Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Marine sources, such as phytoplankton and zooplankton from seas or oceans that correspond to various marine ecosystems, are the sources of marine pharmaceuticals. These medications have been utilized as active ingredients in cosmeceutical formulas to treat a range of skin conditions. Cosmeceuticals, or cosmetic products with an active pharmaceutical ingredient that imparts therapeutic efficacy or has benefits similar to those of medicine for skin health, are characterized as cosmetics plus medicines. Algae, fungi, sea cucumbers, seaweed, corals, prawns, and other marine organisms can all produce medicinal components that effectively treat wrinkles, blemishes, aging, hyperpigmentation, and oxidation. Because these medications and sources are natural, they have few or no negative effects on the skin. The skin is the site of action for the topical distribution of marine medicines and cosmeceuticals to treat this condition. This study investigates a viable nano-delivery method for marine medications in cosmetics, providing long-term and practical means of improving skin health and treating dermatological issues. The focus of this review is on marine medications, their chemical components, cosmeceutical usage, and the pathophysiology of various dermatological conditions. Additionally, raw ingredients used as excipients in cosmeceutical formulations can be sourced from marine species. Because of massive industrialization, unsustainability has become a major research topic. Marine chemicals, on the other hand, are highly eco-friendly and sustainable. A thorough analysis of the literature in this area focuses on the effects of different marine chemicals on the skin, as well as on the physicochemical parameters and post-formulation evaluations. As far as current research and prospects go, the cosmetics and cosmeceuticals sector is a better fit for marine pharmaceuticals when treating skin conditions.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072308772240905142254
2024-09-13
2025-08-17
Loading full text...

Full text loading...

References

  1. ChandraR. ParraR. IqbalH.M. MN Iqbal H. Phycobiliproteins: a novel green tool from marine origin blue-green algae and red algae.Protein Pept. Lett.201724211812510.2174/092986652366616080216022227491380
    [Google Scholar]
  2. FonsecaS. AmaralM.N. ReisC.P. CustódioL. Marine Natural Products as Innovative Cosmetic Ingredients.Mar. Drugs202321317010.3390/md2103017036976219
    [Google Scholar]
  3. LimY.S. OkY.J. HwangS.Y. KwakJ.Y. YoonS. Marine collagen as a promising biomaterial for biomedical applications.Mar. Drugs201917846710.3390/md1708046731405173
    [Google Scholar]
  4. LaraquiO. ManarN. LaraquiS. GhailanT. DeschampsF. HammoudaR. LaraquiC.E.H. Prevalence of skin diseases amongst Moroccan fishermen.Int. Marit. Health2018691222710.5603/IMH.2018.000429611610
    [Google Scholar]
  5. DingJ. WuB. ChenL. Application of marine microbial natural products in cosmetics.Front. Microbiol.202213May89250510.3389/fmicb.2022.89250535711762
    [Google Scholar]
  6. DanD. SrivastavaN. Psoriasis: Striving for potential biomarkers.Assay Drug Dev. Technol.202321623525710.1089/adt.2023.01437669031
    [Google Scholar]
  7. Nimisha SinghA. Exploring marine-derived bioactives for innovative cosmeceutical applications: A review.J. Appl. Nat. Sci.202416247849410.31018/jans.v16i2.5433
    [Google Scholar]
