Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Considering that cancer is a disease that affects people all over the world, there has been a movement in the focus of scientific and research efforts towards substances that are acquired from natural sources. It has been demonstrated that the identification of pharmaceuticals originating from plants has proven to be particularly beneficial in the process of producing anticancer therapies such as vincristine, vinblastine, paclitaxel, and irinotecan. Additionally, marine sources have provided substances such as cytarabine and aplidine, and microbes have developed important drugs such as dactinomycin, doxorubicin, and bleomycin with their anticancer qualities. The purpose of this review is to highlight the fact that active components derived from natural sources present significant opportunities for the discovery of not only completely new categories of anticancer medicines but also novel precursor chemical compounds. The purpose of this article is to review naturally isolated anticancer medications from a wide range of agents that can be derived from a wide range of natural resources, such as bacteria, marine organisms, and plants.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072350397241202044759
2024-12-17
2025-12-25
Loading full text...

Full text loading...

References

  1. MurphyN. MorenoV. HughesD.J. VodickaL. VodickaP. AglagoE.K. GunterM.J. JenabM. Lifestyle and dietary environmental factors in colorectal cancer susceptibility.Mol. Aspects Med.2019692910.1016/j.mam.2019.06.005 31233770
    [Google Scholar]
  2. KciukM. GargN. DhankharS. SainiM. MujwarS. DeviS. ChauhanS. SinghT.G. SinghR. MarciniakB. GielecińskaA. KontekR. Exploring the comprehensive neuroprotective and anticancer potential of afzelin.Pharmaceuticals (Basel)202417670110.3390/ph17060701 38931368
    [Google Scholar]
  3. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic androgenic steroids: A review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  4. KhanM.S.A. AhmadI. Chapter 1 - Herbal medicine: Current trends and future prospects.New look to phytomedicine.Elsevier201931310.1016/B978‑0‑12‑814619‑4.00001‑X
    [Google Scholar]
  5. SoodR. TomarD. KaushikP. SharmaP. RaniN. GuarveK. DhankharS. GargN. Enhanced solubility and increased bioavailability with engineered nanocrystals.Curr. Drug Ther.202419663864710.2174/0115748855269071231113070552
    [Google Scholar]
  6. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  7. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals (Basel)202316790810.3390/ph16070908 37513820
    [Google Scholar]
  8. KaurS. MayanglambamP. BajwanD. ThakurN. Chemotherapy and its adverse effects-A systematic review.Int. J. Nurs. Educ. Res.202210439940210.52711/2454‑2660.2022.00090
    [Google Scholar]
  9. DhankharS. MujwarS. GargN. ChauhanS. SainiM. SharmaP. KumarS. Kumar SharmaS. KamalM.A. RaniN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  10. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A Comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  11. CochranA.G. ConeryA.R. SimsR.J. Bromodomains: A new target class for drug development.Nat. Rev. Drug Discov.201918860962810.1038/s41573‑019‑0030‑7 31273347
    [Google Scholar]
  12. SharmaM. BakshiA.K. MittapellyN. GautamS. MarwahaD. RaiN. SinghN. TiwariP. AgarwalN. KumarA. MishraP.R. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer.J. Control. Release2022346437010.1016/j.jconrel.2022.04.007 35405165
    [Google Scholar]
  13. BakshiS. YadavA. DhankharS. ChauhanS. MahajanS. SinglaD. Annona muricata: Unveiling its potential as a complementary and alternative cancer therapy.J. Pharm. Technol. Res. Manag.2023112.10.15415/jprtm.2023.112003
    [Google Scholar]
  14. ZeienJ. QiuW. TriayM. DhaibarH.A. Cruz-TopeteD. CornettE.M. UritsI. ViswanathO. KayeA.D. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care.Biomed. Pharmacother.202214611250310.1016/j.biopha.2021.112503 34922113
    [Google Scholar]
  15. KroschinskyF. StölzelF. von BoninS. BeutelG. KochanekM. KiehlM. SchellongowskiP. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management.Crit. Care20172118910.1186/s13054‑017‑1678‑1 28407743
