Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Microorganisms play a crucial role in human health and disease. Identifying potential microbe-drug associations is essential for drug discovery and clinical treatment. In this manuscript, we proposed a novel prediction model named GVNNVAE by combining an Improved Graph Neural Network (GNN) and the Variational Auto-Encoder (VAE) to infer potential microbe-drug associations. In GVNNVAE, we first established a heterogeneous microbe-drug network by integrating multiple similarity metrics of microbes, drugs, and diseases. Subsequently, we introduced an improved GNN and the VAE to extract topological and attribute representations for nodes in respectively. Finally, through incorporating various original attributes of microbes and drugs with above two kinds of newly obtained topological and attribute representations, predicted scores of potential microbe-drug associations would be calculated. Furthermore, To evaluate the prediction performance of GVNNVAE, intensive experiments were done and comparative results showed that GVNNVAE could achieve a satisfactory AUC value of 0.9688, which outperformed existing competitive state-of-the-art methods. And moreover, case studies of known microbes and drugs confirmed the effectiveness of GVNNVAE as well, which highlighted its potential for predicting latent microbe-drug associations.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936331907240927141428
2024-10-31
2025-12-18
Loading full text...

Full text loading...

References

  1. CurtisH. BlaserM.J. DirkG. Structure, function and diversity of the healthy human microbiome.Nature2012486740220721410.1038/nature1123422699609
    [Google Scholar]
  2. VenturaM. O’FlahertyS. ClaessonM.J. Genome-scale analyses of health-promoting bacteria: Probiogenomics.Nat. Rev. Microbiol.200971617110.1038/nrmicro204719029955
    [Google Scholar]
  3. SprockettD. FukamiT. RelmanD.A. Role of priority effects in the early-life assembly of the gut microbiota.Nat. Rev. Gastroenterol. Hepatol.201815419720510.1038/nrgastro.2017.17329362469
    [Google Scholar]
  4. XimenezC. TorresJ. Development of microbiota in infants and its role in maturation of gut mucosa and immune system.Arch. Med. Res.201748866668010.1016/j.arcmed.2017.11.00729198451
    [Google Scholar]
  5. ZhangH. DiBaiseJ.K. ZuccoloA. Human gut microbiota in obesity and after gastric bypass.Proc. Natl. Acad. Sci. USA200910672365237010.1073/pnas.081260010619164560
    [Google Scholar]
  6. WenL. LeyR.E. VolchkovP.Y. Innate immunity and intestinal microbiota in the development of Type 1 diabetes.Nature200845572161109111310.1038/nature0733618806780
    [Google Scholar]
  7. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra160026627974040
    [Google Scholar]
  8. Sepich-PooreG.D. ZitvogelL. StraussmanR. HastyJ. WargoJ.A. KnightR. The microbiome and human cancer.Science20213716536eabc455210.1126/science.abc455233766858
    [Google Scholar]
  9. XiangY.T. LiW. ZhangQ. Timely research papers about COVID-19 in China.Lancet20203951022568468510.1016/S0140‑6736(20)30375‑532078803
    [Google Scholar]
  10. ShamshirbandS. FathiM. DehzangiA. ChronopoulosA.T. Alinejad-RoknyH. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues.J. Biomed. Inform.202111310362710.1016/j.jbi.2020.10362733259944
    [Google Scholar]
  11. ZhangY. YeT. XiH. JuhasM. LiJ. Deep learning driven drug discovery: Tackling severe acute respiratory syndrome coronavirus 2.Front. Microbiol.20211273968410.3389/fmicb.2021.73968434777286
    [Google Scholar]
  12. DengY. XuX. QiuY. XiaJ. ZhangW. LiuS. A multimodal deep learning framework for predicting drug–drug interaction events.Bioinformatics202036154316432210.1093/bioinformatics/btaa50132407508
    [Google Scholar]
  13. GligorijevićV. RenfrewP.D. KosciolekT. Structure-based protein function prediction using graph convolutional networks.Nat. Commun.2021121316810.1038/s41467‑021‑23303‑934039967
    [Google Scholar]
