Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Worldwide, more than 44 million individuals are living with Alzheimer's disease (AD), making it the most common type of dementia. Because neuroinflammation is so important in the development of AD, anti-inflammatory tactics may be a promising avenue for treatment. Searches were conducted in Scopus, the Web of Science, and PubMed using the following keywords: phytoconstituents, AD, traditional medicine, and Chinese herbs. Therefore, the purpose of this review was to summarise the known phytochemistry and current state of the chosen plant species. However, there has been limited effectiveness in clinical trials for AD with currently available anti-inflammatory medicines. This study brings together the latest findings in the treatment of AD using natural substances, specifically phytochemicals, which have anti-inflammatory, antioxidant, and neuroprotective characteristics. Although there has been little success with existing anti-inflammatory medications, there is hope for targeting molecular pathways associated with AD, including Aβ overproduction, apoptosis, oxidative stress, and mitochondrial dysfunction, through the use of natural bioactive chemicals such alkaloids, polyphenols, and terpenes. The promise of natural compounds as safer alternatives or supplementary therapies to current treatments for Alzheimer's disease is highlighted in this study, which focuses on their ability to alleviate major pathogenic processes in the disease. Their medicinal potential and effectiveness can be enhanced with additional research.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072340846241025144431
2024-11-01
2025-08-16
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  2. SantiagoJ.A. PotashkinJ.A. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases.Front. Aging Neurosci.202315118567110.3389/fnagi.2023.118567137304072
    [Google Scholar]
  3. ShinJ.H. Dementia epidemiology fact sheet 2022.Ann. Rehabil. Med.2022462535910.5535/arm.2202735508924
    [Google Scholar]
  4. KumarA. SidhuJ. GoyalA. Alzheimer Disease.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  5. RatanY. RajputA. MaleysmS. PareekA. JainV. PareekA. KaurR. SinghG. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s Disease.Biomedicines2023115139810.3390/biomedicines1105139837239068
    [Google Scholar]
  6. GaoW. GuoL. YangY. WangY. XiaS. GongH. ZhangB-K. YanM. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity.Front. Cell Dev. Biol.2022980995210.3389/fcell.2021.809952
    [Google Scholar]
  7. von BernhardiR. Neurodegenerative Diseases – MAPK Signalling Pathways in Neuroinflammation BT - Encyclopedia of Neuroscience. BinderM.D. HirokawaN. WindhorstU. Berlin, HeidelbergSpringer Berlin Heidelberg200926142620
    [Google Scholar]
  8. Wojtunik-KuleszaK. RudkowskaM. Orzeł-SajdłowskaA. Aducanumab—hope or disappointment for Alzheimer’s Disease.Int. J. Mol. Sci.2023245436710.3390/ijms2405436736901797
    [Google Scholar]
  9. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s Disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms23221395436430432
    [Google Scholar]
  10. HuangJ. HuangN. MaoQ. ShiJ. QiuY. Natural bioactive compounds in Alzheimer’s disease: From the perspective of type 3 diabetes mellitus.Front. Aging Neurosci.202315113025310.3389/fnagi.2023.113025337009462
    [Google Scholar]
  11. HuD. JinY. HouX. ZhuY. ChenD. TaiJ. ChenQ. ShiC. YeJ. WuM. ZhangH. LuY. Application of marine natural products against Alzheimer’s Disease: Past, present and future.Mar. Drugs20232114310.3390/md2101004336662216
    [Google Scholar]
  12. VrabecR. BlundenG. CahlíkováL. Natural alkaloids as multi-target compounds towards factors implicated in Alzheimer’s Disease.Int. J. Mol. Sci.2023245439910.3390/ijms2405439936901826
    [Google Scholar]
  13. BhatB.A. AlmilaibaryA. MirR.A. AljarallahB.M. MirW.R. AhmadF. MirM.A. Natural therapeutics in aid of treating Alzheimer’s Disease: A green gateway toward ending quest for treating neurological disorders.Front. Neurosci.20221688434510.3389/fnins.2022.88434535651632
    [Google Scholar]
  14. VrânceanuM. GalimbertiD. BancR. DragoşO. Cozma-PetruţA. HegheşS.C. VoştinaruO. CuciureanuM. StroiaC.M. MiereD. FilipL. The anticancer potential of plant-derived nutraceuticals via the modulation of gene expression.Plants20221119252410.3390/plants1119252436235389
    [Google Scholar]
  15. AhmedM.H. VasasD. HassanA. MolnárJ. The impact of functional food in prevention of malnutrition.PharmaNutrition20221910028810.1016/j.phanu.2022.100288
    [Google Scholar]
  16. ZhangM. TangZ. Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation.Biomed. Pharmacother.202316111447410.1016/j.biopha.2023.11447436878051
    [Google Scholar]
  17. MajeedM. PirzadahT.B. MirM.A. HakeemK.R. AlharbyH.F. AlsamadanyH. BamagoosA.A. RehmanR.U. Comparative study on phytochemical profile and antioxidant activity of an epiphyte, Viscum album L. (White Berry Mistletoe), derived from different host trees.Plants2021106119110.3390/plants1006119134208051