    [Google Scholar]
  16. HuangR. ZhouP.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy.Signal Transduct. Target. Ther.20216125410.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  17. HuS. XuY. MengL. HuangL. SunH. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells.Exp. Ther. Med.20181621266127210.3892/etm.2018.6345 30116377
    [Google Scholar]
  18. RadyI. MohamedH. RadyM. SiddiquiI.A. MukhtarH. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egypt.J. Basic. Appl. Sci.20185112310.1016/j.ejbas.2017.12.001
    [Google Scholar]
  19. WangL. LiP. FengK. EGCG adjuvant chemotherapy: Current status and future perspectives.Eur. J. Med. Chem.202325011519710.1016/j.ejmech.2023.115197 36780831
    [Google Scholar]
  20. PanditA.P. JoshiS.R. DalalP.S. PatoleV.C. Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract.BMC Complement. Altern. Med.201919112910.1186/s12906‑019‑2545‑1 31196040
    [Google Scholar]
  21. BordoloiD. RoyN.K. MonishaJ. PadmavathiG. KunnumakkaraA.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far.Recent Patents Anticancer Drug Discov.2016111679710.2174/1574892810666151020101706 26537958
    [Google Scholar]
  22. KingstonD.G.I. SnyderJ.P. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent.Acc. Chem. Res.20144782682269110.1021/ar500203h 25052294
    [Google Scholar]
  23. ZhangL. ZhouF. ten DijkeP. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer.Trends Biochem. Sci.2013381261262010.1016/j.tibs.2013.10.001 24239264
    [Google Scholar]
  24. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  25. CarneroA. Blanco-AparicioC. RennerO. LinkW. LealJ. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications.Curr. Cancer Drug Targets20088318719810.2174/156800908784293659 18473732
    [Google Scholar]
  26. YuJ.S.L. CuiW. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination.Development2016143173050306010.1242/dev.137075 27578176
    [Google Scholar]
  27. ZhouZ. TangM. LiuY. ZhangZ. LuR. LuJ. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.Anticancer Drugs201728444645610.1097/CAD.0000000000000479 28125432
    [Google Scholar]
  28. LiQ. DingY. OuY. LiM. JithavechP. BuranasudjaV. SritularakB. XuY. RojsitthisakP. HanJ. Curcuminoids modulated the IL-6/JAK/STAT3 signaling pathway in LoVo and HT-29 colorectal cancer cells.Curr. Pharm. Des.202329362867287610.2174/0113816128263974231029180947 37957863
    [Google Scholar]
  29. ManoharanS. PerumalE. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights.Fitoterapia202417910626510.1016/j.fitote.2024.106265 39437855
    [Google Scholar]
  30. XiongA. YangZ. ShenY. ZhouJ. ShenQ. Transcription factor STAT3 as a novel molecular target for cancer prevention.Cancers (Basel)20146292695710.3390/cancers6020926 24743778
    [Google Scholar]
  31. AraminiB. MascialeV. GrisendiG. BertoliniF. MaurM. GuaitoliG. ChrystelI. MorandiU. StellaF. DominiciM. HaiderK.H. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence.Cancers (Basel)202214497610.3390/cancers14040976 35205721
    [Google Scholar]
  32. KciukM. GargA. RohillaM. ChaudharyR. DhankharS. DhimanS. BansalS. SainiM. SinghT.G. ChauhanS. MujwarS. GielecińskaA. KontekR. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis - Comprehensive review.Antioxidants202413777510.3390/antiox13070775 39061843
    [Google Scholar]
  33. HickmanJ.A. GraeserR. de HoogtR. VidicS. BritoC. GutekunstM. van der KuipH. Three‐dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo.Biotechnol. J.2014991115112810.1002/biot.201300492 25174503
    [Google Scholar]
  34. BatoolS. AsimL. QureshiF.R. MasoodA. MushtaqM. SaleemR.S.Z. Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer - An insight into anticancer drug development.Anticancer. Agents Med. Chem.202410.2174/0118715206302216240628072554
    [Google Scholar]
  35. CraggG.M. PezzutoJ.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med. Princ. Pract.201625Suppl 2415910.1159/000443404 26679767
    [Google Scholar]
  36. AhmedM.B. IslamS.U. AlghamdiA.A.A. KamranM. AhsanH. LeeY.S. Phytochemicals as chemo-preventive agents and signaling molecule modulators: Current role in cancer therapeutics and inflammation.Int. J. Mol. Sci.202223241576510.3390/ijms232415765 36555406
