Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Medicinal hemp or Cannabis ( L.) is one of the earliest herbs widely used in traditional medicine by human beings for millions of years. This species was originally thought to be endemic to Asian countries but has now grown worldwide. It is a dioecious and annual plant that belongs to the Cannabaceae family. It has a long history of cultivation for food, intoxicants, hemp medicine, rope, paper, fiber, and oil extraction. Due to its diverse therapeutic properties, it is legalized in over 50 countries and cultivated as a medicinal and recreational crop. This review was aimed at collecting information about medicinal cannabis, ranging from traditional use to commercial utilization. This review article is based on gathering scientific literature from Google Scholar, Scopus, PubMed, Science Direct, Wiley Online Library, Taylor Francis, and Springer with 137 documents, including original articles, review articles, books, and thesis from 1973 to 2024. So far, more than 500 phytochemicals have been identified. Phytocannabinoids are thought to be the main bioactive ingredients that produce therapeutic benefits. These are mostly produced or synthesized in secretary cells located inside of glandular trichomes that are found in the female inflorescence or flowers of hemp crop. Cannabidiol (CBD) has strong therapeutic potential and is used to cure many fatal diseases. A thorough understanding of the pharmacokinetics and metabolism of medicinal hemp is vital for tailoring treatment approaches and minimizing adverse effects. The effect and severity of Cannabidiol (CBD) and tetrahydrocannabinol (THC) are determined by the route of application and their dose. It can be concluded that much of the work needs to be done for the validation of ethnobotanical claims by conducting detailed studies on exploring various phytocannabinoids regarding medicinal use through and activities and the way forward for its commercial utilization.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072320482240902080452
2024-09-11
2025-08-16
Loading full text...

Full text loading...

References

  1. LigrestiA. De PetrocellisL. Di MarzoV. From phytocannabinoids to cannabinoid receptors and endocannabinoids: Pleiotropic physiological and pathological roles through complex pharmacology.Physiol. Rev.20169641593165910.1152/physrev.00002.201627630175
    [Google Scholar]
  2. GontijoÉ.C. Canabidiol e suas aplicações terapêuticas.Refacer201651336010.36607/refacer.v5i1.3360
    [Google Scholar]
  3. SchermaM. MasiaP. DeiddaM. FrattaW. TandaG. FaddaP. New perspectives on the use of cannabis in the treatment of psychiatric disorders.Medicines (Basel)20185410710.3390/medicines504010730279403
    [Google Scholar]
  4. RobisonR. O Grande Livro Da Cannabis.Vermont, USA1999
    [Google Scholar]
  5. GroceE. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research.J Med Regulation201810443210.30770/2572‑1852‑104.4.32
    [Google Scholar]
  6. ColeC. ZurboB. Industrial hemp–a new crop for NSW.Primefacts200880116
    [Google Scholar]
  7. BoniniS.A. PremoliM. TambaroS. KumarA. MaccarinelliG. MemoM. MastinuA. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history.J. Ethnopharmacol.201822730031510.1016/j.jep.2018.09.00430205181
    [Google Scholar]
  8. PellatiF. BorgonettiV. BrighentiV. BiagiM. BenvenutiS. CorsiL. Cannabis sativa L. and nonpsychoactive cannabinoids: Their chemistry and role against oxidative stress, inflammation, and cancer.BioMed Res. Int.20182018111510.1155/2018/169142830627539
    [Google Scholar]
  9. PáezJ.A. CampilloN.E. Innovative therapeutic potential of cannabinoid receptors as targets in Alzheimer’s disease and less well-known diseases.Curr. Med. Chem.201926183300334010.2174/092986732566618022609513229484980
    [Google Scholar]
  10. KlumpersL.E. ThackerD.L. A brief background on cannabis: From plant to medical indications.J. AOAC Int.2019102241242010.5740/jaoacint.18‑020830139415
    [Google Scholar]
  11. CoelhoM.P. DuarteP. CaladoM. AlmeidaA.J. ReisC.P. GasparM.M. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential.Life Sci.202332912183810.1016/j.lfs.2023.12183837290668
