Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Several natural phytomedicines derived from Chinese herbs demonstrate a wide range of pharmacological effects. (WT) is a small deciduous tree known as sweet indrajao. It belongs to the Apocynaceae family. Many diseases have been treated with this plant's phytoconstituents, such as skin disorders, dysenteric, diarrhea, and hair treatments. In addition, the therapeutic elements of WT demonstrate significant anti-inflammatory and anti-dandruff properties. However, there is a difference between this plant's preclinical and clinical significance. The purpose of this study is to collect and evaluate the various chemical, medicinal, and pharmacological characteristics of WT in relation to multiple disorders using preclinical evidence. This will serve as a valuable foundation for researchers to explore its effectiveness in clinical trials further.

Materials and Methods

A comprehensive search was conducted across several databases, including PubMed, Web of Science, Scopus, Academic Journals Embase, Google Scholar, and Science Direct. The search utilized specific keywords such as “” as well as terms like “Traditional Chinese Medicine”, “Pharmacological activities”, “Anti-cancer”, “Anti-viral”, “Anti-microbial”, “Anti-psoriatic”, “Anti-Inflammatory”, “Quercetin” and their combinations mainly from 1993 to 2024.

Results

The pharmacological and therapeutic potential of WT is gathered and summarized based on existing research reports. WT substances consist of various phytoconstituents, including flavonoids, steroids, alkaloids, volatile oils, esters, and others. These components are primarily responsible for the various pharmacological effects of WT, such as anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic, anti-cancer, anti-microbial, anti-inflammatory, and anti-ulcer effects.

Conclusion

This review focuses on current research findings regarding WT's therapeutic potential and pharmacological activities. Additionally, it addresses the major safety and toxicity issues related to WT.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347358240920082453
2024-09-27
2026-01-01
Loading full text...

Full text loading...

References

  1. LiX. HuL. NaeemA. XiaoS. YangM. ShangH. ZhangJ. Neutrophil extracellular traps in tumors and potential use of traditional herbal medicine formulations for its regulation.Int. J. Nanomedicine2024192851287710.2147/IJN.S449181 38529365
    [Google Scholar]
  2. WangS. LiuW. WeiB. WangA. WangY. WangW. GaoJ. JinY. LuH. KaY. YueQ. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis.J. Ethnopharmacol.202433011818210.1016/j.jep.2024.118182
    [Google Scholar]
  3. LiXiang LiuZiqi LiaoJie ChenQian LuXiaoyan Fan, Xiaohui Network pharmacology approaches for research of traditional chinese medicines.Chin. J. Nat. Med.202321523332
    [Google Scholar]
  4. HanY. SunH. ZhangA. YanG. WangX. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines.Pharmacol. Ther.202021610768010.1016/j.pharmthera.2020.107680 32956722
    [Google Scholar]
  5. LiH. WeiW. XuH. Drug discovery is an eternal challenge for the biomedical sciences.Acta Materia Med.2022111310.15212/AMM‑2022‑1001
    [Google Scholar]
  6. YagüeE. SunH. HuY. East Wind, West Wind: Toward the modernization of traditional chinese medicine.Front. Neurosci.202216105781710.3389/fnins.2022.1057817 36440293
    [Google Scholar]