    [Google Scholar]
  37. StuurmanF.E. NuijenB. BeijnenJ.H. SchellensJ.H.M. Oral anticancer drugs: Mechanisms of low bioavailability and strategies for improvement.Clin. Pharmacokinet.201352639941410.1007/s40262‑013‑0040‑2 23420518
    [Google Scholar]
  38. Ochwang’iD.O. OdumaJ. Overview of governmental support across Africa toward the development and growth of herbal medicine.Medicinal Spices and Vegetables from Africa.Elsevier201715316910.1016/B978‑0‑12‑809286‑6.00006‑6
    [Google Scholar]
  39. BalaR. MadaanR. ChauhanS. GuptaM. DubeyA.K. ZahoorI. BrijeshH. CalinaD. Sharifi-RadJ. Revitalizing allicin for cancer therapy: Advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy.Naunyn Schmiedebergs Arch. Pharmacol.2024397270372410.1007/s00210‑023‑02675‑3 37615709
    [Google Scholar]
  40. WijesekeraR. Plant-derived medicines and their role in global health.The Medicinal Plant Industry.Routledge201711810.1201/9780203736395‑1
    [Google Scholar]
  41. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma15030804 35160749
    [Google Scholar]
  42. RiccioB.V.F. SpósitoL. CarvalhoG.C. FerrariP.C. ChorilliM. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body.Arch. Pharm. (Weinheim)202035312200014610.1002/ardp.202000146 32886393
    [Google Scholar]
  43. DadaR. DadaR. Oxidative stress Major executioner in disease pathology role in sperm DNA damage and preventive strategies.Front. Biosci. (Schol. Ed.)20179342044710.2741/s495 28410127
    [Google Scholar]
  44. ChauhanS. GuptaS. YasminS. SainiM. Antihyperglycemic and antioxidant potential of plant extract of Litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.202111322523310.4103/ijnpnd.ijnpnd_13_21
    [Google Scholar]
  45. ChauhanS. Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis gaertn.(sonn.).Group201410100
    [Google Scholar]
  46. TakI.R. AliF. DarJ.S. MagrayA.R. GanaiB.A. ChishtiM.Z. Chapter 1 - Posttranslational modifications of proteins and their role in biological processes and associated diseases.Protein Modificomics.Elsevier201913510.1016/B978‑0‑12‑811913‑6.00001‑1
    [Google Scholar]
  47. GuptaS.C. TyagiA.K. Deshmukh-TaskarP. HinojosaM. PrasadS. AggarwalB.B. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols.Arch. Biochem. Biophys.2014559919910.1016/j.abb.2014.06.006 24946050
    [Google Scholar]
  48. LoboM. HounsomeN. HounsomeB. Biochemistry of vegetables: Secondary metabolites in vegetables - Terpenoids, phenolics, alkaloids, and sulfur‐containing compounds.Handbook of Vegetables and Vegetable Processing. UebersaxM.A. SiddiqM. Wiley2018478210.1002/9781119098935.ch3
    [Google Scholar]
  49. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  50. DhankharS. ChauhanS. MehtaD.K. Nitika; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  51. VetterJ. Secondary metabolites of ferns.Current Advances in Fern Research. FernándezH. ChamSpringer201830532710.1007/978‑3‑319‑75103‑0_15
    [Google Scholar]
  52. BhambhaniS. KondhareK.R. GiriA.P. Diversity in chemical structures and biological properties of plant alkaloids.Molecules20212611337410.3390/molecules26113374 34204857
    [Google Scholar]
  53. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  54. DhankharS. GargN. ChauhanS. SainiM. Role of artificial intelligence in diabetic wound screening and early detection.Curr. Biotechnol.20241329310610.2174/0122115501303253240408072559
    [Google Scholar]
  55. DhankharS. GargN. ChauhanS. SainiM. SinghT.G. SinghR. Unravelling the microbiome’s role in healing diabetic wounds.Curr. Pharm. Biotechnol.202425113 38920078
    [Google Scholar]
  56. LobertS. FahyJ. HillB.T. DuflosA. EtievantC. CorreiaJ.J. Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line.Biochemistry20003939120531206210.1021/bi001038r 11009620
    [Google Scholar]
  57. GargN. GargN. FarhatJ. DhankharS. ChauhanS. BalaR. MadaanR. SharmaH. SainiM. SinghT.G. AldahishA.A. Vincristine in cancer therapy: Mechanisms, efficacy, and future perspectives.Curr. Med. Chem.10.2174/0109298673319496240911060138 39318002
    [Google Scholar]