  14. DeifM.A. SolymanA.A.A. KamarposhtiM.A. BandS.S. HammamR.E. A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences.Math. Biosci. Eng.20211868933895010.3934/mbe.202144034814329
    [Google Scholar]
  15. ShuJ. LiY. WangS. XiB. MaJ. Disease gene prediction with privileged information and heteroscedastic dropout.Bioinformatics202137i410i41710.1093/bioinformatics/btab31034252957
    [Google Scholar]
  16. ChenX. HuangY.A. YouZ.H. YanG.Y. WangX.S. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases.Bioinformatics201733573373910.1093/bioinformatics/btw71528025197
    [Google Scholar]
  17. LiH. WangY. JiangJ. A novel human microbe-disease association prediction method based on the bidirectional weighted network.Front. Microbiol.20191067610.3389/fmicb.2019.0067631024478
    [Google Scholar]
  18. JiangC TangM JinS HuangW LiuX. KGNMDA: A knowledge graph neural network method for predicting microbe-disease associations.IEEE/ACM Trans Comput Biol Bioinform202320211475510.1109/TCBB.2022.3184362
    [Google Scholar]
  19. PengL ZhouD LiuW Prioritizing human microbe-disease associations utilizing a node-information-based link propagation method.IEEE Access2020831341910.1109/ACCESS.2020.2972283
    [Google Scholar]
  20. HuaM. YuS. LiuT. YangX. WangH. MVGCNMDA: Multi-view graph augmentation convolutional network for uncovering disease-related microbes.Interdiscip. Sci.202214366968210.1007/s12539‑022‑00514‑235428964
    [Google Scholar]
  21. LiH WangY ZhangZ Identifying microbe-disease association based on a novel back-propagation neural network model.IEEE/ACM Trans Comput Biol Bioinform202118625021310.1109/TCBB.2020.2986459
    [Google Scholar]
  22. LongY. WuM. KwohC.K. LuoJ. LiX. Predicting human microbe-drug associations via graph convolutional network with conditional random field.Bioinformatics202036194918492710.1093/bioinformatics/btaa59832597948PMC7559035
    [Google Scholar]
  23. LiuD LiuJ LuoY HeQ DengL MGATMDA: Predicting microbe-disease associations via multi-component graph attention network.IEEE/ACM Trans Comput Biol Bioinform202219635788510.1109/TCBB.2021.3116318
    [Google Scholar]
  24. DengL. HuangY. LiuX. LiuH. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations.Bioinformatics20223841118112510.1093/bioinformatics/btab79234864873
    [Google Scholar]
  25. ChenY. LeiX. Metapath aggregated graph neural network and tripartite heterogeneous networks for microbe-disease prediction.Front. Microbiol.20221391938010.3389/fmicb.2022.91938035711758
    [Google Scholar]
  26. LiuW. TangT. LuX. FuX. YangY. PengL. MPCLCDA: Predicting circRNA–Disease associations by using automatically selected meta-path and contrastive learning.Brief. Bioinform.2023244bbad22710.1093/bib/bbad22737328701
    [Google Scholar]
  27. PengL. YangC. ChenY. LiuW. Predicting circrna-disease associations via feature convolution learning with heterogeneous graph attention network.IEEE J. Biomed. Health Inform.20232763072308210.1109/JBHI.2023.326086337030839
    [Google Scholar]
  28. WangL. TanY. YangX. KuangL. PingP. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models.Brief. Bioinform.2022233bbac08010.1093/bib/bbac08035325024
    [Google Scholar]
  29. MaQ. TanY. WangL. GACNNMDA: A computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.BMC Bioinformatics20232413510.1186/s12859‑023‑05158‑736732704
    [Google Scholar]
  30. XuD. XuH. ZhangY. WangM. ChenW. GaoR. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.J. Transl. Med.20211916610.1186/s12967‑021‑02732‑633579301
    [Google Scholar]
  31. XuK. HuW. LeskovecJ. JegelkaS. How powerful are graph neural networks?ArXiv2019
    [Google Scholar]
  32. GilmerJ. SchoenholzS.S. RileyP.F. VinyalsO. DahlG.E. Neural message passing for quantum chemistry.Proceedings of the 34th International Conference on Machine LearningSydney, Australia2017126372
    [Google Scholar]
  33. ChenZ. ChenL. VillarS. BrunaJ. Can graph neural networks count substructures?Advances in Neural Information Processing SystemsCurran Associates.Inc.2020331038310395