  8. LeT.D. SuttikhanaI. AshaoluT.J. Unconventional production strategies, action mechanisms, and structure-functional attributes of food-derived peptides.Food Hydrocoll.202314410905410.1016/j.foodhyd.2023.109054
    [Google Scholar]
  9. AlvesA. SousaE. KijjoaA. PintoM. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics.Molecules20202511253610.3390/molecules2511253632486036
    [Google Scholar]
  10. DesaiP.S. KumarM.S. Marine antioxidants and their role in improving skin health.Marine Antioxidants.Academic press202332733910.1016/B978‑0‑323‑95086‑2.00014‑X
    [Google Scholar]
  11. SinghA. Nimisha Novel nanolipoidal systems for the management of skin cancer.Recent Pat. Drug Deliv. Formul.202014210812510.2174/187221131466620081711570032807069
    [Google Scholar]
  12. CunhaS.A. PintadoM.E. Bioactive peptides derived from marine sources: Biological and functional properties.Trends Food Sci. Technol.202211934837010.1016/j.tifs.2021.08.017
    [Google Scholar]
  13. PrajaputraV. IsnainiN. MaryamS. ErnawatiE. DelianaF. HaridhiH.A. FadliN. KarinaS. AgustinaS. NurfadillahN. ArisaI.I. DesiyanaL.S. BakriT.K. Exploring marine collagen: Sustainable sourcing, extraction methods, and cosmetic applications.S. Afr. J. Chem. Eng.202447119721110.1016/j.sajce.2023.11.006
    [Google Scholar]
  14. IsmailMM. ElkomyRG. El-SheekhMM. Bioactive compounds from components of marine ecosystem.Marine Ecology: Current and Future DevelopmentsBentham202320625610.2174/9789815051995123030009
    [Google Scholar]
  15. PattersonS.E. “Beauty Isn’t Prerequisite for Girl Marines”: Images of female marines during World War II.Marine Corps History20228152010.35318/mch.2022080101
    [Google Scholar]
  16. VartakA. SonawaneS. AlimH. PatelN. HamrouniL. KhanJ. AhmadA. Medicinal and aromatic plants in the cosmetics industry.Medicinal and Aromatic Plants of India.Springer2022134136410.1007/978‑3‑030‑98701‑5_12
    [Google Scholar]
  17. NapperI.E. ThompsonR.C. Plastic debris in the marine environment: history and future challenges.Glob. Chall.202046190008110.1002/gch2.20190008132685195
    [Google Scholar]
  18. FittonJH. IrhimehM. FalkN. Macroalgal fucoidan extracts: A new opportunity for marine cosmetics.200712285564
    [Google Scholar]
  19. RahmanM.A. Collagen of extracellular matrix from marine invertebrates and its medical applications.Mar. Drugs201917211810.3390/md1702011830769916
    [Google Scholar]
  20. ShaikhH.S. Cosmeceutical from marine origin and their collection, isolation and extraction: A Review.Res. J. Top. Cosmet. Sci.2022132929810.52711/2321‑5844.2022.00015
    [Google Scholar]
  21. RamosP. Blanco ComesañaM. LópezO. TroncosoJ. Pérez MartínRI. González SoteloC. Marine collagen hydrolysates in lipid nanoparticles delivery systems for cosmetic applications.2022
    [Google Scholar]
  22. FavasR. MoroneJ. MartinsR. VasconcelosV. LopesG. Cyanobacteria secondary metabolites as biotechnological ingredients in natural anti-aging cosmetics: Potential to overcome hyperpigmentation, loss of skin density and UV radiation-deleterious effects.Mar. Drugs202220318310.3390/md2003018335323482
    [Google Scholar]
  23. SusanoP. SilvaJ. AlvesC. MartinsA. PinteusS. GasparH. GoettertM.I. PedrosaR. Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development.Algal Res.20226210263410.1016/j.algal.2022.102634
    [Google Scholar]
  24. LuW.C. ChiuC.S. ChanY.J. GuoT.P. LinC.C. WangP.C. LinP.Y. MulioA.T. LiP.H. An in vivo study to evaluate the efficacy of blue shark (Prionace glauca) cartilage collagen as a cosmetic.Mar. Drugs2022201063310.3390/md2010063336286457
    [Google Scholar]