  58. KluskaM. WoźniakK. Natural polyphenols as modulators of etoposide anti-cancer activity.Int. J. Mol. Sci.20212212660210.3390/ijms22126602 34202987
    [Google Scholar]
  59. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. SharmaS.K. RaniN. Cognitive rehabilitation for early-stage dementia: A review.Curr. Psych. Res. Rev.20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  60. DeepA. MarwahaR.K. MarwahaM.G. JyotiJ. NandalR. SharmaA.K. Flavopiridol as cyclin dependent kinase (CDK) inhibitor: A review.New J. Chem.20184223185001850710.1039/C8NJ04306J
    [Google Scholar]
  61. ChauhanS. ChalotraR. RathiA. SainiM. DeolS. LardM. GuptaS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  62. ZhangY. YangS.H. GuoX.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer.Biomed. Pharmacother.20179665966610.1016/j.biopha.2017.10.041 29035832
    [Google Scholar]
  63. KaruppusamyS. PullaiahT. Botany of paclitaxel producing plants.Paclitaxel.Elsevier202215517010.1016/B978‑0‑323‑90951‑8.00008‑4
    [Google Scholar]
  64. MoscaL. IlariA. FaziF. AssarafY.G. ColottiG. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming.Drug Resist. Updat.20215410074210.1016/j.drup.2020.100742 33429249
    [Google Scholar]
  65. ŠkubníkJ. JurášekM. RumlT. RimpelováS. Mitotic poisons in research and medicine.Molecules20202520463210.3390/molecules25204632 33053667
    [Google Scholar]
  66. GallettiE. MagnaniM. RenzulliM.L. BottaM. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes.ChemMedChem20072792094210.1002/cmdc.200600308 17530726
    [Google Scholar]
  67. EfferthT. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy.Semin. Cancer Biol.2017658310.1016/j.semcancer.2017.02.009 28254675
    [Google Scholar]
  68. OokoE. KadiogluO. GretenH.J. EfferthT. Pharmacogenomic characterization and isobologram analysis of the combination of ascorbic acid and curcumin - two main metabolites of Curcuma longa - in cancer cells.Front. Pharmacol.201783810.3389/fphar.2017.00038 28210221
    [Google Scholar]
  69. WangY. XiaW. TaoM. FuX. Oncopreventive and oncotherapeutic potential of licorice chalcone compounds: Molecular insights.Mini Rev. Med. Chem.202323666269910.2174/1389557522666220827161943 36043713
    [Google Scholar]
  70. TanH.L. ChanK.G. PusparajahP. SaokaewS. DuangjaiA. LeeL.H. GohB.H. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives.Front. Pharmacol.2016719110.3389/fphar.2016.00191 27445824
    [Google Scholar]
  71. PereiraM.M. HaniadkaR. ChackoP.P. PalattyP.L. BaligaM.S. Zingiber officinale Roscoe (ginger) as an adjuvant in cancer treatment: A review.J. Balkan Union Oncol.2011163414424 22006742
    [Google Scholar]
  72. Hernández-PérezT. Gómez-GarcíaM.R. ValverdeM.E. Paredes-LópezO. Capsicum annuum (hot pepper): An ancient Latin‐American crop with outstanding bioactive compounds and nutraceutical potential. A review.Compr. Rev. Food Sci. Food Saf.20201962972299310.1111/1541‑4337.12634 33337034
    [Google Scholar]
  73. ButtT.I. AmjadM.S. Ethnopharmacology, phytochemistry and cytotoxicity of emerging biotechnological tool: Mayapple (Podophyllum hexandrum L.: Berberidaceae).J. Coast. Life Med.20153865265710.12980/JCLM.3.2015J5‑53
    [Google Scholar]
  74. KiticD. MiladinovicB. RandjelovicM. SzopaA. SeidelV. PrasherP. SharmaM. FatimaR. Arslan AteşşahinD. CalinaD. Sharifi-RadJ. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: A comprehensive update.Phytother. Res.20243841932195010.1002/ptr.8137 38358681
    [Google Scholar]
  75. TiwareS. WarghaneK.K. MakdeP. YeskarH. Review on anti-cancer herbal drugs.Int. J. Pharm. Chem. Anal.2023102919910.18231/j.ijpca.2023.018
    [Google Scholar]
  76. AroraR. MalhotraP. MathurA.K. MathurA. GovilC.M. AhujaP.S. Anticancer alkaloids of Catharanthus roseus: Transition from traditional to modern medicine.Herbal Medicine: A Cancer Chemopreventive and Therapeutic Perspective. AroraR. Jaypee201029231010.5005/jp/books/11166_21
    [Google Scholar]
  77. KhuniadC. NaharL. RitchieK.J. SarkerS.D. Therapeutic potential of Leea indica (Vitaceae).J. Nat. Prod. Discov.202211
    [Google Scholar]
  78. NigamM. SuleriaH.A.R. FarzaeiM.H. MishraA.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean.Daru201927149151510.1007/s40199‑019‑00273‑4 31165439
