Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Poor dietary habits and a lack of understanding are contributing to the rapid global increase in the number of diabetic people. Therefore, a framework that can accurately forecast a large number of patients based on clinical details is needed. Artificial intelligence (AI) is a rapidly evolving field, and its implementations to diabetes, a worldwide pandemic, have the potential to revolutionize the strategy of diagnosing and forecasting this chronic condition. Algorithms based on artificial intelligence fundamentals have been developed to support predictive models for the risk of developing diabetes or its complications. In this review, we will discuss AI-based diabetes prediction. Thus, AI-based new-onset diabetes prediction has not beaten the statistically based risk stratification models, in traditional risk stratification models. Despite this, it is anticipated that in the near future, a vast quantity of well-organized data and an abundance of processing power will optimize AI's predictive capabilities, greatly enhancing the accuracy of diabetic illness prediction models.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936320525240915050640
2024-10-11
2025-12-23
Loading full text...

Full text loading...

References

  1. World Health Organization, Diabetes.Available from:https://www.who.int/news-room/fact-sheets/detail/diabetes(accessed on 31-8-2024)
  2. ChoN.H. ShawJ.E. KarurangaS. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.023 29496507
    [Google Scholar]
  3. FitzmauriceC. AllenC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study.JAMA Oncol.20173452444810.1001/jamaoncol.2016.5688 27918777
    [Google Scholar]
  4. PapatheodorouK. PapanasN. BanachM. PapazoglouD. EdmondsM. Complications of Diabetes 2016.J. Diabetes Res.201620161310.1155/2016/6989453 27822482
    [Google Scholar]
  5. van Gemert-PijnenJ.E.W.C. NijlandN. van LimburgM. A holistic framework to improve the uptake and impact of eHealth technologies.J. Med. Internet Res.2011134e11110.2196/jmir.1672 22155738
    [Google Scholar]
  6. Dankwa-MullanI. RivoM. SepulvedaM. ParkY. SnowdonJ. RheeK. Transforming diabetes care through artificial intelligence: The future is here.Popul. Health Manag.201922322924210.1089/pop.2018.0129 30256722
    [Google Scholar]
  7. AlbertiK.G.M.M. ZimmetP.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation.Diabet. Med.199815753955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S 9686693
    [Google Scholar]
  8. KatsarouA. GudbjörnsdottirS. RawshaniA. Type 1 diabetes mellitus.Nat. Rev. Dis. Primers2017311701610.1038/nrdp.2017.16 28358037
    [Google Scholar]
  9. DeFronzoR.A. FerranniniE. GroopL. Type 2 diabetes mellitus.Nat. Rev. Dis. Primers2015111501910.1038/nrdp.2015.19 27189025
    [Google Scholar]
  10. GoswamiS. VishwanathM. GangadarappaS. RazdanR. InamdarM. Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction.Pharmacogn. Mag.20141039Suppl. 358110.4103/0973‑1296.139790 25298678
    [Google Scholar]
  11. GoswamiS.K. GangadarappaS.K. VishwanathM. Antioxidant potential and ability of phloroglucinol to decrease formation of advanced glycation end products increase efficacy of sildenafil in diabetesinduced sexual dysfunction of rats.Sex. Med.201642e106e11410.1016/j.esxm.2015.12.002 26831914
    [Google Scholar]
  12. VarmaR. BresslerN.M. DoanQ.V. Prevalence of and risk factors for diabetic macular edema in the United States.JAMA Ophthalmol.2014132111334134010.1001/jamaophthalmol.2014.2854 25125075
    [Google Scholar]
  13. AmiriA. RafeV. Hybrid algorithm for detecting diabetes.Int. Res. J. Appl. Basic Sci.201481223472353
    [Google Scholar]
  14. DalyA. HovorkaR. Technology in the management of type 2 diabetes: Present status and future prospects.Diabetes Obes. Metab.20212381722173210.1111/dom.14418 33950566
    [Google Scholar]
  15. Discover how our language data could power.Available from: https://en.oxforddictionaries.com/definition/artificial_intelligence(accessed on 31-8-2024).