    [Google Scholar]
  18. AtlanteA. AmadoroG. BobbaA. LatinaV. Functional foods: an approach to modulate molecular mechanisms of Alzheimer’s disease.Cells2020911234710.3390/cells911234733114170
    [Google Scholar]
  19. MirM. ShabirN. MehrajU. RatherY. FarhatS. Study on the quality control analysis of antiepileptic drugs using high-performance liquid chromatography.Int. J. Pharm. Investig.20188311512110.4103/jphi.JPHI_45_18
    [Google Scholar]
  20. MirR.H. ShahA.J. Mohi-Ud-DinR. PottooF.H. DarM.A. JachakS.M. MasoodiM.H. Natural Anti-inflammatory compounds as Drug candidates in Alzheimer’s disease.Curr. Med. Chem.202128234799482510.2174/1875533XMTA4aNzUBx32744957
    [Google Scholar]
  21. StelzmannR.A. Norman SchnitzleinH. Reed MurtaghF. MurtaghF.R. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”.Clin. Anat.19958642943110.1002/ca.9800806128713166
    [Google Scholar]
  22. DongY. LiX. ChengJ. HouL. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target?Int. J. Mol. Sci.201920355810.3390/ijms2003055830696107
    [Google Scholar]
  23. LiuY. CongL. HanC. LiB. DaiR. Recent progress in the drug development for the treatment of Alzheimer’s disease especially on inhibition of amyloid-peptide aggregation.Mini Rev. Med. Chem.202121896999010.2174/138955752066620112710453933245270
    [Google Scholar]
  24. ParoniG. BiscegliaP. SeripaD. Understanding the amyloid hypothesis in Alzheimer’s disease.J. Alzheimers Dis.201968249351010.3233/JAD‑18080230883346
    [Google Scholar]
  25. RahmanM.A. RahmanM.S. UddinM.J. Mamum-Or-RashidA.N.M. PangM.G. RhimH. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases.Environ. Sci. Pollut. Res. Int.20202736446594467210.1007/s11356‑020‑08243‑z32201908
    [Google Scholar]
  26. RahmanM. HannanM. UddinM. RahmanM. RashidM. KimB. Exposure to environmental arsenic and emerging risk of alzheimer’s disease: perspective mechanisms, management strategy, and future directions.Toxics20219818810.3390/toxics908018834437506
    [Google Scholar]
  27. MangialascheF. SolomonA. WinbladB. MecocciP. KivipeltoM. Alzheimer’s disease: clinical trials and drug development.Lancet Neurol.20109770271610.1016/S1474‑4422(10)70119‑820610346
    [Google Scholar]
  28. ArendtT. StielerJ.T. HolzerM. Tau and tauopathies.Brain Res. Bull.2016126Pt 323829210.1016/j.brainresbull.2016.08.01827615390
    [Google Scholar]
  29. IqbalK. LiuF. GongC.X. Grundke-IqbalI. Tau in Alzheimer disease and related tauopathies.Curr. Alzheimer Res.20107865666410.2174/15672051079361159220678074
    [Google Scholar]
  30. VillafloresO.B. ChenY.J. ChenC.P. YehJ.M. WuT.Y. Curcuminoids and resveratrol as anti-Alzheimer agents.Taiwan. J. Obstet. Gynecol.201251451552510.1016/j.tjog.2012.09.00523276553
    [Google Scholar]
  31. LinA.J. KoikeM.A. GreenK.N. KimJ.G. MazharA. RiceT.B. LaFerlaF.M. TrombergB.J. Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease.Ann. Biomed. Eng.20113941349135710.1007/s10439‑011‑0269‑621331663
    [Google Scholar]
  32. SelkoeD.J. The molecular pathology of Alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑21673054
    [Google Scholar]
  33. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b0013830095897
    [Google Scholar]
  34. GallardoG. HoltzmanD.M. Amyloid-β and Tau at the Crossroads of Alzheimer’s Disease.Adv. Exp. Med. Biol.2019118418720310.1007/978‑981‑32‑9358‑8_1632096039
    [Google Scholar]
  35. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  36. BarageS.H. SonawaneK.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease.Neuropeptides20155211810.1016/j.npep.2015.06.00826149638
    [Google Scholar]
  37. GrahamW.V. Bonito-OlivaA. SakmarT.P. Update on Alzheimer’s disease therapy and prevention strategies.Annu. Rev. Med.201768141343010.1146/annurev‑med‑042915‑10375328099083
    [Google Scholar]
  38. KarranE. MerckenM. StrooperB.D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics.Nat. Rev. Drug Discov.201110969871210.1038/nrd350521852788
    [Google Scholar]
  39. VassalloN. Polyphenols and health: New and recent advances.HauppaugeNova Publishers2008
    [Google Scholar]
  40. NewmanD.J. CraggG.M. Naturalproductsassources ofnewdrugsfrom1981to2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  41. MirM.A. BhatB.A. SheikhB.A. RatherG.A. MehrajS. MirW.R. Nanomedicine in human health therapeutics and drug delivery: Nanobiotechnology and nanobiomedicineApplications of Nanomaterials in Agriculture, Food Science, and MedicineIGI Global2021
    [Google Scholar]
  42. SilvaT. ReisJ. TeixeiraJ. BorgesF. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes.Ageing Res. Rev.20141511614510.1016/j.arr.2014.03.00824726823
    [Google Scholar]
  43. YangH.D. KimD.H. LeeS.B. YoungL.D. History of Alzheimer’s Disease.Dement. Neurocognitive Disord.201615411512110.12779/dnd.2016.15.4.11530906352
    [Google Scholar]
  44. TariqL. BhatB.A. HamdaniS.S. MirR.A. Phytochemistry, pharmacology and toxicity of medicinal plants.Medicinal and Aromatic Plants. AftabT. HakeemK.R. ChamSpringer202121724010.1007/978‑3‑030‑58975‑2_8
    [Google Scholar]