    [Google Scholar]
  12. McPartlandJ.M. Cannabis Systematics at the Levels of Family, Genus, and Species.Cannabis Cannabinoid Res.20183120321210.1089/can.2018.003930426073
    [Google Scholar]
  13. LissonS.N. MendhamN.J. CarberryP.S. Development of a hemp (Cannabis sativa L.) simulation model 1.General introduction and the effect of temperature on the pre-emergent development of hemp.Aust. J. Exp. Agric.200040340541110.1071/EA99058
    [Google Scholar]
  14. ZheljazkovV.D. MaggiF. Valorization of CBD-hemp through distillation to provide essential oil and improved cannabinoids profile.Sci. Rep.20211111989010.1038/s41598‑021‑99335‑434615971
    [Google Scholar]
  15. LachenmeierD.W. WalchS.G. Analysis and toxicological evaluation of cannabinoids in hemp food products—A review.Electron. J. Environ. Agric. Food Chem.20054812826
    [Google Scholar]
  16. LiuF.-H. Ethnobotanical research on origin, cultivation, distribution and utilization of hemp (Cannabis sativa L.) in China.Seman. Sch.2018162235242
    [Google Scholar]
  17. LarssonM. LageråsP. New evidence on the introduction, cultivation and processing of hemp ( Cannabis sativa L.) in southern Sweden.Environ. Archaeol.201520211111910.1179/1749631414Y.0000000029
    [Google Scholar]
  18. MetcalfD.A. WienerK.K.K. SalibaA. Comparing early hemp food consumers to non-hemp food consumers to determine attributes of early adopters of a novel food using the Food Choice Questionnaire (FCQ) and the Food Neophobia Scale (FNS).Future Foods2021310003110.1016/j.fufo.2021.100031
    [Google Scholar]
  19. VelmuruganG. ShaafiT. BhagavathiM. Evaluate the tensile, flexural and impact strength of hemp and flax based hybrid composites under cryogenic environment.Mater. Today Proc.2022501326133210.1016/j.matpr.2021.08.244
    [Google Scholar]
  20. ElSohlyM.A. SladeD. Chemical constituents of marijuana: The complex mixture of natural cannabinoids.Life Sci.200578553954810.1016/j.lfs.2005.09.01116199061
    [Google Scholar]
  21. OdiekaA.E. ObuzorG.U. OyedejiO.O. GondweM. HosuY.S. OyedejiA.O. The medicinal natural products of Cannabis sativa Linn.: A review.Molecules2022275168910.3390/molecules2705168935268790
    [Google Scholar]
  22. RadwanM.M. ChandraS. GulS. ElSohlyM.A. Cannabinoids, phenolics, terpenes and alkaloids of cannabis.Molecules2021269277410.3390/molecules2609277434066753
    [Google Scholar]
  23. FaragS. KayserO. Cultivation and Breeding of Cannabis sativa L. for Preparation of Standardized Extracts for Medicinal Purposes.Medicinal and Aromatic Plants of the WorldNetherlandsSpringer2015
    [Google Scholar]
  24. OstapczukK. AporiS.O. EstradaG. TianF. Hemp growth factors and extraction methods effect on antimicrobial activity of hemp seed oil: A systematic review.Separations202181018310.3390/separations8100183
    [Google Scholar]
  25. SchonhofenP. BristotI.J. CrippaJ.A. HallakJ.E.C. ZuardiA.W. ParsonsR.B. KlamtF. Cannabinoid-based therapies and brain development: Potential harmful effect of early modulation of the endocannabinoid system.CNS Drugs201832869771210.1007/s40263‑018‑0550‑430109642
    [Google Scholar]
  26. DolzaC. GongaE. FagesE. Tejada-OliverosR. BalartR. Quiles-CarrilloL. Green composites from partially bio-based poly (butylene succinate-co-adipate)-pbsa and short hemp fibers with itaconic acid-derived compatibilizers and plasticizers.Polymers (Basel)20221410196810.3390/polym1410196835631851
    [Google Scholar]
  27. SongY. LiuJ. ChenS. ZhengY. RuanS. BinY. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method.J. Polym. Environ.20132141117112710.1007/s10924‑013‑0569‑z
    [Google Scholar]
  28. ChandraS. Cannabis sativa L.: Botany and horticulture. Cannabis sativa L.-botany and biotechnology.Berlin, HeidelbergSpringerLink2017
    [Google Scholar]
  29. ClarkeR.C. MerlinM.D. Cannabis domestication, breeding history, present-day genetic diversity, and future prospects.Crit. Rev. Plant Sci.2016355-629332710.1080/07352689.2016.1267498
    [Google Scholar]
  30. ChandraS. LataH. ElSohlyM.A. Propagation of cannabis for clinical research: An approach towards a modern herbal medicinal products development.Front. Plant Sci.20201195810.3389/fpls.2020.0095832676092
