Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Tetrazole-based compounds are of significant interest due to their potential pharmacological applications. The current study focuses on the synthesis and analysis of such a compound.

Objective

This research aims to synthesize the title compound N-(3-methyl-1-phenyl-2-(1H-tetrazol-1-yl) butyl) acetamide, analyze its crystal structure, perform computational studies, and evaluate its potential pharmacological activities and it’s and supports, specifically antidiabetic and anti-inflammatory properties.

Methods

The title compound, CHNO, was synthesized, and its crystal structure was confirmed using single-crystal X-ray diffraction analysis by default parameters. Density Functional Theory (DFT) calculations were performed using the Gaussian 09W software package with the B3LYP/6-311++G (d,p) method to optimize the compound's structure and calculate its HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP), and Mulliken charge distribution. , antidiabetic and anti-inflammatory activities were assessed and compared with standard drugs by using reported protocols. Additionally, molecular docking studies were conducted with enzymes related to diabetes and inflammation with default parameters, and Auto-Dock 4.2 software was used.

Results

The X-ray diffraction analysis confirmed the crystal structure, and the Density Functional Theory (DFT) calculations provided insights into the molecular properties of the compound. Molecular docking experiments with relevant enzymes further supported the significant antidiabetic and anti-inflammatory activities demonstrated in the tests.

Conclusion

The synthesized tetrazole-based compound exhibits promising antidiabetic and anti-inflammatory activities, supported by both experimental and theoretical studies, suggesting its potential for further pharmacological investigation.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072343177241101103244
2024-11-07
2025-12-17
Loading full text...

Full text loading...