  45. MaccioniR.B. FaríasG. MoralesI. NavarreteL. The revitalized tau hypothesis on Alzheimer’s disease.Arch. Med. Res.201041322623110.1016/j.arcmed.2010.03.00720682182
    [Google Scholar]
  46. MirM.A. MehrajU. SheikhB.A. Recent advances in chemotherapeutic implications of deguelin: a plant-derived retinoid.Nat. Prod. J.202111169181
    [Google Scholar]
  47. NomotoD. TsunodaT. ShigemoriH. Effects of clovamide and its related compounds on the aggregations of amyloid polypeptides.J. Nat. Med.202175229930710.1007/s11418‑020‑01467‑w33389592
    [Google Scholar]
  48. WainwrightC.L. TeixeiraM.M. AdelsonD.L. BuenzE.J. DavidB. GlaserK.B. Future directions for the discovery of natural product derived immunomodulating drugs.Pharmacol. Res.202217710607610.1016/j.phrs.2022.10607635074524
    [Google Scholar]
  49. FujiwaraH. IwasakiK. FurukawaK. SekiT. HeM. MaruyamaM. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β-amyloid proteins.J. Neurosci. Res.200684427433
    [Google Scholar]
  50. FujiwaraH. TabuchiM. YamaguchiT. IwasakiK. FurukawaK. SekiguchiK. IkarashiY. KudoY. HiguchiM. SaidoT.C. MaedaS. TakashimaA. HaraM. YaegashiN. KaseY. AraiH. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6‐penta‐ O ‐galloyl‐β‐ d ‐glucopyranose have potent anti‐aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo.J. Neurochem.200910961648165710.1111/j.1471‑4159.2009.06069.x19457098
    [Google Scholar]
  51. PapandreouM.A. KanakisC.D. PolissiouM.G. EfthimiopoulosS. CordopatisP. MargarityM. LamariF.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents.J. Agric. Food Chem.200654238762876810.1021/jf061932a17090119
    [Google Scholar]
  52. DurairajanS.S.K. YuanQ. XieL. ChanW.S. KumW.F. KooI. LiuC. SongY. HuangJ.D. KleinW.L. LiM. Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty.Neurochem. Int.2008524-574175010.1016/j.neuint.2007.09.00617964692
    [Google Scholar]
  53. KangI.J. JeonY.E. YinX.F. NamJ.S. YouS.G. HongM.S. JangB.G. KimM.J. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death.Food Chem. Toxicol.20114992252225910.1016/j.fct.2011.06.02321693162
    [Google Scholar]
  54. ZieglerJ. FacchiniP.J. Alkaloid biosynthesis: metabolism and trafficking.Annu. Rev. Plant Biol.200859173576910.1146/annurev.arplant.59.032607.09273018251710
    [Google Scholar]
  55. NaharL. SarkerS.D. Chemistry for Pharmacy Students.2nd edUKWiley2019
    [Google Scholar]
  56. RosaE.A.S. BennettR.N. AiresA. Levels and potential health impacts of nutritionally relevant phytochemicals in organic and conventional food production systems.Handbook of Organic Food Safety and Quality. CooperJ. NiggliU. Carlo LeifertC. AmsterdamElsevier200710.1533/9781845693411.3.297
    [Google Scholar]
  57. OlajideO.A. AjayiA.M. WrightC.W. Anti‐inflammatory properties of cryptolepine.Phytother. Res.200923101421142510.1002/ptr.279419288476
    [Google Scholar]
  58. GopalanR.C. EmerceE. WrightC.W. KarahalilB. KarakayaA.E. AndersonD. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay.Toxicol. Lett.2011207332232510.1016/j.toxlet.2011.09.01021946165
    [Google Scholar]
  59. HeF.Q. QiuB.Y. LiT.K. XieQ. CuiD.J. HuangX.L. GanH.T. Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells.Int. Immunopharmacol.20111191220122510.1016/j.intimp.2011.03.02321496499
    [Google Scholar]
  60. ChenY. TsaiY.H. TsengS.H. The potential of tetrandrine as a protective agent for ischemic stroke.Molecules20111698020803210.3390/molecules1609802021926947
    [Google Scholar]
  61. KingV.F. GarciaM.L. HimmelD. ReubenJ.P. LamY.K. PanJ.X. HanG.Q. KaczorowskiG.J. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin.J. Biol. Chem.198826352238224410.1016/S0021‑9258(18)69196‑32448307
    [Google Scholar]
  62. NeagM.A. MocanA. EcheverríaJ. PopR.M. BocsanC.I. CrişanG. BuzoianuA.D. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955710.3389/fphar.2018.0055730186157
    [Google Scholar]
  63. WangS. HeB. HangW. WuN. XiaL. WangX. ZhangQ. ZhouX. FengZ. ChenQ. ChenJ. Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring PI3K/Akt/GSK3β pathway.J. Alzheimers Dis.20186541385140010.3233/JAD‑18049730175975
    [Google Scholar]
  64. DiS. HanL. AnX. KongR. GaoZ. YangY. WangX. ZhangP. DingQ. WuH. WangH. ZhaoL. TongX. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications.J. Ethnopharmacol.202127611418010.1016/j.jep.2021.11418033957209
    [Google Scholar]
  65. LiJ. DuH. ZhangM. ZhangZ. TengF. ZhaoY. ZhangW. YuY. FengL. CuiX. ZhangM. LuT. GuanF. ChenL. Amorphous solid dispersion of Berberine mitigates apoptosis via iPLA 2 β/Cardiolipin/Opa1 pathway in db/db mice and in Palmitate-treated MIN6 β-cells.Int. J. Biol. Sci.20191571533154510.7150/ijbs.3202031337982
    [Google Scholar]
  66. ShanY.Q. ZhuY.P. PangJ. WangY.X. SongD.Q. KongW.J. JiangJ.D. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function.Biol. Pharm. Bull.201336101562156910.1248/bpb.b13‑0027223924821
    [Google Scholar]
  67. ParkS.E. SapkotaK. KimS. KimH. KimS.J. Kaempferol acts through mitogen‐activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells.Br. J. Pharmacol.201116431008102510.1111/j.1476‑5381.2011.01389.x21449918