    [Google Scholar]
  31. RussoE.B. Cannabis therapeutics and the future of neurology.Front. Integr. Nuerosci.2018125110.3389/fnint.2018.0005130405366
    [Google Scholar]
  32. GülckT. MøllerB.L. Phytocannabinoids: Origins and Biosynthesis.Trends Plant Sci.20202510985100410.1016/j.tplants.2020.05.00532646718
    [Google Scholar]
  33. BoothJ.K. PageJ.E. BohlmannJ. Terpene synthases from Cannabis sativa.PLoS One2017123e017391110.1371/journal.pone.017391128355238
    [Google Scholar]
  34. ZagoženM. ČerenakA. KreftS. Cannabigerol and cannabichromene in Cannabis sativa L.Acta Pharm.202171335536410.2478/acph‑2021‑002136654096
    [Google Scholar]
  35. WellingM.T. DeseoM.A. BacicA. DoblinM.S. Biosynthetic origins of unusual cannabimimetic phytocannabinoids in Cannabis sativa L: A review.Phytochemistry202220111328210.1016/j.phytochem.2022.11328235718133
    [Google Scholar]
  36. AdessoM. LaserP. MillsA. An overview of industrial hemp law in the United States. UDC/DCSL L.Rev.20192285
    [Google Scholar]
  37. AbuhasiraR. ShbiroL. LandschaftY. Medical use of cannabis and cannabinoids containing products – Regulations in Europe and North America.Eur. J. Intern. Med.2018492610.1016/j.ejim.2018.01.00129329891
    [Google Scholar]
  38. LevinsohnE.A. HillK.P. Clinical uses of cannabis and cannabinoids in the United States.J. Neurol. Sci.202041111671710.1016/j.jns.2020.11671732044684
    [Google Scholar]
  39. GaoniY. MechoulamR. Isolation, structure, and partial synthesis of an active constituent of hashish.J. Am. Chem. Soc.19648681646164710.1021/ja01062a046
    [Google Scholar]
  40. KumarA. PremoliM. AriaF. BoniniS.A. MaccarinelliG. GianoncelliA. MemoM. MastinuA. Cannabimimetic plants: Are they new cannabinoidergic modulators?Planta201924961681169410.1007/s00425‑019‑03138‑x30877436
    [Google Scholar]
  41. DevaneW.A. HanušL. BreuerA. PertweeR.G. StevensonL.A. GriffinG. GibsonD. MandelbaumA. EtingerA. MechoulamR. Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science199225850901946194910.1126/science.14709191470919
    [Google Scholar]
  42. MatsudaL.A. LolaitS.J. BrownsteinM.J. YoungA.C. BonnerT.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.Nature1990346628456156410.1038/346561a02165569
    [Google Scholar]
  43. SugiuraT. KondoS. SukagawaA. NakaneS. ShinodaA. ItohK. YamashitaA. WakuK. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain.Biochem. Biophys. Res. Commun.19952151899710.1006/bbrc.1995.24377575630
    [Google Scholar]
  44. McPartlandJ.M. GuyG.W. Di MarzoV. Care and feeding of the endocannabinoid system: A systematic review of potential clinical interventions that upregulate the endocannabinoid system.PLoS One201493e8956610.1371/journal.pone.008956624622769
    [Google Scholar]
  45. KaurR. AmbwaniS.R. SinghS. Endocannabinoid system: A multi-facet therapeutic target.Curr. Clin. Pharmacol.201611211011710.2174/157488471166616041810533927086601
    [Google Scholar]
  46. Ben-ShabatS. FrideE. SheskinT. TamiriT. RheeM.H. VogelZ. BisognoT. De PetrocellisL. Di MarzoV. MechoulamR. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity.Eur. J. Pharmacol.19983531233110.1016/S0014‑2999(98)00392‑69721036
    [Google Scholar]
  47. IzzoA.A. BorrelliF. CapassoR. Di MarzoV. MechoulamR. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb.Trends Pharmacol. Sci.2009301051552710.1016/j.tips.2009.07.00619729208
    [Google Scholar]
  48. PertweeR.G. HowlettA.C. AboodM.E. AlexanderS.P.H. Di MarzoV. ElphickM.R. GreasleyP.J. HansenH.S. KunosG. MackieK. MechoulamR. RossR.A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB₁ and CB₂.Pharmacol. Rev.201062458863110.1124/pr.110.00300421079038
    [Google Scholar]
  49. FasinuP.S. PhillipsS. ElSohlyM.A. WalkerL.A. Current status and prospects for cannabidiol preparations as new therapeutic agents.Pharmacotherapy201636778179610.1002/phar.178027285147
    [Google Scholar]
  50. ZhornitskyS. PotvinS. Cannabidiol in humans-the quest for therapeutic targets.Pharmaceuticals (Basel)20125552955210.3390/ph505052924281562
    [Google Scholar]
