132069207110.1093/bioinformatics/btw070 27153728
    [Google Scholar]
  63. DeversE.A. BranscheidA. MayP. KrajinskiF. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis.Plant Physiol.201115641990201010.1104/pp.111.172627 21571671
    [Google Scholar]
  64. ZhangX. ZhaoH. GaoS. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12.Mol. Cell201142335636610.1016/j.molcel.2011.04.010 21549312
    [Google Scholar]
  65. MengY GouL ChenD PmiRKB: A plant microRNA knowledge base.Nucleic Acids Res201139DatabaseD181D18710.1093/nar/gkq72120719744
    [Google Scholar]
  66. PlattR.N.II VandewegeM.W. KernC. SchmidtC.J. HoffmannF.G. RayD.A. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats.Mol. Biol. Evol.20143161536154510.1093/molbev/msu112 24692655
    [Google Scholar]
  67. Franco-ZorrillaJ.M. ValliA. TodescoM. Target mimicry provides a new mechanism for regulation of microRNA activity.Nat. Genet.20073981033103710.1038/ng2079 17643101
    [Google Scholar]
  68. WuH.J. WangZ.M. WangM. WangX.J. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants.Plant Physiol.201316141875188410.1104/pp.113.215962 23429259
    [Google Scholar]
  69. WuH.J. MaY.K. ChenT. WangM. WangX.J. PsRobot: A web-based plant small RNA meta-analysis toolbox.Nucleic Acids Res.201240W1W22-810.1093/nar/gks554 22693224
    [Google Scholar]
  70. NumnarkS. MhuantongW. IngsriswangS. WichadakulD. C-mii: A tool for plant miRNA and target identification.BMC Genomics201213S7Suppl. 7S1610.1186/1471‑2164‑13‑S7‑S16 23281648
    [Google Scholar]
  71. SinghN. SharmaA. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.Gene2014552227728210.1016/j.gene.2014.09.040 25256277
    [Google Scholar]
  72. XieF. XiaoP. ChenD. XuL. ZhangB. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs.Plant Mol. Biol.20128017584Advance online publication10.1007/s11103‑012‑9885‑2 22290409
    [Google Scholar]
  73. MaX. LiuC. GuL. MoB. CaoX. ChenX. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants.Bioinformatics20183491574157610.1093/bioinformatics/btx797 29236948
    [Google Scholar]
  74. GuigonI. LegrandS. BerthelotJ.F. miRkwood: A tool for the reliable identification of microRNAs in plant genomes.BMC Genomics201920153210.1186/s12864‑019‑5913‑9 31253093
    [Google Scholar]
  75. GaoT. MengX. ZhangW. JinW. miR-Island: An ultrafast and memory-efficient tool for plant miRNA annotation and expression analysis[httpsResearch Square201910.21203/rs.2.19370/v1
    [Google Scholar]
  76. HammondR.K. GuptaP. PatelP. MeyersB.C. miRador: A fast and precise tool for the prediction of plant miRNAs.Plant Physiol.2023191289490310.1093/plphys/kiac538 36437740
    [Google Scholar]
  77. DengY. QinY. YangP. Comprehensive annotation and functional exploration of microRNAs in lettuce.Front Plant Sci20211278183610.3389/fpls.2021.781836 35003165
    [Google Scholar]
  78. MitchellD.A. MicroRNAs provide a novel pathway toward combinatorial immune checkpoint blockade.Neuro-oncol.201618560160210.1093/neuonc/now003 26980424
    [Google Scholar]
  79. SomarelliJ.A. ShetlerS. JollyM.K. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of microRNA 200s and GRHL2.Mol. Cell. Biol.201636192503251310.1128/MCB.00373‑16 27402864
    [Google Scholar]
  80. WuW.K.K. YuJ. ChanM.T.V. ToK.F. ChengA.S.L. Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis.J. Pathol.2016239324524910.1002/path.4731 27102722