  25. PavlicevicM. MaestriE. MarmiroliM. Marine bioactive peptides—an overview of generation, structure and application with a focus on food sources.Mar. Drugs202018842410.3390/md1808042432823602
    [Google Scholar]
  26. LimS.J. JungD.W. HillmanP.F. NamS.J. LeeC.S. SNA077, an extract of marine Streptomyces sp., inhibits melanogenesis by downregulating melanogenic proteins via inactivation of cAMP/PKA/CREB signaling.Int. J. Mol. Sci.202223231492210.3390/ijms23231492236499251
    [Google Scholar]
  27. BourgadeB. StensjöK. Synthetic biology in marine cyanobacteria: Advances and challenges.Front. Microbiol.20221399436510.3389/fmicb.2022.99436536188008
    [Google Scholar]
  28. Di CanioM. BurziL. RiberoS. AmentaF. QuaglinoP. Role of teledermatology in the management of dermatological diseases among marine workers: A cross-sectional study comparing general practitioners and dermatological diagnoses.Front. Med. (Lausanne)2022995531110.3389/fmed.2022.95531136035410
    [Google Scholar]
  29. SinghA. SrivastavaN. An insight into the potential of flavonoids and furanocoumarins in the treatment of psoriasis.Curr. Bioact. Compd.20231910e02062321762910.2174/1573407219666230602152010
    [Google Scholar]
  30. WhitakerR.D. AltintzoglouT. LianK. FernandezE.N. Marine bioactive peptides in supplements and functional foods-A commercial perspective.Curr. Pharm. Des.202127111353136410.2174/138161282499920110516400033155895
    [Google Scholar]
  31. AgrawalS. BarrowC.J. AdholeyaA. DeshmukhS.K. Unveiling the dermatological potential of marine fungal species components: Antioxidant and inhibitory capacities over tyrosinase.Biotechnol. Appl. Biochem.20226931252126610.1002/bab.220134028084
    [Google Scholar]
  32. WijayantoA. SabdonoA. LestariE.S. SiberoM.T. Antimicrobial potential of Gorgonian Alcyonium sp. associated bacteria against human pathogenic skin diseases.J. Mar. Res.2023122203211
    [Google Scholar]
  33. HaddadV.Jr LupiO. LonzaJ.P. TyringS.K. Tropical dermatology: Marine and aquatic dermatology.J. Am. Acad. Dermatol.200961573375010.1016/j.jaad.2009.01.04619836641
    [Google Scholar]
  34. VenkatesanJ. AnilS. KimS.K. ShimM. Marine fish proteins and peptides for cosmeceuticals: A review.Mar. Drugs201715514310.3390/md1505014328524092
    [Google Scholar]
  35. ParaćE. ŠpiljakB. Lugović-MihićL. Bukvić MokosZ. Acne-like eruptions: Disease features and differential diagnosis.Cosmetics20231038910.3390/cosmetics10030089
    [Google Scholar]
  36. WibowoJ.T. BayuA. AryatiW.D. FernandesC. YanuarA. KijjoaA. PutraM.Y. Secondary metabolites from marine-derived bacteria with antibiotic and antibiofilm activities against drug-resistant pathogens.Mar. Drugs20232115010.3390/md2101005036662223
    [Google Scholar]
  37. DashputreNL. SableRR. SawantM. KhairnarSJ. AhireED. PatilSB. KadamJ.D. Marine‐derived sources of nutritional vitamins.Vitamins as Nutraceuticals: Recent Advances and Applications AhireED. KeservaniRK. SuranaKR. SinghS. KesharwaniRK. 202310.1002/9781394175543.ch6
    [Google Scholar]
  38. RohillaS. RohillaA. NarwalS. DurejaH. BhagwatD.P. Global trends of cosmeceutical in nanotechnology: A Review.Pharm. Nanotechnol.202311541042410.2174/221173851166623050816161137157203
    [Google Scholar]
  39. Virués-SegoviaJ.R. Muñoz-MiraS. Durán-PatrónR. AleuJ. Marine-derived fungi as biocatalysts.Front. Microbiol.202314112563910.3389/fmicb.2023.112563936922968
    [Google Scholar]