  51. BorodovskyJ.T. CrosierB.S. LeeD.C. SargentJ.D. BudneyA.J. Smoking, vaping, eating: Is legalization impacting the way people use cannabis?Int. J. Drug Policy20163614114710.1016/j.drugpo.2016.02.02226992484
    [Google Scholar]
  52. VázquezM. Clinical pharmacokinetics of cannabinoids and potential drug-drug interactions.Cannabinoids and SleepBerlin, HeidelbergSpringerLink202110.1007/978‑3‑030‑61663‑2_3
    [Google Scholar]
  53. O'BrienK. Routes of administration, pharmacokinetics and safety of medicinal cannabis.Medicinal Cannabis and CBD in Mental HealthcareBerlin, HeidelbergSpringerLink202110.1007/978‑3‑030‑78559‑8_11
    [Google Scholar]
  54. ChinG.S. PageR.L. BainbridgeJ. The pharmacodynamics, pharmacokinetics, and potential drug interactions of cannabinoids.Cannabis in MedicineBerlin, HeidelbergSpringerLink2020466110.1007/978‑3‑030‑45968‑0_3
    [Google Scholar]
  55. GrotenhermenF. Clinical pharmacodynamics of cannabinoids.The Handbook of Cannabis Therapeutics.London, United KingdomRoutledge2014117170
    [Google Scholar]
  56. Ibeas BihC. ChenT. NunnA.V.W. BazelotM. DallasM. WhalleyB.J. Molecular targets of cannabidiol in neurological disorders.Neurotherapeutics201512469973010.1007/s13311‑015‑0377‑326264914
    [Google Scholar]
  57. ZgairA. LeeJ.B. WongJ.C.M. TahaD.A. AramJ. Di VirgilioD. McArthurJ.W. ChengY.K. HennigI.M. BarrettD.A. FischerP.M. ConstantinescuC.S. GershkovichP. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation.Sci. Rep.2017711454210.1038/s41598‑017‑15026‑z29109461
    [Google Scholar]
  58. HuestisM.A. SmithM.L. Human cannabinoid pharmacokinetics and interpretation of cannabinoid concentrations in biological fluids and tissues.Marijuana and the Cannabinoids.Berlin, HeidelbergSpringer200720523510.1007/978‑1‑59259‑947‑9_9
    [Google Scholar]
  59. FosterB.C. AbramoviciH. HarrisC.S. Cannabis and cannabinoids: Kinetics and interactions.Am. J. Med.2019132111266127010.1016/j.amjmed.2019.05.01731152723
    [Google Scholar]
  60. PichiniS. MalacaS. GottardiM. Pérez-AcevedoA.P. PapaseitE. Perez-MañaC. FarréM. PacificiR. TagliabracciA. MannocchiG. BusardòF.P. UHPLC-MS/MS analysis of cannabidiol metabolites in serum and urine samples. Application to an individual treated with medical cannabis.Talanta2021223Pt 212177210.1016/j.talanta.2020.12177233298281
    [Google Scholar]
  61. McCartneyD. KevinR.C. SuraevA.S. SahinovicA. DoohanP.T. Bedoya-PérezM.A. GrunsteinR.R. HoyosC.M. McGregorI.S. How long does a single oral dose of cannabidiol persist in plasma? Findings from three clinical trials.Drug Test. Anal.202315333434410.1002/dta.341936478641
    [Google Scholar]
  62. ZamarripaC.A. SpindleT.R. SurujunarainR. WeertsE.M. BansalS. UnadkatJ.D. PaineM.F. VandreyR. Assessment of orally administered Δ9-tetrahydrocannabinol when coadministered with cannabidiol on Δ9-tetrahydrocannabinol pharmacokinetics and pharmacodynamics in healthy adults: A randomized clinical trial.JAMA Netw. Open202362e2254752e225475210.1001/jamanetworkopen.2022.5475236780161
    [Google Scholar]
  63. MacCallumC.A. EadieL. BarrA.M. BoivinM. LuS. Practical strategies using medical cannabis to reduce harms associated with long term opioid use in chronic pain.Front. Pharmacol.20211263316810.3389/fphar.2021.63316833995035
    [Google Scholar]
  64. DanilaG.M. PuiuM. ZamfirL.G. BalaC. Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor.Talanta202223712290510.1016/j.talanta.2021.12290534736642
    [Google Scholar]
  65. JalaliS. SalamiS.A. SharifiM. SohrabiS. Signaling compounds elicit expression of key genes in cannabinoid pathway and related metabolites in cannabis.Ind. Crops Prod.201913310511010.1016/j.indcrop.2019.03.004
    [Google Scholar]
  66. HarveyD.J. MartinB.R. PatonW.D. Identification of in vivo liver metabolites of delta 1-tetra-hydrocannabinol, cannabidiol, and cannabinol produced by the guninea-pig.J. Pharm. Pharmacol.19803242672716103056
    [Google Scholar]
  67. SongW. YinH. ZhongY. WangD. XuW. DengY. Regional differentiation based on volatile compounds via HS-SPME/GC–MS and chemical compositions comparison of hemp (Cannabis sativa L.) seeds.Food Res. Int.2022162Pt B11215110.1016/j.foodres.2022.11215136461412
    [Google Scholar]