    [Google Scholar]
  79. KiuruP. DʼAuria, M.; Muller, C.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds.Planta Med.201480141234124610.1055/s‑0034‑1383001 25203732
    [Google Scholar]
  80. MalakerA. AhmadS.A.I. Therapeutic potency of anticancer peptides derived from marine organism.Int. J. Eng.2013223058269
    [Google Scholar]
  81. SchwartsmannG. da RochaA.B. MatteiJ. LopesR. Marine-derived anticancer agents in clinical trials.Expert Opin. Investig. Drugs20031281367138310.1517/13543784.12.8.1367 12882622
    [Google Scholar]
  82. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.048 32044364
    [Google Scholar]
  83. BaraldiP.G. BoveroA. FruttaroloF. PretiD. TabriziM.A. PavaniM.G. RomagnoliR. DNA minor groove binders as potential antitumor and antimicrobial agents.Med. Res. Rev.200424447552810.1002/med.20000 15170593
    [Google Scholar]
  84. GaoG. WangY. HuaH. LiD. TangC. Marine antitumor peptide dolastatin 10: Biological activity, structural modification and synthetic chemistry.Mar. Drugs202119736310.3390/md19070363 34202685
    [Google Scholar]
  85. KhwajaS. KumarK. DasR. NegiA.S. Microtubule associated proteins as targets for anticancer drug development.Bioorg. Chem.202111610532010.1016/j.bioorg.2021.105320 34492559
    [Google Scholar]
  86. SreejamoleK. Marine natural products for human health care.Health Benefits of Secondary Phytocompounds from Plant and Marine Sources.Apple Academic Press202110.1201/9781003019602‑9
    [Google Scholar]
  87. ErcolanoG. De CiccoP. IanaroA. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds.Mar. Drugs20191713110.3390/md17010031 30621025
    [Google Scholar]
  88. BhardwajN. GoelB. TripathiN. SahuB. JainS.K. A comprehensive review on chemistry and pharmacology of marine bioactives as antimetastatic agents.Eur. J. Med. Chem. Rep.2022410002310.1016/j.ejmcr.2021.100023
    [Google Scholar]
  89. SrinivasanR. Marines and microorganisms naturevolution of anti-cancer agents-a review.Int. J. Adv. Pharm. Sci.201452357365
    [Google Scholar]
  90. Al-MourabitA. ZancanellaM.A. TilviS. RomoD. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids.Nat. Prod. Rep.20112871229126010.1039/c0np00013b 21556392
    [Google Scholar]
  91. TianF. ZhuC. ZhangX. XieX. XinX. YiY. LinL. GengM. DingJ. Philinopside E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) and alphavbeta3 integrin via binding to the extracellular domain of KDR.Mol. Pharmacol.200772354555210.1124/mol.107.036350 17565003
    [Google Scholar]
  92. SimoneM. ErbaE. DamiaG. VikhanskayaF. Di FrancescoA.M. RiccardiR. BaillyC. CuevasC. Fernandez Sousa-FaroJ.M. D’IncalciM. Variolin B and its derivate deoxy-variolin B: New marine natural compounds with cyclin-dependent kinase inhibitor activity.Eur. J. Cancer200541152366237710.1016/j.ejca.2005.05.015 16181779
    [Google Scholar]
  93. MhlongoJ.K. Screening of marine bacteria as a source of bioactive secondary metabolites.2021
    [Google Scholar]
  94. BallotC. MartoriatiA. JendoubiM. BucheS. FormstecherP. MortierL. KluzaJ. MarchettiP. Another facet to the anticancer response to lamellarin D: Induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production.Mar. Drugs201412277979810.3390/md12020779 24473175
    [Google Scholar]
  95. GnanambalK M.E.; Lakshmipathy, S.V. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.Life Sci.201614822924010.1016/j.lfs.2016.02.034 26874035
    [Google Scholar]
  96. Abd El MonsefW. RagabA. MahmoudG. ShanabS. ShalabyE. Polysaccharides from macro and microalgae: A review of biological activities, structural features, and some extraction techniques.Egypt. J. Chem.202300010.21608/ejchem.2023.206145.7871
    [Google Scholar]
  97. WangL. ZhangY. AndersonE. LambleA. OrentasR.J. Bryostatin activates CAR T-cell antigen-non-specific killing (CTAK), and CAR-T NK-like killing for Pre-B ALL, while blocking cytolysis of a burkitt lymphoma cell line.Front. Immunol.20221382536410.3389/fimmu.2022.825364 35222407
    [Google Scholar]
  98. TevyashovaA.N. OlivomycinA. An antitumor antibiotic of the aureolic acid group.Pharm. Chem. J.201650742543010.1007/s11094‑016‑1463‑5