    [Google Scholar]
  81. CoronnelloC BenosPV ComiR: Combinatorial microRNA target prediction tool.Nucleic Acids Res201341Web Server issueW159W16423703208
    [Google Scholar]
  82. VlachosI.S. KostoulasN. VergoulisT. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways.Nucleic Acids Res.201240W1W498-50410.1093/nar/gks494 22649059
    [Google Scholar]
  83. FriedmanY. NaamatiG. LinialM. MiRror: A combinatorial analysis web tool for ensembles of microRNAs and their targets.Bioinformatics201026151920192110.1093/bioinformatics/btq298 20529892
    [Google Scholar]
  84. AftabuddinM. MalC. DebA. KunduS. C2Analyzer: Co-target–co-function analyzer.Genomics Proteomics Bioinformatics201412313313610.1016/j.gpb.2014.03.003 24862384
    [Google Scholar]
  85. SinghN. SrivastavaS. ShasanyA.K. SharmaA. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp.Comput. Biol. Chem.20166415416210.1016/j.compbiolchem.2016.06.004 27376499
    [Google Scholar]
  86. Lopez-GomollonS. MohorianuI. SzittyaG. MoultonV. DalmayT. Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions.Planta201223661875188710.1007/s00425‑012‑1734‑7 22922939
    [Google Scholar]
  87. Pérez-QuinteroÁ.L. SablokG. TatarinovaT.V. ConesaA. KuoJ. LópezC. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua.Biotechnol. Lett.201234473774510.1007/s10529‑011‑0808‑0 22160362
    [Google Scholar]
  88. ThirugnanasambanthamK. SaravananS. KarikalanK. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.Comput. Biol. Chem.201558253910.1016/j.compbiolchem.2015.04.011 25988220
    [Google Scholar]
  89. TarverJ.E. CormierA. PinzónN. microRNAs and the evolution of complex multicellularity: Identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus.Nucleic Acids Res.201543136384639810.1093/nar/gkv578 26101255
    [Google Scholar]
  90. TamuraK. StecherG. PetersonD. FilipskiA. KumarS. MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol. Biol. Evol.201330122725272910.1093/molbev/mst197 24132122
    [Google Scholar]
  91. GustafsonA.M. AllenE. GivanS. SmithD. CarringtonJ.C. KasschauK.D. ASRP: The arabidopsis small RNA project database.Nucleic Acids Res.200433Database issueD637D64010.1093/nar/gki127 15608278
    [Google Scholar]
  92. JohnsonC BowmanL AdaiAT VanceV SundaresanV CSRDB: A small RNA integrated database and browser resource for cereals.Nucleic Acids Res.200735DatabaseD829D83310.1093/nar/gkl99117169981
    [Google Scholar]
  93. Griffiths-JonesS. BatemanA. MarshallM. KhannaA. EddyS.R. Rfam: An RNA family database.Nucleic Acids Res.200331143944110.1093/nar/gkg006 12520045
    [Google Scholar]
  94. LazzariB. CapreraA. CestaroA. Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: A web database of de novo predicted grape microRNAs.BMC Plant Biol.2009918210.1186/1471‑2229‑9‑82 19563653
    [Google Scholar]
  95. ZhangS. YueY. ShengL. PASmiR: A literature-curated database for miRNA molecular regulation in plant response to abiotic stress.BMC Plant Biol.20131313310.1186/1471‑2229‑13‑33 23448274
    [Google Scholar]
  96. ChiangK. ShuJ. ZempleniJ. CuiJ. Dietary MicroRNA database (DMD): An archive database and analytic tool for food-borne microRNAs.PLoS One2015106e012808910.1371/journal.pone.0128089 26030752
    [Google Scholar]