  7. SaxenaD. JainM. Multifaceted analysis of Wrightia tinctoria: Extraction, physicochemical profiling, and phytochemical exploration.World J. Adv. Res. Rev.202422370470910.30574/wjarr.2024.22.3.1773
    [Google Scholar]
  8. AmuthaE. SivakavinesanM. RajaduraipandianS. AnnaduraiG. Identification of phytochemicals capping the biosynthesized silver nanoparticles by Wrightia tinctoria and evaluation of their in vitro antioxidant, antibacterial, antilarvicidal, and catalytic activities.Emergent Mater.20236252553410.1007/s42247‑022‑00422‑7
    [Google Scholar]
  9. S, S.; Hari, A.; Pattam, S.; Nihal, P.; Athira, A. An updated review on Wrightia tinctoria (Roxb). R Br.J. Pharm. Res. Int.20213356A23424410.9734/jpri/2021/v33i56A33906
    [Google Scholar]
  10. SajithaM. SubramaniK. Chemical investigation of Wrightia tinctoria.Nat. Prod. Chem. Res.20175829610.4172/2329‑6836.1000296
    [Google Scholar]
  11. AngL.F. YamM.F. FungY.T.T. KiangP.K. DarwinY. HPLC method for simultaneous quantitative detection of quercetin and curcuminoids in traditional chinese medicines.J. Pharmacopuncture2014174364910.3831/KPI.2014.17.035 25780718
    [Google Scholar]
  12. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.194044 28082789
    [Google Scholar]
  13. LiH. TanL. ZhangJ.W. ChenH. LiangB. QiuT. LiQ.S. CaiM. ZhangQ.H. Quercetin is the active component of yang-yin-qing-fei-tang to induce apoptosis in non-small cell lung cancer.Am. J. Chin. Med.201947487989310.1142/S0192415X19500460 31179723
    [Google Scholar]
  14. WuR. ZhouT. XiongJ. ZhangZ. TianS. WangY. ChenJ. TianX. Quercetin, the ingredient of xihuang pills, inhibits hepatocellular carcinoma by regulating autophagy and macrophage polarization.Front. Biosci.2022271232310.31083/j.fbl2712323 36624942
    [Google Scholar]
  15. SrivastavaR. A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: Adulterant of kurchi.Pharmacogn. Rev.2014815364410.4103/0973‑7847.125528 24600194
    [Google Scholar]
  16. JannatT. HossainM.J. El-ShehawiA.M. KuddusM.R. RashidM.A. AlbogamiS. JafriI. El-ShazlyM. HaqueM.R. Chemical and pharmacological profiling of Wrightia coccinea (Roxb. Ex Hornem.) sims focusing antioxidant, cytotoxic, antidiarrheal, hypoglycemic, and analgesic properties.Molecules20222713402410.3390/molecules27134024
    [Google Scholar]
  17. PaiK.S.R. ChaudharyS. DevkarR.A. BhereD. SettyM.M. Selective cytotoxicity and pro-apoptotic activity of stem bark of Wrightia tinctoria (Roxb.) R. Br. in cancerous cells.Pharmacogn. Mag.20151144Suppl. 348110.4103/0973‑1296.168976 26929585
    [Google Scholar]
  18. KaleN. RathodS. MoreS. ShindeN. Phyto-pharmacological profile of Wrightia tinctoria 202111430130810.52711/2231‑5659.2021.00047
    [Google Scholar]
  19. KumarD. ChauhanD.K. Seedling morphology of two important medicinal plant species of Wrightia R. Br. (Apocynaceae) and its taxonomic significance.Seedling2016462157162
    [Google Scholar]
  20. SathyaE. MuthukumarT. SekarT. Comparative vegetative anatomy of Wrightia tinctoria R.Br. and the endemic Wrightia indica ngan (Apocynaceae Juss.) occurring in Peninsular India.Flora (Jena)202229015204310.1016/j.flora.2022.152043
    [Google Scholar]
  21. ChakravartiB. MauryaR. SiddiquiJ.A. BidH.K. RajendranS.M. YadavP. KonwarR. In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: Role of pro-apoptotic effects of oleanolic acid and urosolic acid.J. Ethnopharmacol.20121421727910.1016/j.jep.2012.04.015
    [Google Scholar]