  16. Articles of Incorporation of the Japanese Society for Artificial Intelligence.Available from: https://www.ai-gakkai.or.jp/about/about-us/jsai_teikan/(accessed on 31-8-2024)
  17. What Is Machine Learning? A Definition.Available from:https://www.expertsystem.com/machine-learning-definition/(accessed on 31-8-2024)
  18. GuanZ. LiH. LiuR. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges.Cell Rep. Med.202341010121310.1016/j.xcrm.2023.101213 37788667
    [Google Scholar]
  19. HuangJ. YeungA.M. ArmstrongD.G. Artificial intelligence for predicting and diagnosing complications of diabetes.J. Diabetes Sci. Technol.202317122423810.1177/19322968221124583 36121302
    [Google Scholar]
  20. RazzakM.I. NazS. ZaibA. Deep learning for medical image processing: Overview, challenges, and the future. Classification in BioApps.Springer201832335010.1007/978‑3‑319‑65981‑7_12
    [Google Scholar]
  21. ObermeyerZ. PowersB. VogeliC. MullainathanS. Dissecting racial bias in an algorithm used to manage the health of populations.Science2019366646444745310.1126/science.aax2342 31649194
    [Google Scholar]
  22. MehrabiN. MorstatterF. SaxenaN. LermanK. GalstyanA. A survey on bias and fairness in machine learning.ACM Comput. Surv.202254613510.1145/3457607
    [Google Scholar]
  23. ChenI.Y. PiersonE. RoseS. JoshiS. FerrymanK. GhassemiM. Ethical machine learning in healthcare.Annu. Rev. Biomed. Data Sci.20214112314410.1146/annurev‑biodatasci‑092820‑114757 34396058
    [Google Scholar]
  24. SwapnaG. VinayakumarR. SomanK.P. Diabetes detection using deep learning algorithms.ICT Express20184424324610.1016/j.icte.2018.10.005
    [Google Scholar]
  25. SisodiaD. SisodiaD.S. Prediction of diabetes using classification algorithms.Procedia Comput. Sci.20181321578158510.1016/j.procs.2018.05.122
    [Google Scholar]
  26. WuH. YangS. HuangZ. HeJ. WangX. Type 2 diabetes mellitus prediction model based on data mining.Informatics in Medicine Unlocked20181010010710.1016/j.imu.2017.12.006
    [Google Scholar]
  27. MengX.H. HuangY.X. RaoD.P. ZhangQ. LiuQ. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors.Kaohsiung J. Med. Sci.2013292939910.1016/j.kjms.2012.08.016 23347811
    [Google Scholar]
  28. ChoubeyD.K. PaulS. GA_RBF NN: A classification system for diabetes.Int. J. Biomed. Eng. Technol.2017231719310.1504/IJBET.2017.082229
    [Google Scholar]
  29. Nai-arunN. MoungmaiR. Comparison of classifiers for the risk of diabetes prediction.Procedia Comput. Sci.20156913214210.1016/j.procs.2015.10.014
    [Google Scholar]
  30. ZouQ. QuK. LuoY. YinD. JuY. TangH. Predicting diabetes mellitus with machine learning techniques.Front. Genet.2018951510.3389/fgene.2018.00515 30459809
    [Google Scholar]
  31. RahmanR.M. AfrozF. Comparison of various classification techniques using different data mining tools for diabetes diagnosis.Journal of Software Engineering and Applications201363859710.4236/jsea.2013.63013
    [Google Scholar]
  32. Mahboob AlamT. IqbalM.A. AliY. A model for early prediction of diabetes.Informatics in Medicine Unlocked20191610020410.1016/j.imu.2019.100204
    [Google Scholar]
  33. AndersonJ.P. ParikhJ.R. ShenfeldD.K. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: An application of machine learning using electronic health records.J. Diabetes Sci. Technol.201610161810.1177/1932296815620200 26685993
    [Google Scholar]
  34. RashedS. NooriH. Machine learning based unifed framework for diabetes prediction.proceedings of the 2018 international conference on big data engineering and technology.August 25 - 27, 2018New York, USA4650
    [Google Scholar]
  35. PatilS.D. DeshmukhJ.S. PatilC.R. Social factors influencing diabetes mellitus in adults attending a tertiary care hospital in Nagpur: A cross sectional study.International Journal of Research in Medical Sciences20175114988499210.18203/2320‑6012.ijrms20174957
    [Google Scholar]
  36. XuW. Risk prediction of type II diabetes based on random forest model.2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB)27-28 February 2017Chennai, India38238610.1109/AEEICB.2017.7972337