  40. SinghA. Nimisha A Comprehensive Review of Therapeutic Approaches Available for the Treatment of Dermatitis.Recent Pat. Nanotechnol.202216317219710.2174/187221051566621080614301534365934
    [Google Scholar]
  41. AgrawalS. AdholeyaA. BarrowC.J. DeshmukhS.K. Marine fungi: An untapped bioresource for future cosmeceuticals.Phytochem. Lett.201823152010.1016/j.phytol.2017.11.003
    [Google Scholar]
  42. NingsihB.N.S. RukachaisirikulV. PhongpaichitS. PreedanonS. SakayarojJ. MuanprasatC. A nonadride derivative from the marine-derived fungus Aspergillus chevalieri PSU-AMF79.Nat. Prod. Res.202337142311231810.1080/14786419.2022.203965135168452
    [Google Scholar]
  43. LiJ. ShanE. ZhaoJ. TengJ. WangQ. The factors influencing the vertical transport of microplastics in marine environment: A review.Sci. Total Environ.202387016189310.1016/j.scitotenv.2023.16189336731545
    [Google Scholar]
  44. Santana CabelloR. Gañán RojoP. ZuluagaR. Lessons from the European Regulation 1223 of 2009, on Cosmetics: Expectations Versus Reality.NanoEthics2019131213510.1007/s11569‑019‑00335‑6
    [Google Scholar]
  45. ResendeD.I.S.P. FerreiraM. MagalhãesC. Sousa LoboJ.M. SousaE. AlmeidaI.F. Trends in the use of marine ingredients in anti-aging cosmetics.Algal Res.20215510227310.1016/j.algal.2021.102273
    [Google Scholar]
  46. AnagnostiL. VarvaresouA. PavlouP. ProtopapaE. CarayanniV. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively?Mar. Pollut. Bull.202116211188310.1016/j.marpolbul.2020.11188333310543
    [Google Scholar]
  47. SrinivasuluM. ChandraM.S. GootyJ.M. MadhaviA. Personal care products—fragrances, cosmetics, and sunscreens—in the environment.Environmental Micropollutants.Elsevier202213114910.1016/B978‑0‑323‑90555‑8.00015‑5
    [Google Scholar]
  48. SiahaanE.A. Agusman PangestutiR. ShinK.H. KimS.K. Potential cosmetic active ingredients derived from marine by-products.Mar. Drugs2022201273410.3390/md2012073436547881
    [Google Scholar]
  49. CostaJ.P. CustódioL. ReisC.P. Exploring the potential of using marine-derived ingredients: From the extraction to cutting-edge cosmetics.Mar. Drugs2023211262010.3390/md2112062038132941
    [Google Scholar]
  50. MishraM.K. ShuklaA.K. DevS.K. AhmadR. Exploring the depths of marine biotechnology: Discoveries, diversity, and future horizons.Curr. Biotechnol.2024131263610.2174/0122115501291361240213105224
    [Google Scholar]
  51. FanH. HuangM. ChenY. ZhouW. HuY. WeiF. Conservation priorities for global marine biodiversity across multiple dimensions.Natl. Sci. Rev.2023106nwac24110.1093/nsr/nwac24137181093
    [Google Scholar]
  52. FarrokhniaM. Density functional theory studies on the antioxidant mechanism and electronic properties of some bioactive marine meroterpenoids: Sargahydroquionic acid and sargachromanol.ACS Omega2020532203822039010.1021/acsomega.0c0235432832791
    [Google Scholar]
  53. StinconeP. BrandelliA. Marine bacteria as source of antimicrobial compounds.Crit. Rev. Biotechnol.202040330631910.1080/07388551.2019.171045731992085
    [Google Scholar]
  54. CarrollA.R. CoppB.R. DavisR.A. KeyzersR.A. PrinsepM.R. Marine natural products.Nat. Prod. Rep.202037217522310.1039/C9NP00069K32025684
    [Google Scholar]
  55. AG.K. KA. MH. KS. GD. Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions.Mar. Pollut. Bull.202015011073310.1016/j.marpolbul.2019.11073331767203
    [Google Scholar]
  56. BruntE.G. BurgessJ.G. The promise of marine molecules as cosmetic active ingredients.Int. J. Cosmet. Sci.201840111510.1111/ics.1243529057483
    [Google Scholar]