  22. ParkJ.S. RehmanI.U. ChoeK. AhmadR. LeeH.J. KimM.O. A triterpenoid lupeol as an antioxidant and anti-neuroinflam] matory agent: Impacts on oxidative stress in Alzheimer’s disease.Nutrients20231513305910.3390/nu15133059 37447385
    [Google Scholar]
  23. YangL. LiX. HuangW. RaoX. LaiY. Pharmacological properties of indirubin and its derivatives.Biomed. Pharmacother.202215111311210.1016/j.biopha.2022.113112 35598366
    [Google Scholar]
  24. GaneshpurkarA. SalujaA.K. The pharmacological potential of rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.025 28344465
    [Google Scholar]
  25. RaviL. KumarK. A.; G R, S.K.; Mathew, J.; S, H.; Panda, M.; S, S.; Paul, A.; Ts, C.; Anil, A.; J K, M.; Mukherjee, T.; Bhattacharjee, S.; Raveendran Nair, M.; v, S.; v, M.; Jain, P. Behenic acid as a multi-target inhibiting antibacterial phytochemical against Vibrio parahaemolyticus and Aeromonas hydrophila for effective management of aquaculture infections: An in-silico, in-vitro & in-vivo experimentation.J. Biomol. Struct. Dyn.202411610.1080/07391102.2024.2317988 38353487
    [Google Scholar]
  26. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  27. RaviL. KrishnanK. Research article cytotoxic potential of N-hexadecanoic acid extracted from kigelia pinnata leaves.Asian J Cell Biol2016121202710.3923/ajcb.2017.20.27
    [Google Scholar]
  28. Venn-WatsonS.K. ButterworthC.N. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems.PLoS One2022175e026877810.1371/journal.pone.0268778 35617322
    [Google Scholar]
  29. BakrimS. BenkhairaN. BouraisI. BenaliT. LeeL.H. El OmariN. SheikhR.A. GohK.W. MingL.C. BouyahyaA. Health benefits and pharmacological properties of stigmasterol.Antioxidants20221110191210.3390/antiox11101912 36290632
    [Google Scholar]
  30. NazirS. ChaudharyW.A. MobasharA. AnjumI. HameedS. AzharS. Campesterol: A natural phytochemical with anti inflammatory properties as potential therapeutic agent for rheumatoid arthritis: A systematic review: Campesterol: A natural phytochemical.Pak J. Health Sci.20234510.54393/pjhs.v4i05.792
    [Google Scholar]
  31. NogueiraA.O. OliveiraY.I.S. AdjafreB.L. de MoraesM.E.A. AragãoG.F. Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: A literature review.Fundam. Clin. Pharmacol.201933141210.1111/fcp.12402 30003594
    [Google Scholar]
  32. NguyenV. TaineE.G. MengD. CuiT. TanW. Chlorogenic AcidW. Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials.Nutrients202416792410.3390/nu16070924 38612964
    [Google Scholar]
  33. MomhaR. Synthesis and beneficials effects of glycerol derivativesPreprints2024202407017010.20944/preprints202407.0170.v1
    [Google Scholar]
  34. MüllerC. HankE. GieraM. BracherF. Dehydrocholesterol reductase 24 (DHCR24): Medicinal chemistry, pharmacology and novel therapeutic options.Curr. Med. Chem.202229234005402510.2174/0929867328666211115121832 34781860
    [Google Scholar]
  35. AlotaibiB.S. WaqasM.K. SaleemS. YasinH. KharabaZ. MurtazaG. Rheumatoid arthritis treatment potential of stearic acid nanoparticles of quercetin in rats.ACS Omega2024967003701110.1021/acsomega.3c08870 38371835
    [Google Scholar]
  36. FarzanM. FarzanM. ShahraniM. NavabiS.P. VardanjaniH.R. Amini-KhoeiH. ShabaniS. Neuroprotective properties of betulin, betulinic acid, and ursolic acid as triterpenoids derivatives: A comprehensive review of mechanistic studies.Nutr. Neurosci.202427322324010.1080/1028415X.2023.2180865 36821092
    [Google Scholar]