    [Google Scholar]
  99. MarinelloJ. DelcuratoloM. CapranicoG. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives.Int. J. Mol. Sci.20181911348010.3390/ijms19113480 30404148
    [Google Scholar]
  100. MohamedM.A. ElkhateebW.A. DabaG.M. Rapamycin golden jubilee and still the miraculous drug: A potent immunosuppressant, antitumor, rejuvenative agent, and potential contributor in COVID-19 treatment.Bioresour. Bioprocess.2022916510.1186/s40643‑022‑00554‑y 35730039
    [Google Scholar]
  101. CornforthD.M. FosterK.R. Competition sensing: The social side of bacterial stress responses.Nat. Rev. Microbiol.201311428529310.1038/nrmicro2977 23456045
    [Google Scholar]
  102. PandeyG. An overview on certain anticancer natural products.J. Pharm. Res.200921217991803
    [Google Scholar]
  103. PandeyG. MadhuriS. Microbial antibiotics for the treatment of cancers.Drug Invention Today20091179
    [Google Scholar]
  104. BolzánA.D. BianchiM.S. DNA and chromosome damage induced by bleomycin in mammalian cells: An update.Mutat. Res. Rev. Mutat. Res.2018775516210.1016/j.mrrev.2018.02.003 29555029
    [Google Scholar]
  105. MohanC.D. RangappaS. NayakC. JadimurthyR. WangL. SethiG. GargM. RangappaK.S. Bacteria as a treasure house of secondary metabolites with anticancer potential.Semin. Cancer Biol.202286Part 2998101310.1016/j.semcancer.2021.05.006 33979675
    [Google Scholar]
  106. KouroshniaA. ZeinaliS. IraniS. SadeghiA. Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801.Cancer Cell Int.202222123510.1186/s12935‑022‑02656‑1 35879795
    [Google Scholar]
  107. KapoorR. SainiA. SharmaD. Indispensable role of microbes in anticancer drugs and discovery trends.Appl. Microbiol. Biotechnol.202210613-164885490610.1007/s00253‑022‑12046‑2 35819512
    [Google Scholar]
  108. SetoB. Rapamycin and mTOR: A serendipitous discovery and implications for breast cancer.Clin. Transl. Med.201211e2910.1186/2001‑1326‑1‑29 23369283
    [Google Scholar]
  109. DhaheriY. Identification of novel natural compounds with anti-breast cancer activities. Doctor of Philosophy.United Arab Emirates University2014
    [Google Scholar]
  110. FranciesF.Z. HullR. KhanyileR. DlaminiZ. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options.Am. J. Cancer Res.202010515681591 32509398
    [Google Scholar]
  111. ZhouX. YueG.G.L. TsuiS.K.W. PuJ. FungK.P. LauC.B.S. Elaborating the role of natural products on the regulation of autophagy and their potentials in breast cancer therapy.Curr. Cancer Drug Targets201818323925510.2174/1568009617666170330124819 28359240
    [Google Scholar]
  112. JinZ.Q. HaoJ. YangX. HeJ.H. LiangJ. YuanJ.W. MaoY. LiuD. CaoR. WuX.Z. LiX. ChenD. Higenamine enhances the antitumor effects of cucurbitacin B in breast cancer by inhibiting the interaction of AKT and CDK2.Oncol. Rep.20184042127213610.3892/or.2018.6629 30106443
    [Google Scholar]
  113. NarwalS. Current therapeutic strategies for chagas disease.Antiinfect. Agents202321111
    [Google Scholar]
  114. AliN.M. AkhtarM.N. KyH. LimK.L. AbuN. ZareenS. HoW.Y. Alan-OngH.K. TanS.W. AlitheenN.B. IsmailJ.B. YeapS.K. KamarulT. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line.Drug Des. Devel. Ther.20161018971907 27358555
    [Google Scholar]
  115. LiC. LeiS. DingL. XuY. WuX. WangH. ZhangZ. GaoT. ZhangY. LiL. Global burden and trends of lung cancer incidence and mortality.Chin. Med. J. (Engl.)2023136131583159010.1097/CM9.0000000000002529 37027426
    [Google Scholar]
  116. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules27238367 36500466
    [Google Scholar]
  117. XuW.T. LiT.Z. LiS.M. WangC. WangH. LuoY.H. PiaoX.J. WangJ.R. ZhangY. ZhangT. XueH. CaoL.K. JinC.H. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways.Artif. Cells Nanomed. Biotechnol.2020481849510.1080/21691401.2019.1699813 31852250
    [Google Scholar]
  118. LeglerJ.M. RiesL.A.G. SmithM.A. WarrenJ.L. HeinemanE.F. KaplanR.S. LinetM.S. Cancer surveillance series [corrected]: Brain and other central nervous system cancers: Recent trends in incidence and mortality.J. Natl. Cancer Inst.199991161382139010.1093/jnci/91.16.1382 10451443
    [Google Scholar]