References

  1. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  2. DanielsD.L. RichingK.M. UrhM. Monitoring and deciphering protein degradation pathways inside cells.Drug Discov. Today. Technol.201931616810.1016/j.ddtec.2018.12.001 31200861
    [Google Scholar]
  3. ScottD.E. BaylyA.R. AbellC. SkidmoreJ. Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge.Nat. Rev. Drug Discov.201615853355010.1038/nrd.2016.29 27050677
    [Google Scholar]
  4. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances20201072442474431110.1039/D0RA09198G 35557843
    [Google Scholar]
  5. KleemannA. Engel, J. Pharmaceutical substances: Syntheses, patents, applications. of the Most Relevant APIs.3rd edNew York, NY, USAThieme Medical1999
    [Google Scholar]
  6. JawadA.A. JberN.R. RasoolB.S. AbbasA.K. Tetrazole derivatives and role of tetrazole in medicinal chemistry: An article review.Al-Nahrain J. Sci.20232611710.22401/ANJS.26.1.01
    [Google Scholar]
  7. WeiC.X. BianM. GongG.H. Tetrazolium compounds: Synthesis and applications in medicine.Molecules20152045528555310.3390/molecules20045528 25826789
    [Google Scholar]
  8. ElwoodJ.M.L. HenryM.C. Lopez-FernandezJ.D. MowatJ.M. BoyleM. BuistB. LivingstoneK. JamiesonC. Functionalized tetrazoles as latent active esters in the synthesis of amide bonds.Org. Lett.202224519491949610.1021/acs.orglett.2c03971 36524745
    [Google Scholar]
  9. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus.1999Available from: https://iris.who.int/handle/10665/66040
  10. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology (Basel)20209925210.3390/biology9090252 32872226
    [Google Scholar]
  11. KayJ. ThadhaniE. SamsonL. EngelwardB. Inflammation-induced DNA damage, mutations and cancer.DNA Repair (Amst.)20198310267310.1016/j.dnarep.2019.102673 31387777
    [Google Scholar]
  12. PlewczynskiD. ŁaźniewskiM. AugustyniakR. GinalskiK. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database.J. Comput. Chem.201132474275510.1002/jcc.21643 20812323
    [Google Scholar]
  13. EnglebienneP. MoitessierN. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins?J. Chem. Inf. Model.20094961568158010.1021/ci8004308 19445499
    [Google Scholar]
  14. WarrenG.L. AndrewsC.W. CapelliA.M. ClarkeB. LaLondeJ. LambertM.H. LindvallM. NevinsN. SemusS.F. SengerS. TedescoG. WallI.D. WoolvenJ.M. PeishoffC.E. HeadM.S. A critical assessment of docking programs and scoring functions.J. Med. Chem.200649205912593110.1021/jm050362n 17004707
    [Google Scholar]
  15. HuangQ. LiL.L. YangS.Y. PhDD: A new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility.J. Mol. Graph. Model.201028877578710.1016/j.jmgm.2010.02.002 20206562
    [Google Scholar]
  16. JacobssonM. KarlénA. Ligand bias of scoring functions in structure-based virtual screening.J. Chem. Inf. Model.20064631334134310.1021/ci050407t 16711752
    [Google Scholar]
  17. GeethaS. Yuva PriyaM.K. ChandralekhaK. ThennarasuS. LakshmiS.N -[3-Methyl-1-phenyl-1-(1 H -tetrazol-1-yl)butan-2-yl]acetamide.IUCrdata2016111x16181010.1107/S2414314616018101
    [Google Scholar]
  18. Al-ZuhairS. DowaidarA. KamalH. Inhibitory effect of dates-extract on α-Amylase and α-glucosidase enzymes relevant to non-insulin dependent diabetes mellitus.J. Biochem. Technol.201022158160
    [Google Scholar]
  19. NithyabalajiR. KrishnanH. SubhaJ. SribalanR. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides.J. Mol. Struct.2020120412756310.1016/j.molstruc.2019.127563
    [Google Scholar]
  20. KansızS. DegeN. Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co(II) coordination polymer.J. Mol. Struct.20181173425110.1016/j.molstruc.2018.06.071
    [Google Scholar]
  21. SheldrickG.M. Crystal structure refinement with SHELXL.Acta Crystallogr. C Struct. Chem.20157113810.1107/S2053229614024218 25567568
    [Google Scholar]
  22. UsónI. SheldrickG.M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features.Acta Crystallogr. D Struct. Biol.201874210611610.1107/S2059798317015121 29533236
    [Google Scholar]
  23. SheldrickG.M. SchneiderT.R. [16] SHELXL: High-resolution refinementMethods in enzymologyAcademic Press199727731934310.1016/S0076‑6879(97)77018‑6
    [Google Scholar]
  24. FarrugiaL.J. WinGX and ORTEP for Windows: An update.J. Appl. Cryst.201245484985410.1107/S0021889812029111
    [Google Scholar]
  25. SpekA.L. checkCIF validation ALERTS: What they mean and how to respond.Acta Crystallogr. E Crystallogr. Commun.202076111110.1107/S2056989019016244 31921444
    [Google Scholar]
  26. McConkeyB.J. SobolevV. EdelmanM. The performance of current methods in ligand–protein docking.Curr. Sci.2002837845856
    [Google Scholar]
  27. NithyabalajiR. KrishnanH. SribalanR. Synthesis, molecular structure and multiple biological activities of N-(3-methoxyphenyl)-3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide.J. Mol. Struct.2019118611010.1016/j.molstruc.2019.02.095
    [Google Scholar]
  28. CalderP.C. AlbersR. AntoineJ.M. BlumS. Bourdet-SicardR. FernsG.A. FolkertsG. FriedmannP.S. FrostG.S. GuarnerF. LøvikM. MacfarlaneS. MeyerP.D. M’RabetL. SerafiniM. van EdenW. van LooJ. Vas DiasW. VidryS. Winklhofer-RoobB.M. ZhaoJ. Inflammatory disease processes and interactions with nutrition.Br. J. Nutr.2009101S1Suppl. 114510.1017/S0007114509377867 19586558
    [Google Scholar]
  29. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  30. KerruN. GummidiL. BhaskaruniS.V.H.S. MaddilaS.N. SinghP. JonnalagaddaS.B. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole.Sci. Rep.2019911928010.1038/s41598‑019‑55793‑5 31848439
    [Google Scholar]
  31. KumarS. ArumugamS.M. SharmaS. MahalaS. DeviB. ElumalaiS. Insights into the kinetics and mechanism of spermine (base)-catalyzed D-fructose interconversion to low-calorie D-allulose.Molecular Catalysis202253311275710.1016/j.mcat.2022.112757
    [Google Scholar]
  32. Senthil MuruganA. Abel NoelsonE.R. AnnarajJ. Solvent dependent colorimetric, ratiometric dual sensor for copper and fluoride ions: Real sample analysis, cytotoxicity and computational studies.Inorg. Chim. Acta201645013113910.1016/j.ica.2016.04.022
    [Google Scholar]
  33. NishatS.S. HossainM.J. MullickF.E. KabirA. ChowdhuryS. IslamS. HossainM. Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2 electron transport layer.J. Phys. Chem. C202112524131581316610.1021/acs.jpcc.1c02302
    [Google Scholar]
  34. SakkiahS. MeganathanC. SohnY.S. NamadevanS. LeeK.W. Identification of important chemical features of 11β-hydroxysteroid dehydrogenase type1 inhibitors: Application of ligand based virtual screening and density functional theory.Int. J. Mol. Sci.20121345138516210.3390/ijms13045138 22606035
    [Google Scholar]
  35. SureshC.H. RemyaG.S. AnjalikrishnaP.K. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022125e160110.1002/wcms.1601
    [Google Scholar]
  36. LakshminarayananS. JeyasinghV. MurugesanK. SelvapalamN. DassG. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions.J. Photochem. Photobiol.2021610002210.1016/j.jpap.2021.100022
    [Google Scholar]
  37. GeethaS. SribalanR. LakshmiS. Synthesis, crystal structure, spectroscopic characterization and anti-COVID-19 molecular docking investigation of 2-(2-Formylphenoxy)acetamide.Asian J. Chem.202335102389239810.14233/ajchem.2023.28232
    [Google Scholar]
  38. GeethaS. SribalanR. LakshmiS. Crystal structure, spectral characterization, in vitro, molecular docking and DFT studies of pyranopyrazole derivatives.Chemical Physics Impact2024810060810.1016/j.chphi.2024.100608
    [Google Scholar]
  39. GeethaS. SribalanR. LakshmiS. Synthesis, crystal structure, spectroscopic characterization, in vitro and in silico studies of water-soluble (Z)-N′-Hydroxy-2-Morpholinonicotinimidamide.J. Struct. Chem.202465474075910.1134/S0022476624040103
    [Google Scholar]
  40. GeethaS. SribalanR. LakshmiS. Synthesis, crystal structure, spectroscopic characterization, in vitro, molecular docking and DFT studies of 1- (Tert-Butyl) 2-methyl (2S, 4R)-4-hydroxy pyrrolidine-1,2-dicarboxylate.Chemical Physics Impact2024910066010.1016/j.chphi.2024.100660
    [Google Scholar]
  41. MullikenR.S. Electronic population analysis on LCAO–MO molecular wave functions. I.J. Chem. Phys.195523101833184010.1063/1.1740588
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072343177241101103244
Loading
/content/journals/cbc/10.2174/0115734072343177241101103244
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test