  37. CastellanoJ.M. Ramos-RomeroS. PeronaJ.S. Oleanolic acid: Extraction, characterization and biological activity.Nutrients202214362310.3390/nu14030623 35276982
    [Google Scholar]
  38. PabiśS. KulaJ. Synthesis and bioactivity of (R)-Ricinoleic acid derivatives: A review.Curr. Med. Chem.201623354037405610.2174/0929867323666160627104453 27356539
    [Google Scholar]
  39. ThanhL.N. ThoaH.T. OanhN.T.T. GiapT.H. QuyenV.T. HaN.T.T. PhuongD.T.L. LienN.T.P. HangN.T.M. Cycloartane triterpenoids and biological activities from the propolis of the stingless bee Lisotrigona furva.Vietnam J. Chem.202159442643010.1002/vjch.201900143
    [Google Scholar]
  40. NandiS. NagA. KhatuaS. SenS. ChakrabortyN. NaskarA. AcharyaK. CalinaD. Sharifi-RadJ. Anticancer activity and other biomedical properties of β‐sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches.Phytother. Res.202438259261910.1002/ptr.8061 37929761
    [Google Scholar]
  41. ReddyY. VenkateshS. RavichandranT. MuruganV. SureshB. Antinociceptive activity of Wrightia tinctoria bark.Fitoterapia200273542142310.1016/S0367‑326X(02)00126‑0 12165341
    [Google Scholar]
  42. BigoniyaP. RanaA.C. Absence of central activity in Wrightia tinctoria bark ethanolic extract.J. Pharm. Negat. Results201012515410.4103/0976‑9234.75705
    [Google Scholar]
  43. TomarR. KumarR. JagannadhamM.V. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: Purification and biochemical properties.J. Agric. Food Chem.20085641479148710.1021/jf0726536 18220346
    [Google Scholar]
  44. KannanP. ShanmugavadivuB. PetchiammalC. HopperW. In vitro antimicrobial activity of Wrightia tinctoria leaf extracts against skin microorganisms.Acta Bot. Hung.2006483-432332910.1556/ABot.48.2006.3‑4.7
    [Google Scholar]
  45. van RooijenM. MensinkR. Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk Markers. A systematic review.Nutrients202012361510.3390/nu12030615 32111040
    [Google Scholar]
  46. JainP.S. BariS.B. Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria.Asian J. Plant Sci.20109316316710.3923/ajps.2010.163.167
    [Google Scholar]
  47. OmerA. KazmiW.W. RahimipetroudiI. SyedM.W. RashidK. YangJ.B. LeeI.G. DongS.K. Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen.Renew. Energy2023219211955210.1016/j.renene.2023.119552
    [Google Scholar]
  48. RamchandraP. BasheermiyaM. KrupadanamG.L.D. SrimannarayanaG. Wrightial, a new terpene from Wrightia tinctoria.J. Nat. Prod.199356101811181210.1021/np50100a022
    [Google Scholar]
  49. LiuK. ZhangX. XieL. DengM. Chen, Hui; Song, Ji; Long, Ji; Li, Xia; Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacyPharmacological Research202116410537310.1016/j.phrs.2020.105373
    [Google Scholar]
  50. BigoniyaP. RanaA.C. Effect of subacute exposure of Wrightia tinctoria Bark extract on haematological biochemical and antioxidant enzyme parameters of rat.Pharmacogn. Mag.200952037238010.4103/0973‑1296.58569
    [Google Scholar]
  51. NaveedM. HejaziV. AbbasM. KambohA.A. KhanG.J. ShumzaidM. XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research.Biomedicine & Pharmacotherapy201897677410.1016/j.biopha.2017.10.064
    [Google Scholar]
  52. Ala-JaakkolaR. LaitilaA. OuwehandA.C. LehtorantaL. Role of D-mannose in urinary tract infections. A narrative review.Nutr. J.20222111810.1186/s12937‑022‑00769‑x 35313893
    [Google Scholar]
  53. XiaoM. XuJ. WangW. ZhangB. LiuJ. LiJ. XuH. ZhaoY. YuX. ShiS. Functional significance of cholesterol metabolism in cancer: From threat to treatment.Exp. Mol. Med.20235591982199510.1038/s12276‑023‑01079‑w 37653037