  97. YiX. ZhangZ. LingY. XuW. SuZ. PNRD: A plant non-coding RNA database.Nucleic Acids Res.201543D1D982D98910.1093/nar/gku1162 25398903
    [Google Scholar]
  98. HsuS.D. LinF.M. WuW.Y. miRTarBase: A database curates experimentally validated microRNA–target interactions.Nucleic Acids Res.201139Database issueSuppl. 1D163D16910.1093/nar/gkq1107 21071411
    [Google Scholar]
  99. YangJ.H. LiJ.H. ShaoP. ZhouH. ChenY.Q. QuL.H. starBase: A database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data.Nucleic Acids Res.201139Database issueSuppl. 1D202D20910.1093/nar/gkq1056 21037263
    [Google Scholar]
  100. SethupathyP. CordaB. HatzigeorgiouA.G. TarBase: A comprehensive database of experimentally supported animal microRNA targets.RNA200612219219710.1261/rna.2239606 16373484
    [Google Scholar]
  101. YuanC. MengX. LiX. PceRBase: A database of plant competing endogenous RNA.Nucleic Acids Res.201745D1D1009D101410.1093/nar/gkw916 28053167
    [Google Scholar]
  102. ZhangZ. YuJ. LiD. PMRD: Plant microRNA database.Nucleic Acids Res.201038Database issueSuppl. 1D806D81310.1093/nar/gkp818 19808935
    [Google Scholar]
  103. LaiL. LiberzonA. HennesseyJ. AraPath: A knowledgebase for pathway analysis in Arabidopsis.Bioinformatics201228172291229210.1093/bioinformatics/bts421 22760305
    [Google Scholar]
  104. JiangZ LiuX PengZ AHD2.0: An update version of Arabidopsis Hormone Database for plant systematic studies.Nucleic Acids Res201139DatabaseD1123D112910.1093/nar/gkq106621045062
    [Google Scholar]
  105. BazziniA.A. AsísR. GonzálezV. miSolRNA: A tomato micro RNA relational database.BMC Plant Biol.201010124010.1186/1471‑2229‑10‑240 21059227
    [Google Scholar]
  106. ZielezinskiA. DolataJ. AlabaS. mirEX 2.0 - An integrated environment for expression profiling of plant microRNAs.BMC Plant Biol.201515114410.1186/s12870‑015‑0533‑2 26141515
    [Google Scholar]
  107. JoshiT. FitzpatrickM.R. ChenS. Soybean knowledge base (SoyKB): A web resource for integration of soybean translational genomics and molecular breeding.Nucleic Acids Res.201442D1D1245D125210.1093/nar/gkt905 24136998
    [Google Scholar]
  108. DengJ. LiQ. HuangL. PendoTMBase: A database for plant endogenous target mimics.Interdiscip. Sci.202012452652910.1007/s12539‑020‑00396‑2 32997234
    [Google Scholar]
  109. NaithaniS. GuptaP. PreeceJ. Plant Reactome: A knowledgebase and resource for comparative pathway analysis.Nucleic Acids Res.201948D1gkz99610.1093/nar/gkz996 31680153
    [Google Scholar]
  110. YangJ.H. ShaoP. ZhouH. ChenY.Q. QuL.H. deepBase: A database for deeply annotating and mining deep sequencing data.Nucleic Acids Res.201038Database issueSuppl. 1D123D13010.1093/nar/gkp943 19966272
    [Google Scholar]
  111. NascimentoLC CostaGGL BinneckE PereiraGAG CarazzolleMF A web-based bioinformatics interface applied to the GENOSOJA project: Databases and pipelines.Genet Mol Biol2012351 suppl 1)(Suppl.20321110.1590/S1415‑4757201200020000222802706
    [Google Scholar]
  112. NakanoM. NobutaK. VemarajuK. TejS.S. SkogenJ.W. MeyersB.C. Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNA and small RNA.Nucleic Acids Res.20063490001D731D73510.1093/nar/gkj077 16381968
    [Google Scholar]
  113. YuJ. ZhangZ. WeiJ. LingY. XuW. SuZ. SFGD: A comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways.BMC Genomics201415127110.1186/1471‑2164‑15‑271 24712981