    [Google Scholar]
  37. RameshS. CaytilesR.D. IyengaN.C.S.N. A deep learning approach to identify diabetes.Adv Sci Tech Lett2017145444910.14257/astl.2017.145.09
    [Google Scholar]
  38. SamuelAL Some studies in machine learning using the game of checkers.IBM J Res Develop2000441.220622610.1147/rd.441.0206
    [Google Scholar]
  39. MahavarA. PatelA. PatelA. A comprehensive review on deep learning techniques in Alzheimer’s Disease diagnosis.Curr. Top. Med. Chem.202424114 38847164
    [Google Scholar]
  40. GrossiE. BuscemaM. Introduction to artificial neural networks.Eur. J. Gastroenterol. Hepatol.200719121046105410.1097/MEG.0b013e3282f198a0 17998827
    [Google Scholar]
  41. LaganiV. ChiarugiF. ManousosD. Realization of a service for the long-term risk assessment of diabetes-related complications.J. Diabetes Complications201529569169810.1016/j.jdiacomp.2015.03.011 25953402
    [Google Scholar]
  42. KimR.B. GryakJ. MishraA. Utilization of smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers.Comput. Biol. Med.202012610404210.1016/j.compbiomed.2020.104042 33059239
    [Google Scholar]
  43. MetskerO. MagoevK. YakovlevA. Identification of risk factors for patients with diabetes: Diabetic polyneuropathy case study.BMC Med. Inform. Decis. Mak.202020120121510.1186/s12911‑020‑01215‑w 32831065
    [Google Scholar]
  44. LecunY. BottouL. BengioY. HaffnerP. Gradient-based learning applied to document recognition.Proc. IEEE199886112278232410.1109/5.726791
    [Google Scholar]
  45. EickenbergM. GramfortA. VaroquauxG. ThirionB. Seeing it all: Convolutional network layers map the function of the human visual system.Neuroimage201715215218419410.1016/j.neuroimage.2016.10.001 27777172
    [Google Scholar]
  46. ZhangK. LiuX. XuJ. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images.Nat. Biomed. Eng.20215653354510.1038/s41551‑021‑00745‑6 34131321
    [Google Scholar]
  47. ArcaduF. BenmansourF. MaunzA. WillisJ. HaskovaZ. PrunottoM. Deep learning algorithm predicts diabetic retinopathy progression in individual patients.NPJ Digit. Med.2019219210110.1038/s41746‑019‑0172‑3 31552296
    [Google Scholar]
  48. BoraA. BalasubramanianS. BabenkoB. Predicting the risk of developing diabetic retinopathy using deep learning.Lancet Digit. Health202131e10e1910.1016/S2589‑7500(20)30250‑8 33735063
    [Google Scholar]
  49. DaiL. WuL. LiH. A deep learning system for detecting diabetic retinopathy across the disease spectrum.Nat. Commun.20211213242325310.1038/s41467‑021‑23458‑5 34050158
    [Google Scholar]
  50. AbràmoffM.D. LouY. ErginayA. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning.Invest. Ophthalmol. Vis. Sci.201657135200520610.1167/iovs.16‑19964 27701631
    [Google Scholar]
  51. BhaskaranandM. RamachandraC. BhatS. The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes.Diabetes Technol. Ther.2019211163564310.1089/dia.2019.0164
    [Google Scholar]
  52. GulshanV. PengL. CoramM. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.JAMA2016316222402241010.1001/jama.2016.17216 27898976
    [Google Scholar]
  53. TingD.S.W. CheungC.Y.L. LimG. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes.JAMA2017318222211222310.1001/jama.2017.18152 29234807
    [Google Scholar]
  54. SabanayagamC. XuD. TingD.S.W. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations.Lancet Digit. Health202026e295e30210.1016/S2589‑7500(20)30063‑7 33328123
    [Google Scholar]
  55. KhandakarA. ChowdhuryM.E.H. ReazM.B.I. A novel machine learning approach for severity classification of diabetic foot complications using thermogram images.Sensors (Basel)20222211424910.3390/s22114249 35684870
    [Google Scholar]
  56. WilliamsB.M. BorroniD. LiuR. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: A development and validation study.Diabetologia202063241943010.1007/s00125‑019‑05023‑4 31720728
    [Google Scholar]
  57. SalahouddinT. PetropoulosI.N. FerdousiM. Artificial intelligence–based classification of diabetic peripheral neuropathy from corneal confocal microscopy images.Diabetes Care2021447e151e15310.2337/dc20‑2012 34083322