  68. BuchtovaT. LukacD. SkrottZ. ChromaK. BartekJ. MistrikM. Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics.Int. J. Mol. Sci.2023243288510.3390/ijms2403288536769206
    [Google Scholar]
  69. BoehnkeK.F. HäuserW. FitzcharlesM.A. Cannabidiol (CBD) in Rheumatic Diseases (Musculoskeletal Pain).Curr. Rheumatol. Rep.202224723824610.1007/s11926‑022‑01077‑335503198
    [Google Scholar]
  70. BroeckerS. PragstF. Isomerization of cannabidiol and Δ 9 ‐tetrahydrocannabinol during positive electrospray ionization. In‐source hydrogen/deuterium exchange experiments by flow injection hybrid quadrupole‐time‐of‐flight mass spectrometry.Rapid Commun. Mass Spectrom.201226121407141410.1002/rcm.624422592984
    [Google Scholar]
  71. HenleyD. LightmanS. CarrellR. Cortisol and CBG — Getting cortisol to the right place at the right time.Pharmacol. Ther.201616612813510.1016/j.pharmthera.2016.06.02027411675
    [Google Scholar]
  72. XuL. WangS. ShenH. FengQ. ZhangX. NiH. YaoM. Analgesic and toxic effects of venenum bufonis and its constituent compound cinobufagin: A comparative study.Neurotoxicol. Teratol.201973495310.1016/j.ntt.2019.03.00430943443
    [Google Scholar]
  73. Luz-VeigaM. AmorimM. Pinto-RibeiroI. OliveiraA.L.S. SilvaS. PimentelL.L. Rodríguez-AlcaláL.M. MadureiraR. PintadoM. Azevedo-SilvaJ. FernandesJ. Cannabidiol and cannabigerol exert antimicrobial activity without compromising skin microbiota.Int. J. Mol. Sci.2023243238910.3390/ijms2403238936768709
    [Google Scholar]
  74. SpinelliF. CapparelliE. AbateC. ColabufoN.A. ContinoM. Perspectives of Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders: Structure–Affinity Relationship (SAfiR) and Structure–Activity Relationship (SAR) Studies.J. Med. Chem.201760249913993110.1021/acs.jmedchem.7b0015528608697
    [Google Scholar]
  75. KolliparaR. CBD can be combined with additional cannabinoids for optimal seizure reduction and requires GPR55 for its anticonvulsant effects.bioRxiv202310.1101/2023.02.15.528525
    [Google Scholar]
  76. Naim-FeilE. ElkinsA.C. MalmbergM.M. RamD. TranJ. SpangenbergG.C. RochfortS.J. CoganN.O.I. The Cannabis Plant as a Complex System: Interrelationships between Cannabinoid Compositions, Morphological, Physiological and Phenological Traits.Plants202312349310.3390/plants1203049336771577
    [Google Scholar]
  77. KennedyM. Cannabis, cannabidiol and tetrahydrocannabinol in sport: An overview.Intern. Med. J.20225291471147710.1111/imj.1572435191178
    [Google Scholar]
  78. FaddaP. RobinsonL. FrattaW. PertweeR.G. RiedelG. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.Neuropharmacology20044781170117910.1016/j.neuropharm.2004.08.00915567426
    [Google Scholar]
  79. SpindleT.R. ConeE.J. GoffiE. WeertsE.M. MitchellJ.M. WineckerR.E. BigelowG.E. FlegelR.R. VandreyR. Pharmacodynamic effects of vaporized and oral cannabidiol (CBD) and vaporized CBD-dominant cannabis in infrequent cannabis users.Drug Alcohol Depend.202021110793710.1016/j.drugalcdep.2020.10793732247649
    [Google Scholar]
  80. PennypackerS.D. Romero-SandovalE.A. CBD and THC: Do they complement each other like Yin and Yang?Pharmacotherapy202040111152116510.1002/phar.246933080058
    [Google Scholar]
  81. CzégényZ. NagyG. BabinszkiB. BajtelÁ. SebestyénZ. KissT. Csupor-LöfflerB. TóthB. CsuporD. CBD, a precursor of THC in e-cigarettes.Sci. Rep.2021111895110.1038/s41598‑021‑88389‑z33903673
    [Google Scholar]
  82. DevinskyO. CilioM.R. CrossH. Fernandez-RuizJ. FrenchJ. HillC. KatzR. Di MarzoV. Jutras-AswadD. NotcuttW.G. Martinez-OrgadoJ. RobsonP.J. RohrbackB.G. ThieleE. WhalleyB. FriedmanD. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders.Epilepsia201455679180210.1111/epi.1263124854329
    [Google Scholar]
  83. MackieK. Distribution of cannabinoid receptors in the central and peripheral nervous system.CannabinoidsBerlin, HeidelbergSpringer Link200529932510.1007/3‑540‑26573‑2_10
    [Google Scholar]
  84. SzaboB. SchlickerE. Effects of cannabinoids on neurotransmission.CannabinoidsBerlin, HeidelbergSpringer Link2005327365
    [Google Scholar]
  85. Sim-SelleyL.J. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids.Crit. Rev. Neurobiol.20031521010.1615/CritRevNeurobiol.v15.i2.10