    [Google Scholar]
  114. GurjarA K PanwarA S GuptaR MantriS S PmiRExAt: Plant miRNA expression atlas database and web applications.J Biolog Databases Curat20162016baw06010.1093/database/baw060
    [Google Scholar]
  115. YuD LuJ ShaoW MepmiRDB: A medicinal plant microRNA database.J Biolog Databases Curat20192019baz07010.1093/database/baz070
    [Google Scholar]
  116. OuyangS ZhuW HamiltonJ The TIGR rice genome annotation resource: Improvements and new features.Nucleic Acids Res200735DatabaseD883D88710.1093/nar/gkl97617145706
    [Google Scholar]
  117. LameschP. BerardiniT.Z. LiD. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools.Nucleic Acids Res.201240D1D1202D121010.1093/nar/gkr1090 22140109
    [Google Scholar]
  118. LiZ. ZhaoY. LiuX. PengJ. GuoH. LuoJ. LSD 2.0: An update of the leaf senescence database.Nucleic Acids Res.201442D1D1200D120510.1093/nar/gkt1061 24185698
    [Google Scholar]
  119. SzcześniakM.W. MakałowskaI. miRNEST 2.0: A database of plant and animal microRNAs.Nucleic Acids Res.201442D1D74D7710.1093/nar/gkt1156 24243848
    [Google Scholar]
  120. BülowL. SteffensN.O. GaluschkaC. SchindlerM. HehlR. AthaMap: From in silico data to real transcription factor binding sites.In Silico Biol.200663243252 16922688
    [Google Scholar]
  121. XuY GuoM LiuX WangC LiuY. SoyFN: A knowledge database of soybean functional networks.J Biolog Databases Curat20142014bau01910.1093/database/bau019
    [Google Scholar]
  122. ZhangT. ZhaiJ. ZhangX. Interactive web-based annotation of plant microRNAs with iwa-miRNA.Genomics Proteomics Bioinformatics202220355756710.1016/j.gpb.2021.02.010 34332120
    [Google Scholar]
  123. LiuH. JinT. LiaoR. miRFANs: An integrated database for Arabidopsis thalianamicroRNA function annotations.BMC Plant Biol.20121216810.1186/1471‑2229‑12‑68 22583976
    [Google Scholar]
  124. ChenD. YuanC. ZhangJ. PlantNATsDB: A comprehensive database of plant natural antisense transcripts.Nucleic Acids Res.201240D1D1187D119310.1093/nar/gkr823 22058132
    [Google Scholar]
  125. MhuantongW. WichadakulD. MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs.BMC Genomics200910136610.1186/1471‑2164‑10‑366 19660144
    [Google Scholar]
  126. FeiZ JoungJG TangX Tomato Functional Genomics Database: A comprehensive resource and analysis package for tomato functional genomics.Nucleic Acids Res201139DatabaseD1156D116310.1093/nar/gkq99120965973
    [Google Scholar]
  127. QiuL. LuoH. ZhouH. MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (Saccharum officinarum L.).Genomics2022114411042010.1016/j.ygeno.2022.110420 35760231
    [Google Scholar]
  128. DaiE YuX ZhangY EpimiR: A database of curated mutual regulation between miRNAs and epigenetic modifications.J Biolog Databases Curat20142014bau02310.1093/database/bau023
    [Google Scholar]
  129. SzcześniakM.W. KabzaM. PokrzywaR. GudyśA. MakałowskaI. ERISdb: A database of plant splice sites and splicing signals.Plant Cell Physiol.2013542e1010.1093/pcp/pct001 23299413
    [Google Scholar]
  130. KurubanjerdjitN. HuangC.H. LeeY. TsaiJ.J.P. NgK.L. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.Comput. Biol. Med.201343111645165210.1016/j.compbiomed.2013.08.010 24209909
    [Google Scholar]