    [Google Scholar]
  34. CorsoG. CavalleriL. BeainiD. LiòP. VeličkovićP. Principal neighbourhood aggregation for graph nets. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, Eds. Advances in Neural Information Processing SystemsCurran Associates, Inc2020331326071
    [Google Scholar]
  35. KingmaD.P. BaJ. Adam: A method for stochastic optimization.ArXiv2017
    [Google Scholar]
  36. LuoJ LongY. NTSHMDA: Prediction of human microbe-disease association based on random walk by integrating network topological similarity.IEEE/ACM Trans Comput Biol Bioinform202017413415110.1109/TCBB.2018.2883041
    [Google Scholar]
  37. KöhlerS. BauerS. HornD. RobinsonP.N. Walking the interactome for prioritization of candidate disease genes.Am. J. Hum. Genet.200882494995810.1016/j.ajhg.2008.02.01318371930
    [Google Scholar]
  38. KamnevaO.K. Genome composition and phylogeny of microbes predict their co-occurrence in the environment.PLOS Comput. Biol.2017132e100536610.1371/journal.pcbi.100536628152007
    [Google Scholar]
  39. TanY. ZouJ. KuangL. GSAMDA: A computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder.BMC Bioinformatics202223149210.1186/s12859‑022‑05053‑736401174
    [Google Scholar]
  40. YuZ. HuangF. ZhaoX. XiaoW. ZhangW. Predicting drug–disease associations through layer attention graph convolutional network.Brief. Bioinform.2021224bbaa24310.1093/bib/bbaa24333078832
    [Google Scholar]
  41. Zhu,L. DuanG. Yan,C. WangJ. Prediction of Microbe-Drug Associations Based on KATZ Measure. in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 183–187 (IEEE, San Diego, CA, USA, 2019).201910.1109/BIBM47256.2019.8983209
    [Google Scholar]
  42. McCurdyS LawrenceL QuintasM In vitro activity of delafloxacin and microbiological response against fluoroquinolone_ susceptible and nonsusceptible Staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections.Antimicrob Agents Chemother2017619e007721710.1128/AAC.00772‑1728630189
    [Google Scholar]
  43. RehmanA. PatrickW.M. LamontI.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem.J. Med. Microbiol.2019681110
    [Google Scholar]
  44. LiuX. XiangL. YinY. LiH. MaD. QuY. Pneumonia caused by Pseudomonas fluorescens: A case report.BMC Pulm. Med.2021211212
    [Google Scholar]
  45. TrinhSA GavinHE SatchellKJF Efficacy of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy for Vibrio vulnificus foodborne septicemia.Antimicrob Agents Che_mother20176112e011061710.1128/AAC.01106‑1728971862
    [Google Scholar]
  46. YangZ. WangL. ZhangX. ZengB. ZhangZ. LiuX. LCASPM_DA: A computational model for predicting potential microbe-drug associations based on learnable graph convolutional attention net_works and self-paced iterative sampling ensemble.Front. Microbiol.2024151366272
    [Google Scholar]
  47. Barman BalfourJ.A. WisemanL.R. Moxifloxacin.Drugs199957336337310.2165/00003495‑199957030‑0000710193688
    [Google Scholar]
  48. GislasonA.S. ChoyM. BloodworthR.A.M. Competitive growth enhances conditional growth mutant sensitivity to antibio_tics and exposes a two-component system as an emerging antibac_terial target in Burkholderia cenocepacia.Antimicrob. Agents Chemother.2017611e00790e16
    [Google Scholar]
  49. TahounABMB Abou ElezRMM AbdelfatahEN ElsohabyI El_GedawyAA ElmoslemanyAM Listeria monocytogenes in raw milk, milking equipment and dairy workers: Molecular characterization and antimicrobial resistance patterns.J Glob Antimicrob Re_sist20171026470
    [Google Scholar]
  50. ChonJ.W. SeoK.H. BaeD. ParkJ.H. KhanS. SungK. Prevalence, toxin gene profile, antibiotic resistance, and molecular characteri_zation of Clostridium perfringens from diarrheic and non-diarrheic dogs in Korea.J. Vet. Sci.2018193368374
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936331907240927141428
Loading
/content/journals/cbio/10.2174/0115748936331907240927141428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test