    [Google Scholar]
  86. BorowskaM. CzarnywojtekA. Sawicka-GutajN. WolińskiK. PłazińskaM.T. MikołajczakP. RuchałaM. The effects of cannabinoids on the endocrine system.Endokrynol. Pol.201869670571910.5603/EP.a2018.007230618031
    [Google Scholar]
  87. NachnaniR. Raup-KonsavageW.M. VranaK.E. The pharmacological case for cannabigerol.J. Pharmacol. Exp. Ther.2021376220421210.1124/jpet.120.00034033168643
    [Google Scholar]
  88. BritchS.C. WileyJ.L. YuZ. ClowersB.H. CraftR.M. Cannabidiol-Δ 9 -tetrahydrocannabinol interactions on acute pain and locomotor activity.Drug Alcohol Depend.201717518719710.1016/j.drugalcdep.2017.01.04628445853
    [Google Scholar]
  89. FrancoV. PeruccaE. Pharmacological and therapeutic properties of cannabidiol for epilepsy.Drugs201979131435145410.1007/s40265‑019‑01171‑431372958
    [Google Scholar]
  90. PisantiS. MalfitanoA.M. CiagliaE. LambertiA. RanieriR. CuomoG. AbateM. FaggianaG. ProtoM.C. FioreD. LaezzaC. BifulcoM. Cannabidiol: State of the art and new challenges for therapeutic applications.Pharmacol. Ther.201717513315010.1016/j.pharmthera.2017.02.04128232276
    [Google Scholar]
  91. MontoyaZ. ConroyM. Vanden HeuvelB.D. PauliC.S. ParkS.H. Cannabis contaminants limit pharmacological use of cannabidiol.Front. Pharmacol.20201157183210.3389/fphar.2020.57183233013414
    [Google Scholar]
  92. RongC. LeeY. CarmonaN.E. ChaD.S. RagguettR.M. RosenblatJ.D. MansurR.B. HoR.C. McIntyreR.S. Cannabidiol in medical marijuana: Research vistas and potential opportunities.Pharmacol. Res.201712121321810.1016/j.phrs.2017.05.00528501518
    [Google Scholar]
  93. BrownJ. WintersteinA. Potential adverse drug events and drug–drug interactions with medical and consumer cannabidiol (CBD) use.J. Clin. Med.20198798910.3390/jcm807098931288397
    [Google Scholar]
  94. PageR.L.II AllenL.A. KlonerR.A. CarrikerC.R. MartelC. MorrisA.A. PianoM.R. RanaJ.S. SaucedoJ.F. Medical marijuana, recreational cannabis, and cardiovascular health: A scientific statement from the American Heart Association.Circulation202014210e131e15210.1161/CIR.000000000000088332752884
    [Google Scholar]
  95. WeberY.G. LercheH. Genetic mechanisms in idiopathic epilepsies.Dev. Med. Child Neurol.200850964865410.1111/j.1469‑8749.2008.03058.x18754913
    [Google Scholar]
  96. BergamaschiM.M. QueirozR.H. ZuardiA.W. CrippaJ.A. Safety and side effects of cannabidiol, a Cannabis sativa constituent.Curr. Drug Saf.20116423724910.2174/15748861179828092422129319
    [Google Scholar]
  97. VergaraD. BidwellL.C. GaudinoR. TorresA. DuG. RuthenburgT.C. deCesareK. LandD.P. HutchisonK.E. KaneN.C. Compromised external validity: Federally produced cannabis does not reflect legal markets.Sci. Rep.2017714652810.1038/srep4652828422145
    [Google Scholar]
  98. NiesinkR.J.M. van LaarM.W. Does cannabidiol protect against adverse psychological effects of THC?Front. Psychiatry2013413010.3389/fpsyt.2013.0013024137134
    [Google Scholar]
  99. IfflandK. GrotenhermenF. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies.Cannabis Cannabinoid Res.20172113915410.1089/can.2016.003428861514
    [Google Scholar]
  100. EnglundA. MorrisonP.D. NottageJ. HagueD. KaneF. BonaccorsoS. StoneJ.M. ReichenbergA. BrenneisenR. HoltD. FeildingA. WalkerL. MurrayR.M. KapurS. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment.J. Psychopharmacol.2013271192710.1177/026988111246010923042808
    [Google Scholar]
  101. BoggsD.L. NguyenJ.D. MorgensonD. TaffeM.A. RanganathanM. Clinical and preclinical evidence for functional interactions of cannabidiol and Δ9-tetrahydrocannabinol.Neuropsychopharmacology201843114215410.1038/npp.2017.20928875990
    [Google Scholar]
  102. HighetB.H. LesserE.R. JohnsonP.W. KaurJ.S. Tetrahydrocannabinol and cannabidiol use in an outpatient palliative medicine population.Am. J. Hosp. Palliat. Care202037858959310.1177/104990911990037831986898
    [Google Scholar]
  103. CareyL.M. MaguireD.R. FranceC.P. Effects of Δ⁹-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC/CBD mixtures on fentanyl versus food choice in rhesus monkeys.Drug Alcohol Depend.202324410978710.1016/j.drugalcdep.2023.10978736753805