  131. ZhangP MengX ChenH PlantCircNet: A database for plant circRNA-miRNA-mRNA regulatory networks.J Biolog Databases Curat20172017bax08910.1093/database/bax089
    [Google Scholar]
  132. FeiY. WangR. LiH. LiuS. ZhangH. HuangJ. DPMIND: Degradome-based plant miRNA–target interaction and network database.Bioinformatics20183491618162010.1093/bioinformatics/btx824 29280990
    [Google Scholar]
  133. RashidT. AbdulkadirA. NasrallahI.M. DEEPMIR: A deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI.Sci. Rep.20211111412410.1038/s41598‑021‑93427‑x 34238951
    [Google Scholar]
  134. ZhangJ HaoZ YinS LiG. GreenCircRNA: A database for plant circRNAs that act as miRNA decoys.J Biolog Databases Curat20202020baaa03910.1093/database/baaa039
    [Google Scholar]
  135. JinJ. LuP. XuY. PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs.Nucleic Acids Res.202149D1D1489D149510.1093/nar/gkaa910 33079992
    [Google Scholar]
  136. ZahraS BhardwajR SharmaS SinghA KumarS. PtncRNAdb: Plant transfer RNA-derived non-coding RNAs (tncRNAs) database.3 Biotech202212510510.1007/s13205‑022‑03174‑735462956
    [Google Scholar]
  137. LiuB. FangL. ChenJ. LiuF. WangX. miRNA-dis: microRNA precursor identification based on distance structure status pairs.Mol. Biosyst.20151141194120410.1039/C5MB00050E 25715848
    [Google Scholar]
  138. KarathanasisN. TsamardinosI. PoiraziP. MiRduplexSVM: A high-performing MiRNA-duplex prediction and evaluation methodology.PLoS One2015105e012615110.1371/journal.pone.0126151 25961860
    [Google Scholar]
  139. AnJ. LaiJ. SajjanharA. LehmanM.L. NelsonC.C. miRPlant: An integrated tool for identification of plant miRNA from RNA sequencing data.BMC Bioinformatics201415127510.1186/1471‑2105‑15‑275 25117656
    [Google Scholar]
  140. WuY. WeiB. LiuH. LiT. RaynerS. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences.BMC Bioinformatics201112110710.1186/1471‑2105‑12‑107 21504621
    [Google Scholar]
  141. TeuneJ.H. StegerG. novoMIR: De novo prediction of microRNA-coding regions in a single plant-genome.J. Nucleic Acids20102010149590410.4061/2010/495904 20871826
    [Google Scholar]
  142. GudyśA. SzcześniakM.W. SikoraM. MakałowskaI. HuntMi: An efficient and taxon-specific approach in pre-miRNA identification.BMC Bioinformatics20131418310.1186/1471‑2105‑14‑83 23497112
    [Google Scholar]
  143. StocksM.B. MoxonS. MaplesonD. The UEA sRNA workbench: A suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets.Bioinformatics201228152059206110.1093/bioinformatics/bts311 22628521
    [Google Scholar]
  144. EversM. HuttnerM. DueckA. MeisterG. EngelmannJ.C. miRA: Adaptable novel miRNA identification in plants using small RNA sequencing data.BMC Bioinformatics201516137010.1186/s12859‑015‑0798‑3 26542525
    [Google Scholar]
  145. FanD. YaoY. YiM. PlantMirP2: An accurate, fast and easy-to-use program for plant pre-miRNA and miRNA prediction.Genes (Basel)2021128128010.3390/genes12081280 34440454
    [Google Scholar]
  146. TangX. SunY. Fast and accurate microRNA search using CNN.BMC Bioinformatics201920S23Suppl. 2364610.1186/s12859‑019‑3279‑2 31881831
    [Google Scholar]
  147. VasconcelosA.M. CarmoM.B. FerreiraB. IsomiR_Window: A system for analyzing small-RNA-seq data in an integrative and user-friendly manner.BMC Bioinformatics20212213710.1186/s12859‑021‑03955‑6 33522913
    [Google Scholar]