    [Google Scholar]
  58. PrestonF.G. MengY. BurgessJ. Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes.Diabetologia202265345746610.1007/s00125‑021‑05617‑x 34806115
    [Google Scholar]
  59. PouyanfarS. SadiqS. YanY. A survey on deep learning: Algorithms, techniques, and applications.ACM Comput. Surv.2019515136[CSUR]10.1145/3234150
    [Google Scholar]
  60. DengL. A tutorial survey of architectures, algorithms, and applications for deep learning.APSIPA Trans. Signal. Inf. Process.20143112910.1017/atsip.2013.9
    [Google Scholar]
  61. LjubicB. HaiA.A. StanojevicM. Predicting complications of diabetes mellitus using advanced machine learning algorithms.J. Am. Med. Inform. Assoc.20202791343135110.1093/jamia/ocaa120 32869093
    [Google Scholar]
  62. WuX. KumarV. Ross QuinlanJ. Top 10 algorithms in data mining.Knowl. Inf. Syst.200814113710.1007/s10115‑007‑0114‑2
    [Google Scholar]
  63. DagliatiA. MariniS. SacchiL. Machine learning methods to predict diabetes complications.J. Diabetes Sci. Technol.201812229530210.1177/1932296817706375 28494618
    [Google Scholar]
  64. AcharyaU.R. LimC.M. NgE.Y.K. CheeC. TamuraT. Computer-based detection of diabetes retinopathy stages using digital fundus images.Proc. Inst. Mech. Eng. H2009223554555310.1243/09544119JEIM486 19623908
    [Google Scholar]
  65. HuangG.M. HuangK.Y. LeeT.Y. WengJ.T.Y. An interpretable rule-based diagnostic classification of diabetic nephropathy among type 2 diabetes patients.BMC Bioinformatics201516S1Suppl. 1S510.1186/1471‑2105‑16‑S1‑S5 25707942
    [Google Scholar]
  66. ZhangW. LiuX. DongZ. New diagnostic model for the differentiation of diabetic nephropathy from non-diabetic nephropathy in Chinese patients.Front. Endocrinol. (Lausanne)20221391302110.3389/fendo.2022.913021 35846333
    [Google Scholar]
  67. CichoszP. Data Mining Algorithms: Explained Using R.1st edNew YorkJohn Wiley & Sons2014
    [Google Scholar]
  68. SalehE. BłaszczyńskiJ. MorenoA. Learning ensemble classifiers for diabetic retinopathy assessment.Artif. Intell. Med.201885506310.1016/j.artmed.2017.09.006 28993124
    [Google Scholar]
  69. PalaudàriesA. PlazaE. ArmengolE. Individual prognosis of diabetes long-term risks: A CBR approach.Methods Inf. Med.2001401465110.1055/s‑0038‑1634463 11310159
    [Google Scholar]
  70. TahirF. FarhanM. Exploring the progress of artificial intelligence in managing type 2 diabetes mellitus: A comprehensive review of present innovations and anticipated challenges ahead.Frontiers in Clinical Diabetes and Healthcare20234131611110.3389/fcdhc.2023.1316111 38161783
    [Google Scholar]
  71. KhanA. UddinS. SrinivasanU. Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression.Int. J. Med. Inform.20181151910.1016/j.ijmedinf.2018.04.001 29779710
    [Google Scholar]
  72. YangL. GabrielN. HernandezI. WintersteinA.G. GuoJ. Using machine learning to identify diabetes patients with canagliflozin prescriptions at high‐risk of lower extremity amputation using real‐world data.Pharmacoepidemiol. Drug Saf.202130564465110.1002/pds.5206 33606340
    [Google Scholar]
  73. HuangJ. HuthC. CovicM. Machine learning approaches reveal metabolic signatures of incident chronic kidney disease in individuals with prediabetes and type 2 diabetes.Diabetes202069122756276510.2337/db20‑0586 33024004
    [Google Scholar]
  74. Johnson-MannC.N. LoftusT.J. BihoracA. Equity and artificial intelligence in surgical care.JAMA Surg.2021156650951010.1001/jamasurg.2020.7208 33625504
    [Google Scholar]
  75. LoftusT.J. ShickelB. Ozrazgat-BaslantiT. Artificial intelligence-enabled decision support in nephrology.Nat. Rev. Nephrol.202218745246510.1038/s41581‑022‑00562‑3 35459850
    [Google Scholar]
  76. SchnallR. RojasM. BakkenS. A user-centered model for designing consumer mobile health (mHealth) applications (apps).J. Biomed. Inform.20166024325110.1016/j.jbi.2016.02.002 26903153
    [Google Scholar]