    [Google Scholar]
  68. VelagapudiR. AderogbaM. OlajideO.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia.Biochim. Biophys. Acta, Gen. Subj.20141840123311331910.1016/j.bbagen.2014.08.00825152356
    [Google Scholar]
  69. VelagapudiR. AjileyeO.O. OkorjiU. JainP. AderogbaM.A. OlajideO.A. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1 ‐mediated neuroinflammation in BV2 microglia and neurotoxicity in APPS we‐transfected SH‐SY5Y cells.Phytother. Res.201832101957196610.1002/ptr.612229786910
    [Google Scholar]
  70. VelagapudiR. El-BakoushA. OlajideO.A. Activation of nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside.Mol. Neurobiol.201855108103812310.1007/s12035‑018‑0975‑229508282
    [Google Scholar]
  71. ChoiJ.S. Nurul IslamM. Yousof AliM. KimE.J. KimY.M. JungH.A. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin.Food Chem. Toxicol.201464273310.1016/j.fct.2013.11.02024291393
    [Google Scholar]
  72. LiuR. ZhangT. YangH. LanX. YingJ. DuG. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice.J. Alzheimers Dis.20112418510010.3233/JAD‑2010‑10159321297270
    [Google Scholar]
  73. KangC.H. ChoiY.H. MoonS.K. KimW.J. KimG.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway.Int. Immunopharmacol.201317380881310.1016/j.intimp.2013.09.009
    [Google Scholar]
  74. SunG.Y. ChenZ. JasmerK.J. ChuangD.Y. GuZ. HanninkM. SimonyiA. Quercetin attenuates infammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1.PLoS One20151010e014150910.1371/journal.pone.014150926505893
    [Google Scholar]
  75. LvM. YangS. CaiL. QinL. LiB. WanZ. Efects of quercetin intervention on cognition function in app/ps1 mice was afected by vitamin D status.Mol. Nutr. Food Res.20186224180062110.1002/mnfr.20180062130328681
    [Google Scholar]
  76. LeeY.J. ChoiD.Y. YunY.P. HanS.B. OhK.W. HongJ.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties.J. Nutr. Biochem.201324129831010.1016/j.jnutbio.2012.06.01122959056
    [Google Scholar]
  77. MoussaC. HebronM. HuangX. AhnJ. RissmanR.A. AisenP.S. TurnerR.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease.J. Neuroinflammation2017141110.1186/s12974‑016‑0779‑028086917
    [Google Scholar]
  78. AntonS.D. EbnerN. DzierzewskiJ.M. ZlatarZ.Z. GurkaM.J. DotsonV.M. KirtonJ. MankowskiR.T. MarsiskeM. ManiniT.M. Efects of 90 days of resveratrol supplementation on cognitive function in elders: a pilot study.J. Altern. Complement. Med.201824772573210.1089/acm.2017.039829583015
    [Google Scholar]
  79. HuangJ. HuangN. XuS. LuoY. LiY. JinH. YuC. ShiJ. JinF. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases.J. Nutr. Biochem.20218810855210.1016/j.jnutbio.2020.10855233220405
    [Google Scholar]
  80. SzkudelskaK. DeniziakM. SassekM. SzkudelskiI. NoskowiakW. SzkudelskiT. Resveratrol affects insulin signaling in type 2 diabetic goto-kakizaki rats.Int. J. Mol. Sci.2021225246910.3390/ijms2205246933671110
    [Google Scholar]
  81. BhattJ.K. ThomasS. NanjanM.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus.Nutr. Res.201232753754110.1016/j.nutres.2012.06.00322901562
    [Google Scholar]
  82. AsadiS. MoradiM.N. KhyripourN. GoodarziM.T. MahmoodiM. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats.Biol. Trace Elem. Res.2017177113213810.1007/s12011‑016‑0861‑627744600
    [Google Scholar]
  83. KhareP. DatusaliaA.K. SharmaS.S. Parthenolide, an NF-κB inhibitor ameliorates diabetes-induced behavioural defcit, neurotransmitter imbalance and neuroinfammation in type 2 diabetes rat model.Neuromolecular Med.201719110111210.1007/s12017‑016‑8434‑627553015
    [Google Scholar]
  84. WangJ. TongM. ZhaoB. ZhuG. XiD. YangJ. Parthenolide ameliorates intracerebral hemorrhage‐induced brain injury in rats.Phytother. Res.202034115316010.1002/ptr.651031497910
    [Google Scholar]
  85. ZhuC. XiongZ. ChenX. PengF. HuX. ChenY. WangQ. Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells.PLoS One201274e3512510.1371/journal.pone.003512522514713
    [Google Scholar]
  86. QiangW. CaiW. YangQ. YangL. DaiY. ZhaoZ. YinJ. LiY. LiQ. WangY. WengX. ZhangD. ChenY. ZhuX. Artemisinin B improves learning and memory impairment in ad dementia mice by suppressing neuroinfammation.Neuroscience201839511210.1016/j.neuroscience.2018.10.04130399421
    [Google Scholar]
  87. LeoneS. RecinellaL. ChiavaroliA. OrlandoG. FerranteC. LeporiniL. BrunettiL. MenghiniL. Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview.Phytother. Res.201832122364237510.1002/ptr.618130136324
    [Google Scholar]
  88. NamK.N. ParkY.M. JungH.J. LeeJ.Y. MinB.D. ParkS.U. JungW.S. ChoK.H. ParkJ.H. KangI. HongJ.W. LeeE.H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells.Eur. J. Pharmacol.20106481-311011610.1016/j.ejphar.2010.09.00320854811
    [Google Scholar]
  89. ZhangL. PrevinR. LuL. LiaoR.F. JinY. WangR.K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway.Brain Res. Bull.201814235235910.1016/j.brainresbull.2018.08.02130179677
    [Google Scholar]
  90. HosseinzadehH. SadeghniaH.R. GhaeniF.A. MotamedshariatyV.S. MohajeriS.A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats.Phytother. Res.201226338138610.1002/ptr.356621774008