  148. ZhangY. miru: An automated plant miRNA target prediction server.Nucleic Acids Res200533Web ServerW701W70410.1093/nar/gki38315980567
    [Google Scholar]
  149. XieF. ZhangB. Target-align: A tool for plant microRNA target identification.Bioinformatics201026233002300310.1093/bioinformatics/btq568 20934992
    [Google Scholar]
  150. ZhangZ. JiangL. WangJ. GuP. ChenM. MTide: An integrated tool for the identification of miRNA–target interaction in plants.Bioinformatics201531229029110.1093/bioinformatics/btu633 25256573
    [Google Scholar]
  151. JhaA. ShankarR. Employing machine learning for reliable miRNA target identification in plants.BMC Genomics201112163610.1186/1471‑2164‑12‑636 22206472
    [Google Scholar]
  152. FahlgrenN. HowellM.D. KasschauK.D. High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes.PLoS One200722e21910.1371/journal.pone.0000219 17299599
    [Google Scholar]
  153. ChorosteckiU. PalatnikJ.F. comTAR: A web tool for the prediction and characterization of conserved microRNA targets in plants.Bioinformatics201430142066206710.1093/bioinformatics/btu147 24632500
    [Google Scholar]
  154. TsengK.C. Chiang-HsiehY.F. PaiH. microRPM: A microRNA prediction model based only on plant small RNA sequencing data.Bioinformatics20183471108111510.1093/bioinformatics/btx725 29136092
    [Google Scholar]
  155. DaiX ZhaoPX pssRNAMiner: A plant short small RNA regulatory cascade analysis server.Nucleic Acids Res200836Web Server issue)(Suppl. 2W114W11810.1093/nar/gkn29718474525
    [Google Scholar]
  156. LiF. OrbanR. BakerB. SoMART: A web server for plant miRNA, tasiRNA and target gene analysis.Plant J.201270589190110.1111/j.1365‑313X.2012.04922.x 22268718
    [Google Scholar]
  157. CaiB. YangX. TuskanG.A. ChengZ.M. MicroSyn: A user friendly tool for detection of microsynteny in a gene family.BMC Bioinformatics20111217910.1186/1471‑2105‑12‑79 21418570
    [Google Scholar]
  158. WenM. ShenY. ShiS. TangT. miREvo: An integrative microRNA evolutionary analysis platform for next-generation sequencing experiments.BMC Bioinformatics201213114010.1186/1471‑2105‑13‑140 22720726
    [Google Scholar]
  159. ThiemeC.J. GramzowL. LobbesD. TheißenG. SplamiR—prediction of spliced miRNAs in plants.Bioinformatics20112791215122310.1093/bioinformatics/btr132 21421552
    [Google Scholar]
  160. DezulianT. RemmertM. PalatnikJ.F. WeigelD. HusonD.H. Identification of plant microRNA homologs.Bioinformatics200622335936010.1093/bioinformatics/bti802 16317073
    [Google Scholar]
  161. DingJ. YuS. OhlerU. GuanJ. ZhouS. imiRTP: An Integrated Method to Identifying miRNA-target Interactions in Arabidopsis thaliana.IEEE International Conference on Bioinformatics and Biomedicine12-15 Nov, 2011 Atlanta, GA, USA201110010410.1109/BIBM.2011.13
    [Google Scholar]
  162. RheeS. ChaeH. KimS. PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data.Methods201583808710.1016/j.ymeth.2015.04.003 25863133
    [Google Scholar]
  163. FeiY. MaoY. ShenC. WangR. ZhangH. HuangJ. WPMIAS: Whole-degradome-based plant MicroRNA-target interaction analysis server.Bioinformatics20192019btz82010.1093/bioinformatics/btz820 31693067
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936341082241015124457
Loading
/content/journals/cbio/10.2174/0115748936341082241015124457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test