    [Google Scholar]
  54. RaoJ.K. Seetharami ReddiT.V.V. KumarO.A. Ethanobotany of stem bark of certain plants of Visakha patnam district.Andhra Pradesh Current Botany20112516
    [Google Scholar]
  55. SinghB. GuptaV. BansalP. SinghR. KumarD. Pharmacological potential of plant used as aphrodisiacs.Int. J. Pharm. Sci. Rev. Res.201051104113
    [Google Scholar]
  56. NagaraniB. DebnathS. KumarS.C. BhattacharjeeC. KumarG.G. A review: Herbs used as anticancer agents.IRJP2011212024
    [Google Scholar]
  57. RajuA.J.U. ZafarR. RaoS.P. Floral device for obligate selfing by remote insect activity and anemochory in Wrightia tinctoria (Roxb.) R.Br. (Apocynaceae).Curr. Sci.200588913781380
    [Google Scholar]
  58. OgunmefunO.T. OgunojemiteO.A. AdedokunO.A. OlagbemideP.T. KehindeI.O. SolimanM.E. β-amyrin and benzene-1, 2, 4-trimethyl from Euphorbia hirta L. and Nauclea latifolia (Smith) leaves induce dauer diapause via antagonist inhibition of daf-12 receptor. And Nauclea latifolia (Smith) leaves induce dauer diapause via antagonist inhibition of daf-12 receptor.Trop. J. Nat. Prod. Res.202377https://ssrn.com/abstract=433221110.2139/ssrn.4332211
    [Google Scholar]
  59. SunQ. HeM. ZhangM. ZengS. ChenL. ZhouL. XuH. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model.Fitoterapia202014710473510.1016/j.fitote.2020.104735 33010369
    [Google Scholar]
  60. RaoP.S. Maheswar RaoG. SatyanarayanaV.V.V. Rooting of stem cuttings of Wrightia tinctoria (Roxb.) R.Br: An important medicinal plant.Indian For.19991254427428
    [Google Scholar]
  61. SureshD.R. HegdeG.V. GaneshK.B. Vegetative propagation of Wrightia tinctoria R.Br. - An important multipurpose tree.Indian For.20041308950952
    [Google Scholar]
  62. BansalK. BhatiH. Vanshita BajpaiM. Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: An evidence-based reviewPharmacol Res - Mod Chin Med.20241010040310.1016/j.prmcm.2024.100403
    [Google Scholar]
  63. SinghN.K. BhushanB. AgrahariY. An overview on the phytochemical and therapeutic potential of Calotropis procera.Pharmacol. Res. Mod. Chin. Med.20241110044110.1016/j.prmcm.2024.100441
    [Google Scholar]
  64. ManA.M. OrăsanM.S. HoteiucO.A. Olănescu-Vaida-VoevodM.C. MocanT. Inflammation and psoriasis: A comprehensive review.Int. J. Mol. Sci.202324221609510.3390/ijms242216095 38003284
    [Google Scholar]
  65. SpD. RajB.A. MurugananthamN. TkP. PsR. Screening of Wrightia tinctoria leaves for Antipsoriatic activity.Hygeia J. D. Med.201241http://www.researcherid.com/rid/C-4956-2012
    [Google Scholar]
  66. SinghD. RawatS. RiyalN. AmanS. KhulbeP. Determining anti-psoriatic activity of salicylic acid and Wrightia tinctoria herb using extemporaneous formulation.SGVU J. Pharm. Res. Educ.201942388396http://www.gyanvihar.org/researchjournals/
    [Google Scholar]
  67. KumarA. GangwarR. Ahmad ZargarA. KumarR. SharmaA. Prevalence of diabetes in India: A review of IDF diabetes atlas 10th edition.Curr Diabetes Rev.202420110511410.2174/1573399819666230413094200
    [Google Scholar]
  68. RaniM.S. PippallaR.S. MohanG.K. GangarajuM. Anti-diabetic activity of methanolic and ethyl acetate extracts of Wrightia tinctoria R.Br.fruit.Int. J. Pharm. Sci. Res.2012201210101310.13040/IJPSR.0975‑8232.3(10).3861‑66
    [Google Scholar]