  57. AndryukovB. MikhailovV. BesednovaN. The biotechnological potential of secondary metabolites from marine bacteria.J. Mar. Sci. Eng.20197617610.3390/jmse7060176
    [Google Scholar]
  58. TintaT. KogovšekT. KlunK. MalejA. HerndlG.J. TurkV. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential.Mar. Drugs20191729410.3390/md1702009430717239
    [Google Scholar]
  59. PinteusS. LemosM.F.L. AlvesC. NeugebauerA. SilvaJ. ThomasO.P. BotanaL.M. GasparH. PedrosaR. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata.Algal Res.20183421723410.1016/j.algal.2018.06.018
    [Google Scholar]
  60. BovioE. GarzoliL. PoliA. LuganiniA. VillaP. MusumeciR. McCormackG.P. CocuzzaC.E. GribaudoG. MehiriM. VareseG.C. Marine fungi from the sponge Grantia compressa: biodiversity, chemodiversity, and biotechnological potential.Mar. Drugs201917422010.3390/md1704022030978942
    [Google Scholar]
  61. WijesekaraI. PangestutiR. KimS.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae.Carbohydr. Polym.2011841142110.1016/j.carbpol.2010.10.062
    [Google Scholar]
  62. RahmanM.A. Marine skeletal biopolymers and proteins and their biomedical application.Mar Drugs202119738910.3390/md19070389.
    [Google Scholar]
  63. SanjeewaK.K.A. KimE.A. SonK.T. JeonY.J. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review.J. Photochem. Photobiol. B201616210010510.1016/j.jphotobiol.2016.06.02727362368
    [Google Scholar]
  64. IbrahimS. TagamiT. KishiT. OzekiT. Curcumin marinosomes as promising nano-drug delivery system for lung cancer.Int. J. Pharm.20185401-2404910.1016/j.ijpharm.2018.01.05129408473
    [Google Scholar]
  65. SuZ. LuoF. PeiX. ZhangF. XingS. WangG. Final publication of the “Regulations on the Supervision and Administration of Cosmetics” and new prospectives of cosmetic science in China.Cosmetics2020749810.3390/cosmetics7040098
    [Google Scholar]
  66. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  67. SharmaG.N. KumarC.P. ShrivastavaB. KumarB. Advances in oral chitosan based nano delivery system for colon targeted drug delivery in inflammatory bowel disease.Research Journal of Pharmacy and Technology20211473769377410.52711/0974‑360X.2021.00652
    [Google Scholar]
  68. MaheraniB. Arab-TehranyE. MozafariM. GaianiC. LinderM. Liposomes: A review of manufacturing techniques and targeting strategies.Curr. Nanosci.20117343645210.2174/157341311795542453
    [Google Scholar]
  69. SheoranR. KhokraS.L. ChawlaV. DurejaH. Recent patents, formulation techniques, classification and characterization of liposomes.Recent Pat. Nanotechnol.2019131172710.2174/187221051366618112711041330479223
    [Google Scholar]
  70. JesorkaA. OrwarO. Liposomes: technologies and analytical applications.Annu. Rev. Anal. Chem. (Palo Alto, Calif.)20081180183210.1146/annurev.anchem.1.031207.11274720636098
    [Google Scholar]
  71. ShaileshS. NeelamS. SandeepK. GuptaG.D. Liposomes: A review.J. Pharm. Res.20092711631167
    [Google Scholar]
  72. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  73. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  74. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  75. InglutC.T. SorrinA.J. KuruppuT. VigS. CicaloJ. AhmadH. HuangH.C. Immunological and toxicological considerations for the design of liposomes.Nanomaterials (Basel)202010219010.3390/nano1002019031978968
    [Google Scholar]
  76. NautiyalA. WairkarS. Management of hyperpigmentation: Current treatments and emerging therapies.Pigment Cell Melanoma Res.20213461000101410.1111/pcmr.1298633998768
    [Google Scholar]