  119. KimB.S. SeolH.J. NamD.H. ParkC.K. KimI.H. KimT.M. KimJ.H. ChoY.H. YoonS.M. ChangJ.H. KangS.G. KimE.H. SuhC.O. JungT.Y. LeeK.H. KimC.Y. KimI.A. HongC.K. YooH. KimJ.H. KangS.H. KangM.K. KimE.Y. KimS.H. ChungD.S. HwangS.C. SongJ.H. ChoS.J. LeeS.I. LeeY.S. AhnK.J. KimS.H. LimD.H. GwakH.S. LeeS.H. HongY.K. Concurrent chemoradiotherapy with temozolomide followed by adjuvant temozolomide for newly diagnosed glioblastoma patients: A retrospective multicenter observation study in Korea.Cancer Res. Treat.201749119320310.4143/crt.2015.473 27384161
    [Google Scholar]
  120. BjorlandL.S. FlugeO. GiljeB. MahesparanR. FarbuE. Treatment approach and survival from glioblastoma: Results from a population-based retrospective cohort study from Western Norway.BMJ Open2021113e04320810.1136/bmjopen‑2020‑043208 33712524
    [Google Scholar]
  121. BryukhovetskiyI. KosianovaA. ZaitsevS. PakO. SharmaA. SharmaH.S. Glioblastoma: What can we do for these patients today and what will we be able to do in the future?Prog. Brain Res.202126512010.1016/bs.pbr.2021.04.012 34560928
    [Google Scholar]
  122. SharmaP. MondalH. MondalS. MajumderR. Recent updates on the role of phytochemicals in the treatment of glioblastoma multiforme.J. Cancer Res. Ther.202319Suppl. 2S513S52210.4103/jcrt.jcrt_1241_22 38384013
    [Google Scholar]
  123. KunduM. DasS. DharaD. MandalM. Prospect of natural products in glioma: A novel avenue in glioma management.Phytother. Res.201933102571258410.1002/ptr.6426 31359523
    [Google Scholar]
  124. ThronickeA. SchadF. DebusM. GrabowskiJ. SoldnerG. Viscum album L. therapy in oncology: An update on current evidence.Complement. Med. Res.202229436236810.1159/000524184 35325897
    [Google Scholar]
  125. ZhangT. XuJ. YanagitaT. WangY. XueC. The functional components of sea cucumber and their nutritional and biological activities.Advances in Sea Cucumber Processing Technology and Product Development. XueC. ChamSpringer20225112410.1007/978‑3‑031‑16512‑2_3
    [Google Scholar]
  126. HuiF. QinX. ZhangQ. LiR. LiuM. RenT. ZhaoM. ZhaoQ. Alpinia oxyphylla oil induces apoptosis of hepatocellular carcinoma cells via PI3K/Akt pathway in vitro and in vivo.Biomed. Pharmacother.20191092365237410.1016/j.biopha.2018.11.124 30551496
    [Google Scholar]
  127. MauroM. LazzaraV. PunginelliD. ArizzaV. VazzanaM. Antitumoral compounds from vertebrate sister group: A review of Mediterranean ascidians.Dev. Comp. Immunol.202010810366910.1016/j.dci.2020.103669 32192994
    [Google Scholar]
  128. SharmaA. ChoiH.K. KimY.K. LeeH.J. Delphinidin and its glycosides’ war on cancer: Preclinical perspectives.Int. J. Mol. Sci.202122211150010.3390/ijms222111500 34768930
    [Google Scholar]
  129. LiuX. CaoK. LvW. FengZ. LiuJ. GaoJ. LiH. ZangW. LiuJ. Punicalagin attenuates endothelial dysfunction by activating FoxO1, a pivotal regulating switch of mitochondrial biogenesis.Free Radic. Biol. Med.201913525126010.1016/j.freeradbiomed.2019.03.011 30878647
    [Google Scholar]
  130. ElkadyA.I. Anethole inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and apoptosis.Anticancer. Agents Med. Chem.201818221623610.2174/1871520617666170725165717 28745237
    [Google Scholar]
  131. HandeK.R. Etoposide: Four decades of development of a topoisomerase II inhibitor.Eur. J. Cancer199834101514152110.1016/S0959‑8049(98)00228‑7 9893622
    [Google Scholar]
  132. YapH.Y. BlumenscheinG.R. KeatingM.J. HortobagyiG.N. TashimaC.K. LooT.L. Vinblastine given as a continuous 5-day infusion in the treatment of refractory advanced breast cancer.Cancer Treat. Rep.1980642-3279283 7407762
    [Google Scholar]
  133. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: Emerging trends in clinics.Biology (Basel)202110984910.3390/biology10090849 34571726
    [Google Scholar]
  134. LorussoD. PietragallaA. MainentiS. MasciulloV. Di VagnoG. ScambiaG. Review role of topotecan in gynaecological cancers: Current indications and perspectives.Crit. Rev. Oncol. Hematol.201074316317410.1016/j.critrevonc.2009.08.001 19766512
    [Google Scholar]
  135. McGuireW.P. BlessingJ.A. MooreD. LentzS.S. PhotopulosG. Paclitaxel has moderate activity in squamous cervix cancer. A Gynecologic Oncology Group study.J. Clin. Oncol.199614379279510.1200/JCO.1996.14.3.792 8622025