    [Google Scholar]
  91. AsadiF. JamshidiA.H. KhodagholiF. YansA. AzimiL. FaiziM. ValiL. AbdollahiM. GhahremaniM.H. SharifzadehM. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers.Pharmacol. Biochem. Behav.2015139Pt A475810.1016/j.pbb.2015.10.01126484504
    [Google Scholar]
  92. MazumderA.G. SharmaP. PatialV. SinghD. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-κB activation.Basic Clin. Pharmacol. Toxicol.2017120542643310.1111/bcpt.1269427800651
    [Google Scholar]
  93. AkhondzadehS. SabetM.S. HarirchianM.H. ToghaM. CheraghmakaniH. RazeghiS. HejaziS.S. YousefiM.H. AlimardaniR. JamshidiA. ZareF. MoradiA. ORIGINAL ARTICLE: Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial.J. Clin. Pharm. Ther.201035558158810.1111/j.1365‑2710.2009.01133.x20831681
    [Google Scholar]
  94. AkhondzadehS. Shafiee SabetM. HarirchianM.H. ToghaM. CheraghmakaniH. RazeghiS. HejaziS.S. YousefiM.H. AlimardaniR. JamshidiA. RezazadehS.A. YousefiA. ZareF. MoradiA. VossoughiA. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease.Psychopharmacology (Berl.)2010207463764310.1007/s00213‑009‑1706‑119838862
    [Google Scholar]
  95. FarokhniaM. Shafiee SabetM. IranpourN. GougolA. YekehtazH. AlimardaniR. FarsadF. KamalipourM. AkhondzadehS. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial.Hum. Psychopharmacol.201429435135910.1002/hup.241225163440
    [Google Scholar]
  96. TsolakiM. KarathanasiE. LazarouI. DovasK. VerykoukiE. KarakostasA. GeorgiadisK. TsolakiA. AdamK. KompatsiarisI. SinakosZ. efcacy and safety of Crocus sativus L. in patients with mild cognitive impairment: one year single-blind randomized, with parallel groups, clinical trial.J. Alzheimers Dis.201654112913310.3233/JAD‑16030427472878
    [Google Scholar]
  97. ChoiS.K. ParkY.S. ChoiD.K. ChangH.I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells.J. Microbiol. Biotechnol.200818121990199619131704
    [Google Scholar]
  98. KimJ.E. YouD.J. LeeC. AhnC. SeongJ.Y. HwangJ.I. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation.Cell. Signal.201022111645165410.1016/j.cellsig.2010.06.00420600852
    [Google Scholar]
  99. KimY.H. KohH.K. KimD.S. Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-κB-mediated signals in activated microglia.Int. Immunopharmacol.201010121560157210.1016/j.intimp.2010.09.00720932499
    [Google Scholar]
  100. ZhouX. ZhangF. HuX. ChenJ. WenX. SunY. LiuY. TangR. ZhengK. SongY. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.Physiol. Behav.201515141242010.1016/j.physbeh.2015.08.01526272354
    [Google Scholar]
  101. ZhangX.S. ZhangX. WuQ. LiW. WangC.X. XieG.B. ZhouX.M. ShiJ.X. ZhouM.L. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage.J. Surg. Res.2014192120621310.1016/j.jss.2014.05.02924948541
    [Google Scholar]
  102. SatohA. TsujiS. OkadaY. MurakamiN. UramiM. NakagawaK. IshikuraM. KatagiriM. KogaY. ShirasawaT. Preliminary clinical evaluation of toxicity and efcacy of a new astaxanthin-rich Haematococcus pluvialis extract.J. Clin. Biochem. Nutr.200944328028410.3164/jcbn.08‑23819430618
    [Google Scholar]
  103. KatagiriM. SatohA. TsujiS. ShirasawaT. Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study.J. Clin. Biochem. Nutr.201251210210710.3164/jcbn.D‑11‑0001722962526
    [Google Scholar]
  104. Veerendra KumarM.H. GuptaY.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats.Clin. Exp. Pharmacol. Physiol.2003305-633634210.1046/j.1440‑1681.2003.03842.x12859423
    [Google Scholar]
  105. CalculL. ZhangB. JinwalU.K. DickeyC.A. BakerB.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease.Future Med. Chem.20124131751176110.4155/fmc.12.12422924511
    [Google Scholar]
  106. MathewM. SubramanianS. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract.Indian J. Exp. Biol.201452660661224956891
    [Google Scholar]
  107. IuvoneT. De FilippisD. EspositoG. D’AmicoA. IzzoA.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity.J. Pharmacol. Exp. Ther.200631731143114910.1124/jpet.105.09931716495207
    [Google Scholar]
  108. YoudimK.A. Shukitt-HaleB. MartinA. WangH. DenisovaN. BickfordP.C. JosephJ.A. Short-term dietary supplementation of blueberry polyphenolics: beneficial effects on aging brain performance and peripheral tissue function.Nutr. Neurosci.20003638339710.1080/1028415X.2000.11747338
    [Google Scholar]
  109. KumarA. PrakashA. DograS. Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice.Int. J. Alzheimers Dis.20112011134756910.4061/2011/34756921629743
    [Google Scholar]
  110. CasadesusG. Shukitt-HaleB. StellwagenH.M. ZhuX. LeeH.G. SmithM.A. JosephJ.A. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats.Nutr. Neurosci.200475-630931610.1080/1028415040002048215682927
    [Google Scholar]
  111. KrikorianR. ShidlerM.D. NashT.A. KaltW. Vinqvist-TymchukM.R. Shukitt-HaleB. JosephJ.A. Blueberry supplementation improves memory in older adults.J. Agric. Food Chem.20105873996400010.1021/jf902933220047325
    [Google Scholar]