  77. RatwaniR.M. BendaN.C. HettingerA.Z. FairbanksR.J. Electronic health record vendor adherence to usability certification requirements and testing standards.JAMA2015314101070107110.1001/jama.2015.8372 26348757
    [Google Scholar]
  78. CarspeckenC.W. SharekP.J. LonghurstC. PagelerN.M. A clinical case of electronic health record drug alert fatigue: Consequences for patient outcome.Pediatrics20131316e1970e197310.1542/peds.2012‑3252 23713099
    [Google Scholar]
  79. SolomonD.H. RudinR.S. Digital health technologies: Opportunities and challenges in rheumatology.Nat. Rev. Rheumatol.202016952553510.1038/s41584‑020‑0461‑x 32709998
    [Google Scholar]
  80. BlakeyJ.D. BenderB.G. DimaA.L. WeinmanJ. SafiotiG. CostelloR.W. Digital technologies and adherence in respiratory diseases: The road ahead.Eur. Respir. J.2018525180114710.1183/13993003.01147‑2018 30409819
    [Google Scholar]
  81. RudinR.S. FantaC.H. QureshiN. A clinically integrated mhealth app and practice model for collecting patient-reported outcomes between visits for asthma patients: Implementation and feasibility.Appl. Clin. Inform.201910578379310.1055/s‑0039‑1697597 31618782
    [Google Scholar]
  82. Navarro-MillánI. ZinskiA. ShurbajiS. Perspectives of rheumatoid arthritis patients on electronic communication and patient‐reported outcome data collection: A qualitative study.Arthritis Care Res. (Hoboken)2019711808710.1002/acr.23580 29669191
    [Google Scholar]
  83. ShortliffeE.H. Computer programs to support clinical decision making.JAMA19872581616610.1001/jama.1987.03400010065029 3586293
    [Google Scholar]
  84. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  85. BellaA. FerriC. Hernández-OralloJ. Ramírez-QuintanaM.J. Calibration of machine learning models.handbook of research on machine learning applications and trends.IGI Global201012814610.4018/978‑1‑60566‑766‑9.ch006
    [Google Scholar]
  86. MoonsK.G.M. WolffR.F. RileyR.D. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration.Ann. Intern. Med.20191701W1W3310.7326/M18‑1377 30596876
    [Google Scholar]
  87. Salazar de PabloG. StuderusE. Vaquerizo-SerranoJ. Implementing precision psychiatry: A systematic review of individualized prediction models for clinical practice.Schizophr. Bull.202147228429710.1093/schbul/sbaa120 32914178
    [Google Scholar]
  88. SiontisG.C.M. TzoulakiI. CastaldiP.J. IoannidisJ.P.A. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination.J. Clin. Epidemiol.2015681253410.1016/j.jclinepi.2014.09.007 25441703
    [Google Scholar]
  89. GentlemanR. CareyV.J. Unsupervised Machine Learning.Bioconductor Case Studies.Springer200810.1007/978‑0‑387‑77240‑0_10
    [Google Scholar]
  90. HardtM. PriceE. SrebroN. Equality of opportunity in supervised learning.Adv. Neural Inf. Process. Syst.20162933153323
    [Google Scholar]
  91. GuidottiR. MonrealeA. RuggieriS. TuriniF. GiannottiF. PedreschiD. A survey of methods for explaining black box models.ACM Comput. Surv.201951514210.1145/3236009
    [Google Scholar]
  92. LiangY. LiS. YanC. LiM. JiangC. Explaining the black-box model: A survey of local interpretation methods for deep neural networks.Neurocomputing202141916818210.1016/j.neucom.2020.08.011
    [Google Scholar]
  93. Wesolowska-AndersenA. Zhuo YuG. NylanderV. Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals.eLife20209e5150310.7554/eLife.51503 31985400
    [Google Scholar]
  94. GrzybowskiA. BronaP. LimG. Artificial intelligence for diabetic retinopathy screening: A review.Eye202034345146010.1038/s41433‑019‑0566‑0 31488886
    [Google Scholar]
  95. NagarajS.B. SidorenkovG. van BovenJ.F.M. DenigP. Predicting short‐ and long‐term glycated haemoglobin response after insulin initiation in patients with type 2 diabetes mellitus using machine‐learning algorithms.Diabetes Obes. Metab.201921122704271110.1111/dom.13860 31453664
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936320525240915050640
Loading
/content/journals/cbio/10.2174/0115748936320525240915050640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test