  69. ShruthiA. LathaK.P. VagdeviH.M. PushpaB. ShwethaC. Anti-diabetic activity of the leaves extracts of Wrightia tinctoria on alloxan induced diabetic rats.J. Chem. Pharm. Res.2012463125-3128.www.jocpr.com
    [Google Scholar]
  70. KumarS. KunaparajuN. ZitoS.W. BarlettaM.A. Effect of Wrightia tinctoria and parthenocissus quinquefolia on blood glucose and insulin levels in the zucker diabetic rat model.J. Complement. Integr. Med.20118111210.2202/1553‑3840.1538 22754929
    [Google Scholar]
  71. AlexanderR. KhajaA. DebiecN. FazioliA. TorranceM. RazzaqueM.S. Health-promoting benefits of lentils: Anti-inflammatory and anti-microbial effects.Curr. Res. Physiol.2024710012410.1016/j.crphys.2024.100124 38501131
    [Google Scholar]
  72. DurgeA.A. DongreU. MoonU.R. Antimicrobial activity of silver nanoparticles synthesized from Wrightia tinctoria fruit extracts.Environ. Conserv. J.2024251162110.36953/ECJ.26582638
    [Google Scholar]
  73. HaniffaM.A. SheelaP.J. MiltonM.J. De BrittoJ.O.H.N. In vitro and in vivo antimicrobial effects of Wrightia tinctoria (Roxb) R. BR. Against epizootic ulcerative syndrome in channa striatus.Int. J. Pharm. Pharm. Sci.201353219222
    [Google Scholar]
  74. SridharS. KamalakannanP. ElamathiR. DeepaT. KavithaR. Studies on antimicrobial activity, physio-chemical and phytochemical analysis of Wrightia tinctoria R.Br. IJPRD201138139144
    [Google Scholar]
  75. ThangarajV. Pharmacognostical and antimicrobial studies on the leaf of Wrightia tinctoria Br.Int J Pharm Tech20135153265336http://www.ijptonline.com/wp-content/uploads/2013/04/5326-5336
    [Google Scholar]
  76. PrayogaD. AulifaD. BudimanA. LevitaJ. Plants with anti-ulcer activity and mechanism: A review of preclinical and clinical studies.Drug Des. Devel. Ther.20241819321310.2147/DDDT.S446949 38318501
    [Google Scholar]
  77. DivakarM.C. DeviS.L. Antiulcer activity of Wrightia tinctoria (Roxb.).R. Br. Der Pharmacia Sinica201122355360https://api.semanticscholar.org/CorpusID:56222837
    [Google Scholar]
  78. KumarM. MahmoodS. ChopraS. BhatiaA. Biopolymer based nanoparticles and their therapeutic potential in wound healing. A review.Int. J. Biol. Macromol.2024267Pt 213133510.1016/j.ijbiomac.2024.131335 38604431
    [Google Scholar]
  79. VeerapurV.P. PalkarM.B. SrinivasaH. KumarM.S. PatraS. RaoP.G.M. SrinivasanK.K. The effect of ethanol extract of Wrightia tinctoria bark on wound healing in rats.J. Nat. Rem.200442155159https://www.scopus.com/inward/record.uri?eid=2-s2.0-9744219706&partnerID=40&md5=ce09822de540b7905068e5eb1f7a8c81
    [Google Scholar]
  80. YariswamyM. ShivaprasadH. V. JoshiVikram Nanjaraj UrsA. N. NatarajuA. VishwanathB. S. Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice.J. Ethnopharmacol.2013149137738310.1016/j.jep.2013.06.056
    [Google Scholar]
  81. MeenuC. ManokariL. Analysis of phytochemical constituents and antibacterial activity of Wrightia tinctoria: Traditional medicinal plant of India for application on wound dressing materials.Indian J. Tradit. Knowl.20222114854
    [Google Scholar]
  82. MittalR. SharmaS. KushwahA.S. YaqoobO. Kumari,] D. A Comprehensive review on the anti-inflammatory activity] of chalconesderived moieties.Curr. Tradit. Med.2024101e01032321418510.2174/2215083809666230301085620
    [Google Scholar]
  83. AleykuttyN.A. BinduA.R. SangeethaS. JiljitG. Evaluation of anti-inflammatory and analgesic activity of Wrightia tinctoria leaves.J. Biol. Act. Prod. Nat.201111334110.1080/22311866.2011.10719071
    [Google Scholar]