  112. Shukitt-HaleB. CareyA.N. JenkinsD. RabinB.M. JosephJ.A. Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging.Neurobiol. Aging20072881187119410.1016/j.neurobiolaging.2006.05.03116837106
    [Google Scholar]
  113. Andres-LacuevaC. Shukitt-HaleB. GalliR.L. JaureguiO. Lamuela-RaventosR.M. JosephJ.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory.Nutr. Neurosci.20058211112010.1080/1028415050007811716053243
    [Google Scholar]
  114. SpanglerE.L. DuffyK. DevanB. GuoZ. BowkerJ. Shukitt-HaleB. Rats Fed a Blueberry-Enriched Diet Exhibit Greater Protection against a Kainate-induced Learning Impairment.Washington, DCSociety for Neuroscience2003
    [Google Scholar]
  115. EssaM.M. VijayanR.K. Castellano-GonzalezG. MemonM.A. BraidyN. GuilleminG.J. Neuroprotective effect of natural products against Alzheimer’s disease.Neurochem. Res.20123791829184210.1007/s11064‑012‑0799‑922614926
    [Google Scholar]
  116. ChenC. Mohamad RazaliU.H. SaikimF.H. MahyudinA. Mohd NoorN.Q.I. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient.Foods202110368910.3390/foods1003068933807100
    [Google Scholar]
  117. Rioux BilanA. FreyssinA. PageG. FauconneauB. Natural stilbenes effects in animal models of Alzheimer’s disease.Neural Regen. Res.202015584384910.4103/1673‑5374.26897031719245
    [Google Scholar]
  118. RemingtonR. ChanA. LeporeA. KotlyaE. SheaT.B. Apple juice improved behavioral but not cognitive symptoms in moderate-to-late stage Alzheimer’s disease in an open-label pilot study.Am. J. Alzheimers Dis. Other Demen.201025436737110.1177/153331751036347020338990
    [Google Scholar]
  119. TripathiS. MazumderP.M. Apple cider vinegar (ACV) and their pharmacological approach towards Alzheimer’s disease (AD): A review.Ind. J. Pharma. Edu. Res.2020542ss67s7410.5530/ijper.54.2s.62
    [Google Scholar]
  120. ChanA. SheaT.B. Supplementation with apple juice attenuates presenilin-1 overexpression during dietary and genetically-induced oxidative stress.J. Alzheimers Dis.200610435335810.3233/JAD‑2006‑1040117183144
    [Google Scholar]
  121. IchwanM. WalkerT.L. NicolaZ. Ludwig-MüllerJ. BöttcherC. OverallR.W. AdusumilliV.S. BulutM. SykesA.M. HübnerN. Ramirez-RodriguezG. Ortiz-LópezL. Lugo-HernándezE.A. KempermannG. Apple peel and flesh contain pro-neurogenic compounds.Stem Cell Reports202116354856510.1016/j.stemcr.2021.01.00533577796
    [Google Scholar]
  122. ChauhanN. WangK. WegielJ. MalikM. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils.Curr. Alzheimer Res.20041318318810.2174/156720504333214415975066
    [Google Scholar]
  123. MuthaiyahB. EssaM.M. ChauhanV. ChauhanA. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells.Neurochem. Res.201136112096210310.1007/s11064‑011‑0533‑z21706234
    [Google Scholar]
  124. HussainS.Z. NaseerB. QadriT. FatimaT. BhatT.A. Walnut (Juglans Regia)-Morphology, taxonomy, composition and health benefits.Fruits Grown in Highland Regions of the Himalayas HussainS.Z. NaseerB. QadriT. FatimaT. ChamSpringer202126928110.1007/978‑3‑030‑75502‑7_21
    [Google Scholar]
  125. BanoG. AmlaV. RainaR. ZutshiU. ChopraC. The effect of piperine on pharmacokinetics of phenytoin in healthy volunteers.Planta Med.198753656856910.1055/s‑2006‑9628143444866
    [Google Scholar]
  126. WattanathornJ. ChonpathompikunlertP. MuchimapuraS. PripremA. TankamnerdthaiO. Piperine, the potential functional food for mood and cognitive disorders.Food Chem. Toxicol.20084693106311010.1016/j.fct.2008.06.01418639606
    [Google Scholar]
  127. LucaS.V. Gaweł-BębenK. Strzępek-GomółkaM. CzechK. TrifanA. ZenginG. Korona-GlowniakI. MincevaM. GertschJ. Skalicka-WoźniakK. Insights into the phytochemical and multifunctional biological profile of spices from the genus Piper.Antioxidants20211010164210.3390/antiox1010164234679776
    [Google Scholar]
  128. SelvendiranK. SinghJ.P.V. KrishnanK.B. SakthisekaranD. Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice.Fitoterapia2003741-210911510.1016/S0367‑326X(02)00304‑012628402
    [Google Scholar]
  129. KhanA.U. TalucderM.S.A. DasM. NoreenS. PaneY.S. Prospect of the black pepper (Piper nigrum L.) as natural product used to an herbal medicine.Open Access Maced. J. Med. Sci.20219F56357310.3889/oamjms.2021.7113
    [Google Scholar]
  130. HuaS. WangB. ChenR. ZhangY. ZhangY. LiT. DongL. FuX. Neuroprotective effect of dichloromethane extraction from Piper nigrum L. and Piper longum L. on permanent focal cerebral ischemia injury in rats.J. Stroke Cerebrovasc. Dis.201928375176010.1016/j.jstrokecerebrovasdis.2018.11.01830528673
    [Google Scholar]
  131. ChauhanN.B. SandovalJ. Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice.Phytother. Res.200721762964010.1002/ptr.212217380553
    [Google Scholar]
  132. JoshiT. SinghL. JantwalA. DurgapalS. UpadhyayJ. KumarA. Zingiber officinale.Naturally Occurring Chemicals Against Alzheimer’s Disease BelwalT. NabaviS. NabaviS. DehpourA. Shirooie AmsterdamS. Elsevier202148149410.1016/B978‑0‑12‑819212‑2.00041‑4
    [Google Scholar]
  133. ZhangM. ZhaoR. WangD. WangL. ZhangQ. WeiS. LuF. PengW. WuC. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents.Phytother. Res.202135271174210.1002/ptr.685832954562