    [Google Scholar]
  104. HložekT. UttlL. KadeřábekL. BalíkováM. LhotkováE. HorsleyR.R. NovákováP. ŠíchováK. ŠtefkováK. TylšF. KuchařM. PáleníčekT. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC.Eur. Neuropsychopharmacol.201727121223123710.1016/j.euroneuro.2017.10.03729129557
    [Google Scholar]
  105. Supaart Sirikantaramas Futoshi Taura Satoshi Morimoto Yukihiro Shoyama Recent advances in Cannabis sativa research: Biosynthetic studies and its potential in biotechnology.Curr. Pharm. Biotechnol.20078423724310.2174/13892010778138745617691992
    [Google Scholar]
  106. TreyerA. ReinhardtJ.K. EigenmannD.E. OufirM. HamburgerM. Phytochemical Comparison of Medicinal Cannabis Extracts and Study of Their CYP-Mediated Interactions with Coumarinic Oral Anticoagulants.Med. Cannabis Cannabinoids202361213110.1159/00052846536814687
    [Google Scholar]
  107. SarkarS. Inhibitory activity of biosurfactants against H+-K+ ATPases and defense against gastric ulcers.Green Sustainable Process for Chemical and Environmental Engineering and Science.AmsterdamElsevier202223524210.1016/B978‑0‑323‑85146‑6.00002‑4
    [Google Scholar]
  108. BüttenbenderS.L. CarvalhoÂ.R. de Souza BarbosaF. Scorsatto OrtizR. LimbergerR.P. MendezA.S.L. Fragmentation of cannabinoids by flow injection analysis tandem mass spectrometry (FIA–MS/MS).J. AOAC Int.2022105391592710.1093/jaoacint/qsab16934935936
    [Google Scholar]
  109. JastrząbA. Jarocka-KarpowiczI. SkrzydlewskaE. The origin and biomedical relevance of cannabigerol.Int. J. Mol. Sci.20222314792910.3390/ijms2314792935887277
    [Google Scholar]
  110. KraemerM. BroeckerS. MadeaB. HessC. Decarbonylation: A metabolic pathway of cannabidiol in humans.Drug Test. Anal.201911795796710.1002/dta.257230698361
    [Google Scholar]
  111. OultramJ.M.J. PeglerJ.L. BowserT.A. NeyL.J. EamensA.L. GrofC.P.L. Cannabis sativa: Interdisciplinary strategies and avenues for medical and commercial progression outside of CBD and THC.Biomedicines20219323410.3390/biomedicines903023433652704
    [Google Scholar]
  112. JohnsonJ.R. Burnell-NugentM. LossignolD. Ganae-MotanE.D. PottsR. FallonM.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain.J. Pain Symptom Manage.201039216717910.1016/j.jpainsymman.2009.06.00819896326
    [Google Scholar]
  113. ClarkeR.C. WatsonD.P. Cannabis and natural cannabis medicines.Marijuana and the Cannabinoids.AmsterdamSpringer200711510.1007/978‑1‑59259‑947‑9_1
    [Google Scholar]
  114. ReddyV.A. LeongS.H. JangI.C. RajaniS. Metabolic Engineering of Nicotiana benthamiana to Produce Cannabinoid Precursors and Their Analogues.Metabolites20221212118110.3390/metabo1212118136557219
    [Google Scholar]
  115. ApicellaP.V. SandsL.B. MaY. BerkowitzG.A. Delineating genetic regulation of cannabinoid biosynthesis during female flower development inCannabis sativa.Plant Direct202266e41210.1002/pld3.41235774623
    [Google Scholar]
  116. HsiehG.C. PaiM. ChandranP. HookerB.A. ZhuC.Z. SalyersA.K. WensinkE.J. ZhanC. CarrollW.A. DartM.J. YaoB.B. HonoreP. MeyerM.D. Central and peripheral sites of action for CB 2 receptor mediated analgesic activity in chronic inflammatory and neuropathic pain models in rats.Br. J. Pharmacol.2011162242844010.1111/j.1476‑5381.2010.01046.x20880025
    [Google Scholar]
  117. FellermeierM. EisenreichW. BacherA. ZenkM.H. Biosynthesis of cannabinoids.Eur. J. Biochem.200126861596160410.1046/j.1432‑1327.2001.02030.x11248677
    [Google Scholar]
  118. PhillipsM. LeónP. BoronatA. RodríguezconcepciónM. The plastidial MEP pathway: Unified nomenclature and resources.Trends Plant Sci.2008131261962310.1016/j.tplants.2008.09.00318948055
    [Google Scholar]
  119. BickJ.A. LangeB.M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane.Arch. Biochem. Biophys.2003415214615410.1016/S0003‑9861(03)00233‑912831836
    [Google Scholar]
  120. LauleO. FürholzA. ChangH.S. ZhuT. WangX. HeifetzP.B. GruissemW. LangeM. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.Proc. Natl. Acad. Sci. USA2003100116866687110.1073/pnas.103175510012748386
    [Google Scholar]
  121. KumariS. PriyaP. MisraG. YadavG. Structural and biochemical perspectives in plant isoprenoid biosynthesis.Phytochem. Rev.201312225529110.1007/s11101‑013‑9284‑6