  84. TharkarP.R. TatiyaA.U. SuranaS.J. BhajipaleN.S. Anti-inflammatory study of Wrightia tinctoria R.Br stems bark in experimental animal models.Int. J. Pharm. Tech. Res.2010224342437
    [Google Scholar]
  85. PatilN.V. BhosaleA.V. UbaleM.B. Anti-inflammatory activity of leaves extract of Wrightia tinctoria on carrageenan induced paw oedema in rats.Int. J. Pharmacol. Biol. Sci.2013714346
    [Google Scholar]
  86. ChristalinB. BesatiM. Christelle NadiaN.A. YaghoobiM. CédricY. CianciaC. Abdel AziziM. Guy-ArmandG.N. Khan PayneV. HuH. In Vitro anthelmintic activities of khaya anthotheca and faidherbia albida extracts used in chad by traditional healers for the treatment of helminthiasis and In Silico study of phytoconstituents.J. Trop. Med.202420241856416310.1155/2024/8564163 38974476
    [Google Scholar]
  87. RajalakshmiG.R. HarindranJ. In vitro anthelmintic activity of Wrightia tinctoria. In Vitro 201352308310
    [Google Scholar]
  88. ShruthiA. LathaK.P. VagdeviH.M. VaidyaV.P. PushpaB.S. In vitro anthelmintic activity of leaves extract of Wrightia tinctoria.Int. J. Chem Tech Res.2010220432045
    [Google Scholar]
  89. ChenC. LongL. ZhangF. ChenQ. ChenC. YuX. LiuQ. BaoJ. LongZ. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum.PLoS One2018133e019428410.1371/journal.pone.0194284 29543859
    [Google Scholar]
  90. PonnusamyK. PetchiammalC. MohankumarR. HopperW. In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R.Br. J. Ethnopharmacol.2010132134935410.1016/j.jep.2010.07.050
    [Google Scholar]
  91. DevikaK.V. SabarinathanT. ShamalaS. Antifungal Efficacy of Wrightia tinctoria (Roxb.) R.Br on Candida Species Isolated from the Oral Cavity: An in vitro study.J. Orofac. Sci.2021131677210.4103/jofs.jofs_284_20
    [Google Scholar]
  92. Gbemisayo AbbasA. AjiboyeO.B. AdelekeP.A. AjayiA.M. OkubenaO. UmukoroS. Polyphenol-rich Sorghum bicolor supplement exhibits anti-nociceptive activity and protective effects against pathological changes associated with complete Freund’s adjuvant induced arthritis in rodents.Pharmacol. Res. Mod. Chin. Med.20241210048110.1016/j.prmcm.2024.100481
    [Google Scholar]
  93. Al-MomaniH. MassadehM.I. AlmasriM. Al BalawiD. AolymatI. HamedS. AlbissB.A. IbrahimL. BalawiH.A. Al Haj MahmoudS. Anti-bacterial activity of green synthesised silver and zinc oxide nanoparticles against Propionibacterium acnes.Pharmaceuticals.202417225510.3390/ph17020255 38399471
    [Google Scholar]
  94. MeenuN. Ca.; Manokari, S. La.; Yogeswari, Gb.; Duraisami, R. Analysis of phytochemical constituents and antibacterial activity of Wrightia tinctoria: Traditional medicinal plant of India for application on wound dressing materials.Int. J. Tradit. Complement. Med.2022211485410.56042/ijtk.v21i1.28765
    [Google Scholar]
  95. Ravi ShankarS. RangarajanR. SaradaD.V.L. Sreenath KumarC. Evaluation of antibacterial activity and phytochemical screening of wrightia tinctoria L.Pharmacogn. J.2010214192210.1016/S0975‑3575(10)80066‑5
    [Google Scholar]
  96. SathianarayananS. Jose; Rajan, A.; Baby, D.; John, V. K.; Madhu, M. Phytochemical investigations and antibacterial activity of chloroform extract of leaves of Wrightia tinctoria.Biomed2010512630
    [Google Scholar]
  97. LeongY.K. ChangJ.S. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities.Trends Food Sci. Technol.202414510435210.1016/j.tifs.2024.104352
    [Google Scholar]
  98. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-Cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms24032952 36769274