  77. PsimadasD. GeorgouliasP. ValotassiouV. LoudosG. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles.J. Pharm. Sci.201210172271228010.1002/jps.2314622488174
    [Google Scholar]
  78. MoussaouiN. CansellM. DenizotA. Marinosomes®, marine lipid-based liposomes: physical characterization and potential application in cosmetics.Int. J. Pharm.20022421-236136510.1016/S0378‑5173(02)00217‑X12176280
    [Google Scholar]
  79. ZibohV.A. MillerC.C. ChoY. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites.Am. J. Clin. Nutr.2000711361S366S10.1093/ajcn/71.1.361S10617998
    [Google Scholar]
  80. NackaF. CansellM. EntressanglesB. In vitro behavior of marine lipid‐based liposomes. Influence of pH, temperature, bile salts, and phospholipase A 2.Lipids2001361354210.1007/s11745‑001‑0665‑011214727
    [Google Scholar]
  81. kheirollahpourM. MehrabiM. DounighiN.M. MohammadiM. MasoudiA. Nanoparticles and vaccine development.Pharm. Nanotechnol.20208162110.2174/221173850766619102416204231647394
    [Google Scholar]
  82. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  83. DrénoB. AlexisA. ChuberreB. MarinovichM. Safety of titanium dioxide nanoparticles in cosmetics.J. Eur. Acad. Dermatol. Venereol.201933S7344610.1111/jdv.1594331588611
    [Google Scholar]
  84. AhmadJ. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders.Cosmetics2021838410.3390/cosmetics8030084
    [Google Scholar]
  85. WiechersJ.W. MuseeN. Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges.J. Biomed. Nanotechnol.20106540843110.1166/jbn.2010.114321329039
    [Google Scholar]
  86. KhalilM.A. El-ShanshouryA.E.R.R. AlghamdiM.A. AlsalmiF.A. MohamedS.F. SunJ. AliS.S. Biosynthesis of silver nanoparticles by Marine actinobacterium Nocardiopsis dassonvillei and exploring their therapeutic potentials.Front. Microbiol.20221270567310.3389/fmicb.2021.70567335211096
    [Google Scholar]
  87. SatapathyS. PaikarayS. ThirunavoukkarasuM. PandaC.R. SubbudhiE. Biosynthesis and characterization of silver nanoparticles derived from marine bivalve Donax cuneatus (Linnaeus) and assessment of its antimicrobial potential.Inorg. Nano-Metal Chem.20174771044104810.1080/24701556.2017.1284083
    [Google Scholar]
  88. JeongG.J. KhanS. TabassumN. KhanF. KimY.M. Marine-bioinspired nanoparticles as potential drugs for multiple biological roles.Mar. Drugs202220852710.3390/md2008052736005529
    [Google Scholar]
  89. MorgantiP. Use and potential of nanotechnology in cosmetic dermatology.Clin. Cosmet. Investig. Dermatol.2010351310.2147/CCID.S450621437055
    [Google Scholar]
  90. NguyenT.H. KwakH.S. KimS.M. Physicochemical and biofunctional properties of crab chitosan nanoparticles.J. Nanosci. Nanotechnol.20131385296530410.1166/jnn.2013.748523882757
    [Google Scholar]
  91. MikešováJ. HašekJ. TishchenkoG. MorgantiP. Rheological study of chitosan acetate solutions containing chitin nanofibrils.Carbohydr. Polym.201411275375710.1016/j.carbpol.2014.06.04325129805
    [Google Scholar]
  92. PierfrancescoM. GiuseppeF. BrunoC. Protective effects of oral antioxidants on skin and eye function.Skinmed20043631031610.1111/j.1540‑9740.2004.02420.x15538079
    [Google Scholar]
  93. KodaliV.P. SenR. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium.Biotechnol. J.20083224525110.1002/biot.20070020818246578
    [Google Scholar]
  94. KarlapudiAP. KodaliVP. KotaKP. ShaikSS. Sampath KumarNS. DirisalaVR. Deciphering the effect of novel bacterial exopolysaccharide-based nanoparticle cream against Propionibacterium acnes.3 Biotech2016613510.1007/s13205‑015‑0359‑5.