    [Google Scholar]
  134. TalebiM. İlgünS. EbrahimiV. TalebiM. FarkhondehT. EbrahimiH. SamarghandianS. Zingiber officinale ameliorates Alzheimer’s disease and cognitive impairments: Lessons from preclinical studies.Biomed. Pharmacother.202113311108810.1016/j.biopha.2020.11108833378982
    [Google Scholar]
  135. TalebiM. KakouriE. TalebiM. TarantilisP.A. FarkhondehT. İlgünS. Pourbagher-ShahriA.M. SamarghandianS. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease.Expert Rev. Neurother.202121662564210.1080/14737175.2021.192347933910446
    [Google Scholar]
  136. KappallyS. ShirwaikarA. ShirwaikarA. Coconut oil–a review of potential applications.Hygeia JD Med.201573441
    [Google Scholar]
  137. ChatterjeeP. FernandoM. FernandoB. DiasC.B. ShahT. SilvaR. WilliamsS. PedriniS. HillebrandtH. GoozeeK. BarinE. SohrabiH.R. GargM. CunnaneS. MartinsR.N. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease.Mech. Ageing Dev.202018611120910.1016/j.mad.2020.11120931953123
    [Google Scholar]
  138. AlghamdiB.S.A. Possible prophylactic anti-excitotoxic and anti-oxidant effects of virgin coconut oil on aluminium chloride-induced Alzheimer’s in rat models.J. Integr. Neurosci.2018173-459360710.3233/JIN‑18008930010139
    [Google Scholar]
  139. MirzaeiF. KhazaeiM. KomakiA. AmiriI. JaliliC. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat.Food Chem. Toxicol.2018118688310.1016/j.fct.2018.04.06429729307
    [Google Scholar]
  140. Abdul ManapA.S. VijayabalanS. MadhavanP. ChiaY.Y. AryaA. WongE.H. RizwanF. BindalU. KoshyS. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies.Drug Target Insights201913010.1177/117739281986641231391778
    [Google Scholar]
  141. UabunditN. WattanathornJ. MucimapuraS. IngkaninanK. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model.J. Ethnopharmacol.20101271263110.1016/j.jep.2009.09.05619808086
    [Google Scholar]
  142. ChoiS.J. LeeJ.H. HeoH.J. ChoH.Y. KimH.K. KimC.J. KimM.O. SuhS.H. ShinD.H. Punica granatum protects against oxidative stress in PC12 cells and oxidative stress-induced Alzheimer’s symptoms in mice.J. Med. Food2011147-869570110.1089/jmf.2010.145221631359
    [Google Scholar]
  143. MaQ. RuanY. XuH. ShiX. WangZ. HuY. Safflower yellow reduces lipid peroxidation, neuropathology, tau phosphorylation and ameliorates amyloid β-induced impairment of learning and memory in rats.Biomed. Pharmacother.20157615316410.1016/j.biopha.2015.10.00426653563
    [Google Scholar]
  144. ZengP. ShiY. WangX.M. LinL. DuY.J. TangN. WangQ. FangY.Y. WangJ.Z. ZhouX.W. LuY. TianQ. Emodin rescued hyperhomocysteinemiainduced dementia and Alzheimer’s disease-like features in rats.Int. J. Neuropsychopharmacol.2019221577010.1093/ijnp/pyy09030407508
    [Google Scholar]
  145. ZhangH. SuY. SunZ. ChenM. HanY. LiY. DongX. DingS. FangZ. LiW. LiW. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice.J. Ginseng Res.202145666567510.1016/j.jgr.2021.03.00334764721
    [Google Scholar]
  146. LiG. YuJ. ZhangL. WangY. WangC. ChenQ. Onjisaponin B prevents cognitive impairment in a rat model of D-galactose-induced aging.Biomed. Pharmacother.20189911312010.1016/j.biopha.2018.01.00629329033
    [Google Scholar]
  147. YinC. DengY. LiuY. GaoJ. YanL. GongQ. Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: involvement of BDNF/TrkB/CREB signaling and upregulation of PPARα and PPARγ in Rats.Front. Pharmacol.20189121110.3389/fphar.2018.0121130405422
    [Google Scholar]
  148. ZhaoH. WangS.L. QianL. JinJ.L. LiH. XuY. ZhuX.L. Diammonium glycyrrhizinate attenuates Aβ(1-42) -induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo.CNS Neurosci. Ther.201319211712410.1111/cns.1204323279783
    [Google Scholar]
  149. ZhuH. WangZ. MaC. TianJ. FuF. LiC. GuoD. RoederE. LiuK. Neuroprotective effects of hydroxysafflor yellow A: in vivo and in vitro studies.Planta Med.200369542943310.1055/s‑2003‑3971412802724
    [Google Scholar]
  150. YeS.Y. GaoW.Y. Hydroxysafflor yellow a protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats.Arch. Pharm. Res.20083181010101510.1007/s12272‑001‑1261‑y18787790
    [Google Scholar]
  151. CaiH. LiangQ. GeG. Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling.Neural Plast.2016201611010.1155/2016/636270727213058
    [Google Scholar]
  152. HeH. JiangH. ChenY. YeJ. WangA. WangC. LiuQ. LiangG. DengX. JiangW. ZhouR. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity.Nat. Commun.201891255010.1038/s41467‑018‑04947‑629959312
    [Google Scholar]
  153. WangS. YangH. YuL. JinJ. QianL. ZhaoH. XuY. ZhuX. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway.PLoS One201498e10474510.1371/journal.pone.010474525121593
    [Google Scholar]
  154. CuiY. WangY. ZhaoD. FengX. ZhangL. LiuC. Loganin prevents BV‐2 microglia cells from Aβ 1‐42 ‐induced inflammation via regulating TLR4/TRAF6/NF‐κB axis.Cell Biol. Int.201842121632164210.1002/cbin.1106030288860
    [Google Scholar]
  155. CuiL. CaiY. ChengW. LiuG. ZhaoJ. CaoH. TaoH. WangY. YinM. LiuT. LiuY. HuangP. LiuZ. LiK. ZhaoB. A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ axis.Mol. Neurobiol.20175431939195210.1007/s12035‑016‑9783‑826899576