    [Google Scholar]
  99. ChaudharyS. SettyM.M. PaiK.S.R. Anticancer activity of stem bark extract and fractions of Wrightia tinctoria in transplantable tumors in mice.Adv. Sci. Lett.20172331995200010.1166/asl.2017.8540
    [Google Scholar]
  100. JainR. JainS.K. Screening of in vitro cytotoxic activity of some medicinal plants used traditionally to treat cancer in chhattisgarh state, india.Asian Pac. J. Trop. Biomed.201112S147S15010.1016/S2221‑1691(11)60144‑5
    [Google Scholar]
  101. AntonyJ. SaikiaM. v, V.; Nath, L.R.; Katiki, M.R.; Murty, M.S.R.; Paul, A.; A, S.; Chandran, H.; Joseph, S.M.; S, N.K.; Panakkal, E.J.; v, S.I.; v, S.I.; Ran, S.; S, S.; Rajan, E.; Anto, R.J. DW-F5: A novel formulation against malignant melanoma from Wrightia tinctoria.Sci. Rep.2015511110710.1038/srep11107 26061820
    [Google Scholar]
  102. KeshriG. KumarS. KulshreshthaD.K. RajendranS.M. SinghM.M. Postcoital interceptive activity of Wrightia tinctoria in Sprague–Dawley rats: A preliminary study.Contraception200878326627010.1016/j.contraception.2008.03.016 18692619
    [Google Scholar]
  103. ChattopadhyayS. RoyP. MandalD. A review on Cucumis sativus L. and its anti-ulcer activity.J. Res. Appl. Sci. Biotechnol.20232120120310.55544/jrasb.2.1.29
    [Google Scholar]
  104. DivakarM.C. DeviS.L. Antiulcer activity of Wrightia tinctoria (Roxb.).R.Br. Der Pharm Sin.20112355360
    [Google Scholar]
  105. BigoniyaP. Evaluation of the antiulcer activity of hydro-alcoholic extract of Wrightia tinctoria bark in experimentally induced acute gastric ulcers on rat.J. Nat. Prod. Med.2006103640
    [Google Scholar]
  106. BigoniyaP. RanaA.C. Antidiarrheal and antispasmodic activity of Wrightia tinctoria bark and its steroidal alkaloid fraction, medicine.Environ. Sci.20093298310
    [Google Scholar]
  107. WangQ. WangJ. LiM. LiuY. GaoL. Structural characterization and anti-oxidant activity of polysaccharide HVP-1 from volvariella volvacea.Int. J. Biol. Macromol.2024261Pt 112967210.1016/j.ijbiomac.2024.129672 38278397
    [Google Scholar]
  108. MohanS. ThangavelM.K.S. Characterization of the phytochemicals and antioxidant properties of extracts From Wrightia tinctoria R.Br. J. Adv. Zool.202445371872510.53555/jaz.v45i3.4433
    [Google Scholar]
  109. JesyJ. JoseB. Antitumour and antioxidant activity of wrightia tinctoria (Roxb.) R. Br. leaf oilIJPSR20178114899490310.13040/IJPSR.0975‑8232.8(11).4899‑03
    [Google Scholar]
  110. ZhuF. XuW. WangW. LiaoJ. HuangY. HuangX. QinQ. Taurochenodeoxycholic acid exerts anti-viral activities upon SGIV infection via anti-inflammatory response.Aquaculture202457874012410.1016/j.aquaculture.2023.740124
    [Google Scholar]
  111. SelvamP. MurugeshN. WitvrouwM. KeyaertsE. NeytsJ. Studies of antiviral activity and cytotoxicity of Wrightia tinctoria and Morinda citrifolia.Indian J. Pharm. Sci.200971667067210.4103/0250‑474X.59550 20376221
    [Google Scholar]
  112. LakshmiD.S. DivakarM.C. Toxicological profiles of the leaf extracts of Wrightia arborea and Wrightia tinctoria.Hygeia JD Med201024653
    [Google Scholar]
  113. JainP.S. BariS.B. SuranaS.J. Acute oral toxicity of Abelmoschus manihot and Wrightia tinctoria in mice.Phcog J2011325788110.5530/pj.2011.25.14
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072347358240920082453
Loading
/content/journals/cbc/10.2174/0115734072347358240920082453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test