    [Google Scholar]
  95. ThakurP. SonawaneS. PotorokoI. SonawaneS.H. Recent advances in ultrasound-assisted synthesis of nano-emulsions and their industrial applications.Curr. Pharm. Biotechnol.202122131748175810.2174/18734316MTExaMTkhx33148154
    [Google Scholar]
  96. Sonneville-AubrunO. YukuyamaM.N. PizzinoA. Application of nanoemulsions in cosmetics.Nanoemulsions.Academic Press201843547510.1016/B978‑0‑12‑811838‑2.00014‑X
    [Google Scholar]
  97. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and Nanoemulsions in Skin Drug Delivery.Bioengineering (Basel)20229415810.3390/bioengineering904015835447718
    [Google Scholar]
  98. MiastkowskaM. Kulawik-PióroA. SzczurekM. Nanoemulsion gel formulation optimization for burn wounds: Analysis of rheological and sensory properties.Processes (Basel)2020811141610.3390/pr8111416
    [Google Scholar]
  99. GiannaccareG. PellegriniM. SenniC. BernabeiF. ScorciaV. CiceroA.F.G. Clinical applications of astaxanthin in the treatment of ocular diseases: Emerging insights.Mar. Drugs202018523910.3390/md1805023932370045
    [Google Scholar]
  100. Garcia-BilbaoA. Gómez-FernándezP. LarushL. SorokaY. Suarez-MerinoB. Frušić-ZlotkinM. MagdassiS. Goñi-de-CerioF. Preparation, characterization, and biological evaluation of retinyl palmitate and Dead Sea water loaded nanoemulsions toward topical treatment of skin diseases.J. Bioact. Compat. Polym.2020351243810.1177/0883911519885970
    [Google Scholar]
  101. OhG.W. KoS.C. LeeJ.M. YimM.J. KimK.W. KimJ.Y. BaekK. LeeD-S. JungW-K. JeonY-J. KimH-S. Tyrosinase inhibitory and antioxidant potential of eckmaxol isolated from the brown seaweed Ecklonia maxima.S. Afr. J. Bot.202315764865510.1016/j.sajb.2023.04.046
    [Google Scholar]
  102. RupaE. LiJ. ArifM. YaxiH. PujaA. ChanA. HoangV.A. KalirajL. YangD. KangS. Cordyceps militaris fungus extracts-mediated nanoemulsion for improvement antioxidant, antimicrobial, and anti-inflammatory activities.Molecules20202523573310.3390/molecules2523573333291776
    [Google Scholar]
  103. VijayanV.M. VasudevanP.N. ThomasV. Polymeric Nanogels for theranostic applications: a mini-review.Curr. Nanosci.202016339239810.2174/1573413715666190717145040
    [Google Scholar]
  104. ArroyoE. ValdezR. Cornejo-BravoJ.M. ArmentaM.A. OlivasA. Nanogels as controlled drug release systems for Coenzyme Q10 and Resveratrol for cosmetic application.J. Nanopart. Res.202123816310.1007/s11051‑021‑05243‑z
    [Google Scholar]
  105. SharmaA. GargT. AmanA. PanchalK. SharmaR. KumarS. MarkandeywarT. Nanogel—an advanced drug delivery tool: Current and future.Artif. Cells Nanomed. Biotechnol.201644116517710.3109/21691401.2014.93074525053442
    [Google Scholar]
  106. ChaudharyK. SharmaD. Cubosomes: A potential drug delivery system.Asian J. Pharm. Res. Dev.2021959310110.22270/ajprd.v9i5.981
    [Google Scholar]
  107. MundeS.L. ChauhanB. Chronotherapeutic drug delivery system: A novel approach.World J. Pharm. Res.20221110370390
    [Google Scholar]
  108. KangM.G. LeeM.Y. ChaJ.M. LeeJ.K. LeeS.C. KimJ. HwangY.S. BaeH. Nanogels derived from fish gelatin: Application to drug delivery system.Mar. Drugs201917424610.3390/md1704024631027308
    [Google Scholar]
  109. HuangY.C. LiuT.J. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles.Acta Biomater.2012831048105610.1016/j.actbio.2011.12.00922200609
    [Google Scholar]
  110. Ramos-de-la-PeñaAM. Contreras-EsquivelJC. AguilarO. González-ValdezJ. Structural and bioactive roles of fucoidan in nanogel delivery systems. A review.Carbohydr. Polym. Technol. Appl.20224110023510.1016/j.carpta.2022.100235.