    [Google Scholar]
  122. NagegowdaD.A. GuptaP. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids.Plant Sci.202029411045710.1016/j.plantsci.2020.11045732234216
    [Google Scholar]
  123. HanušL.O. MeyerS.M. MuñozE. Taglialatela-ScafatiO. AppendinoG. Phytocannabinoids: A unified critical inventory.Nat. Prod. Rep.201633121357139210.1039/C6NP00074F27722705
    [Google Scholar]
  124. AbidiA.H. AlghamdiS.S. DerefinkoK. A critical review of cannabis in medicine and dentistry: A look back and the path forward.Clin. Exp. Dent. Res.20228361363110.1002/cre2.56435362240
    [Google Scholar]
  125. PaganiA. ScalaF. ChianeseG. GrassiG. AppendinoG. Taglialatela-ScafatiO. Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L.Tetrahedron201167193369337310.1016/j.tet.2011.03.062
    [Google Scholar]
  126. EinsiedelE.F. GoldenbergL. Dwarfing the social? Nanotechnology lessons from the biotechnology front.Bull. Sci. Technol. Soc.2004241283310.1177/0270467604263110
    [Google Scholar]
  127. YeungA.W.K. TzvetkovN.T. GuptaV.K. GuptaS.C. OriveG. BonnG.K. FiebichB. BishayeeA. EfferthT. XiaoJ. SilvaA.S. RussoG.L. DagliaM. BattinoM. OrhanI.E. NicolettiF. HeinrichM. AggarwalB.B. DiederichM. BanachM. WeckwerthW. BauerR. PerryG. BayerE.A. HuberL.A. WolfenderJ-L. VerpoorteR. MaciasF.A. WinkM. StadlerM. GibbonsS. CifuentesA. IbanezE. LizardG. MüllerR. RistowM. AtanasovA.G. Current research in biotechnology: Exploring the biotech forefront.Curr. Res. Biotechnol.20191344010.1016/j.crbiot.2019.08.003
    [Google Scholar]
  128. SchrotR.J. HubbardJ.R. Cannabinoids: Medical implications.Ann. Med.201648312814110.3109/07853890.2016.114579426912385
    [Google Scholar]
  129. NamdarD. AnisO. PoulinP. KoltaiH. Chronological review and rational and future prospects of cannabis-based drug development.Molecules20202520482110.3390/molecules2520482133092255
    [Google Scholar]
  130. RubinR. The path to the first FDA-approved cannabis-derived treatment and what comes next.JAMA2018320121227122910.1001/jama.2018.1191430193358
    [Google Scholar]
  131. HakkarainenP. FrankV.A. BarrattM.J. DahlH.V. DecorteT. KarjalainenK. LentonS. PotterG. WerseB. Growing medicine: Small-scale cannabis cultivation for medical purposes in six different countries.Int. J. Drug Policy201526325025610.1016/j.drugpo.2014.07.00525123694
    [Google Scholar]
  132. HuangH. BaiY. ZhangY. HuangJ. QinJ. LiX. Occurrence and Transformation of Ephedrine/Pseudoephedrine and Methcathinone in Wastewater in China.Environ. Sci. Technol.20225614102491025710.1021/acs.est.2c0263935793412
    [Google Scholar]
  133. ToddT. The benefits of marijuana legalization and regulation.Berkeley J. Crim. L.20182399
    [Google Scholar]
  134. BadiolaI. DoshiA. NarouzeS. Cannabis, cannabinoids, and cannabis-based medicines: Future research directions for analgesia.Reg. Anesth. Pain Med.202247743744410.1136/rapm‑2021‑10310935534020
    [Google Scholar]
  135. SakalC. LynskeyM. SchlagA.K. NuttD.J. Developing a real-world evidence base for prescribed cannabis in the United Kingdom: Preliminary findings from Project Twenty21.Psychopharmacology (Berl.)202223951147115510.1007/s00213‑021‑05855‑233970291
    [Google Scholar]
  136. MirA.H. JavedS. Indian cannabis farming policies and use of fintech to improve related legalities. Rapid Innovation and Development in the Global Cannabis MarketPennsylvania, United StatesIGI Global202310.4018/978‑1‑6684‑6346‑8.ch005
    [Google Scholar]
  137. ShaoH. DuH. GanQ. YeD. ChenZ. ZhuY. ZhuS. QuL. LuJ. LiY. DuanJ. GuY. ChenM. Trends of the global burden of disease attributable to cannabis use disorder in 204 countries and territories, 1990–2019: Results from the Disease Burden Study 2019.Int. J. Ment. Health Addict.2023202312310.1007/s11469‑022‑00999‑436817983
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072320482240902080452
Loading
/content/journals/cbc/10.2174/0115734072320482240902080452
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cannabidiol; Cannabis sativa; medicinal hemp; Phytocannabinoids; terpenoids; trichomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test