    [Google Scholar]
  136. BatharaM. DateT. ChaudhariD. GhadiR. KucheK. JainS. Exploring the promising potential of high permeation vesicle-mediated localized transdermal delivery of docetaxel in breast cancer to overcome the limitations of systemic chemotherapy.Mol. Pharm.20201772473248610.1021/acs.molpharmaceut.0c00211 32496783
    [Google Scholar]
  137. SahooS.M. SahooS. l-Asparaginase and methioninase as prospective anticancer enzymes: Current applications and production approaches.Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment ThatoiH. MohapatraS. DasS.K. Springer: Singapore202134936210.1007/978‑981‑33‑4195‑1_16
    [Google Scholar]
  138. BaindaraP. MandalS.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics.Biochimie202017716418910.1016/j.biochi.2020.07.020 32827604
    [Google Scholar]
  139. DantaC.C. SahuA.N. Naturally occurring anticancer drugs.Medicinal Chemistry of Chemotherapeutic Agents.Elsevier202353958810.1016/B978‑0‑323‑90575‑6.00017‑X
    [Google Scholar]
  140. RamotarD. A wider scope for the antibiotic and anticancer drug bleomycin.Cancer Med. J.2021412737
    [Google Scholar]
  141. ChoudharyH. Different chemosensitization approaches in gastric cancer.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201826731910.1142/9789813208575_0011
    [Google Scholar]
  142. El-NasharH.A. KocaeliS. AbdallahM. El-ShazlyM. Drug from marine sampling to factory.Marine Ecosystems: A Unique Source of Valuable Bioactive Compounds. IbrahimH.A.H. El-SheekhM. Bentham Books202335539310.2174/9789815051995123030013
    [Google Scholar]
  143. SouidS. AissaouiD. Srairi-AbidN. Essafi-BenkhadirK. Trabectedin (Yondelis®) as a therapeutic option in gynecological cancers: A focus on its mechanisms of action, clinical activity and genomic predictors of drug response.Curr. Drug Targets20202110996100710.2174/1389450121666200128161733 31994460
    [Google Scholar]
  144. PereiraR.B. EvdokimovN.M. LefrancF. ValentãoP. KornienkoA. PereiraD.M. AndradeP.B. GomesN.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets.Mar. Drugs201917632910.3390/md17060329 31159480
    [Google Scholar]
  145. WangE. SorollaM.A. Gopal KrishnanP.D. SorollaA. From seabed to bedside: A review on promising marine anticancer compounds.Biomolecules202010224810.3390/biom10020248 32041255
    [Google Scholar]
  146. WengW. GoelA. Curcumin and colorectal cancer: An update and current perspective on this natural medicine.Semin. Cancer Biol.202280738610.1016/j.semcancer.2020.02.011 32088363
    [Google Scholar]
  147. MiyataY. ShidaY. HakariyaT. SakaiH. Anti-cancer effects of green tea polyphenols against prostate cancer.Molecules201924119310.3390/molecules24010193 30621039
    [Google Scholar]
  148. DybkowskaE. SadowskaA. ŚwiderskiF. RakowskaR. WysockaK. The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review.Rocz. Panstw. Zakl. Hig.2018691514 29517181
    [Google Scholar]
  149. KapałaA. SzlendakM. MotackaE. The anti-cancer activity of lycopene: A systematic review of human and animal studies.Nutrients20221423515210.3390/nu14235152 36501182
    [Google Scholar]
  150. DhankarS. GargN. ChauhanS. SainiM. A bird view on the role of graphene oxide nanosystems in therapeutic delivery.Curr. Nanosci.20242011110.2174/0115734137299120240312044808
    [Google Scholar]
  151. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. BeniwalS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.202412428929910.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  152. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  153. SharmaH. MahajanS. GargN. ChauhanS. SainiM. SinghT.G. DhankharS. MittalP. AI-powered solutions for casualty assessment in drug safety and patient care.Emir. Med. J.20245e0250688231385510.2174/0102506882313855240809064836
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072350397241202044759
Loading
/content/journals/cbc/10.2174/0115734072350397241202044759
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; antioxidant; aplidine; Cancer; vinblastine; vincristine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test