    [Google Scholar]
  156. DingJ. HuangJ. YinD. LiuT. RenZ. HuS. YeY. LeC. ZhaoN. ZhouH. LiZ. QiX. HuangJ. Trilobatin alleviates cognitive deficits and pathologies in an Alzheimer’s disease mouse model.Oxid. Med. Cell. Longev.202120211329840010.1155/2021/329840034777683
    [Google Scholar]
  157. HuangX.W. XuY. SuiX. LinH. XuJ.M. HanD. YeD.D. LvG.F. LiuY.X. QuX.B. DuanM.H. Scutellarein suppresses Aβ‑induced memory impairment via inhibition of the NF‑κB pathway in vivo and in vitro. Oncol. Lett.20191765581558910.3892/ol.2019.1027431186780
    [Google Scholar]
  158. ZhaoF. DangY. ZhangR. JingG. LiangW. XieL. LiZ. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway.Int. Immunopharmacol.20197510569710.1016/j.intimp.2019.10569731352326
    [Google Scholar]
  159. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  160. SoaresT.B. LoureiroL. CarvalhoA. OliveiraM.E.C.D.R. DiasA. SarmentoB. LúcioM. Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases?Prog. Neurobiol.2018168214110.1016/j.pneurobio.2018.04.00429641983
    [Google Scholar]
  161. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.00219110321
    [Google Scholar]
  162. KumarA. AhujaA. AliJ. BabootaS. Conundrum and therapeutic potential of curcumin in drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201027427931210.1615/CritRevTherDrugCarrierSyst.v27.i4.1020932240
    [Google Scholar]
  163. Di MeoF. MargarucciS. GalderisiU. CrispiS. PelusoG. Curcumin, gut microbiota, and neuroprotection.Nutrients20191110242610.3390/nu1110242631614630
    [Google Scholar]
  164. ChimentoA. De AmicisF. SirianniR. SinicropiM.S. PuociF. CasaburiI. SaturninoC. PezziV. Progress to improve oral bioavailability and benefcial efects of resveratrol.Int. J. Mol. Sci.2019206138110.3390/ijms2006138130893846
    [Google Scholar]
  165. LúcioM. LimaJ.L.F.C. ReisS. Drug-membrane interactions: significance for medicinal chemistry.Curr. Med. Chem.201017171795180910.2174/09298671079111123320345343
    [Google Scholar]
  166. MutohT. MutohT. TakiY. IshikawaT. Therapeutic potential of natural product-based oral nanomedicines for stroke prevention.J. Med. Food201619652152710.1089/jmf.2015.364427136062
    [Google Scholar]
  167. HaglS. KocherA. SchiborrC. KolesovaN. FrankJ. EckertG.P. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability.Neurochem. Int.20158923424210.1016/j.neuint.2015.07.02626254982
    [Google Scholar]
  168. MourtasS. LazarA.N. MarkoutsaE. DuyckaertsC. AntimisiarisS.G. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease.Eur. J. Med. Chem.20148017518310.1016/j.ejmech.2014.04.05024780594
    [Google Scholar]
  169. SoodS. JainK. GowthamarajanK. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment.Colloids Surf. B Biointerfaces201411333033710.1016/j.colsurfb.2013.09.03024121076
    [Google Scholar]
  170. KakkarV. KaurI.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain.Food Chem. Toxicol.201149112906291310.1016/j.fct.2011.08.00621889563
    [Google Scholar]
  171. PugliaC. FrascaG. MusumeciT. RizzaL. PuglisiG. BoninaF. ChiechioS. Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice.Eur. J. Pharm. Biopharm.201281228829310.1016/j.ejpb.2012.03.01522504443
    [Google Scholar]
  172. BarrasA. MezzettiA. RichardA. LazzaroniS. RouxS. MelnykP. BetbederD. Monfilliette-DupontN. Formulation and characterization of polyphenol-loaded lipid nanocapsules.Int. J. Pharm.2009379227027710.1016/j.ijpharm.2009.05.05419501139
    [Google Scholar]
  173. SmithA. GiuntaB. BickfordP.C. FountainM. TanJ. ShytleR.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease.Int. J. Pharm.20103891-220721210.1016/j.ijpharm.2010.01.01220083179
    [Google Scholar]
  174. DangH. MengM.H.W. ZhaoH. IqbalJ. DaiR. DengY. LvF. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies.J. Nanopart. Res.2014164234710.1007/s11051‑014‑2347‑9
    [Google Scholar]
  175. ZhaoG. ZangS.Y. JiangZ.H. ChenY.Y. JiX.H. LuB.F. WuJ.H. QinG.W. GuoL.H. Postischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model.J. Nutr. Biochem.2011221092993610.1016/j.jnutbio.2010.07.01421190830
    [Google Scholar]
  176. AhmadN. AhmadR. AlamM.A. SamimM. IqbalZ. AhmadF.J. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia.Int. J. Biol. Macromol.20168832033210.1016/j.ijbiomac.2016.03.01926976069
    [Google Scholar]
  177. RamachandranS. ThangarajanS. A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in wistar rats.Chem. Biol. Interact.2016256253610.1016/j.cbi.2016.05.02027206696
    [Google Scholar]
  178. WangY. XuH. FuQ. MaR. XiangJ. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats.J. Neurol. Sci.20113041-2293410.1016/j.jns.2011.02.02521376343
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072340846241025144431
Loading
/content/journals/cbc/10.2174/0115734072340846241025144431
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alkaloids; Marine natural products; NF-κB; pathological process; polyphenols; terpenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test