    [Google Scholar]
  111. MorsiN.M. AbdelbaryG.A. AhmedM.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization.Eur. J. Pharm. Biopharm.201486217818910.1016/j.ejpb.2013.04.01823688805
    [Google Scholar]
  112. BluntJ.W. CoppB.R. KeyzersR.A. MunroM.H.G. PrinsepM.R. Marine natural products.Nat. Prod. Rep.201734323529410.1039/C6NP00124F28290569
    [Google Scholar]
  113. BilalM. IqbalH.M.N. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective.Int. J. Biol. Macromol.202015111810.1016/j.ijbiomac.2020.02.03732035954
    [Google Scholar]
  114. AmeenF. AlNadhariS. Al-HomaidanA.A. Marine microorganisms as an untapped source of bioactive compounds.Saudi J. Biol. Sci.202128122423110.1016/j.sjbs.2020.09.05233424301
    [Google Scholar]
  115. RomanoG. CostantiniM. SansoneC. LauritanoC. RuoccoN. IanoraA. Marine microorganisms as a promising and sustainable source of bioactive molecules.Mar. Environ. Res.2017128586910.1016/j.marenvres.2016.05.00227160988
    [Google Scholar]
  116. BurgerP. LandreauA. AzoulayS. MichelT. FernandezX. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners.Cosmetics2016343610.3390/cosmetics3040036
    [Google Scholar]
  117. Mata-GómezL.C. MontañezJ.C. Méndez-ZavalaA. AguilarC.N. Biotechnological production of carotenoids by yeasts: an overview.Microb. Cell Fact.20141311210.1186/1475‑2859‑13‑1224443802
    [Google Scholar]
  118. SuenY.L. TangH. HuangJ. ChenF. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin.J. Agric. Food Chem.20146251123921239810.1021/jf504857825420960
    [Google Scholar]
  119. FavasR. MoroneJ. MartinsR. VasconcelosV. LopesG. Cyanobacteria and microalgae bioactive compounds in skin-ageing: potential to restore extracellular matrix filling and overcome hyperpigmentation.J. Enzyme Inhib. Med. Chem.20213611829183810.1080/14756366.2021.196083034353202
    [Google Scholar]
  120. AsthanaS. ZuccaP. VargiuA.V. SanjustE. RuggeroneP. RescignoA. Structure–activity relationship study of hydroxycoumarins and mushroom tyrosinase.J. Agric. Food Chem.201563327236724410.1021/acs.jafc.5b0263626263396
    [Google Scholar]
  121. DerikvandP. LlewellynC.A. PurtonS. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds.Eur. J. Phycol.2017521435610.1080/09670262.2016.1214882
    [Google Scholar]
  122. AriedeM.B. CandidoT.M. JacomeA.L.M. VelascoM.V.R. de CarvalhoJ.C.M. BabyA.R. Cosmetic attributes of algae - A review.Algal Res.20172548348710.1016/j.algal.2017.05.019
    [Google Scholar]
  123. MichalakI. DmytrykA. ChojnackaK. Algae cosmetics.Encyclopedia of Marine Biotechnology KimS.K. 202010.1002/9781119143802.ch3
    [Google Scholar]
  124. MourelleM. GómezC. LegidoJ. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy.Cosmetics2017444610.3390/cosmetics4040046
    [Google Scholar]
  125. NishshankaG.K.S.H. LiyanaarachchiV.C. PremaratneM. AriyadasaT.U. NimarshanaP.H.V. Sustainable cultivation of Haematococcus pluvialis and Chromochloris zofingiensis for the production of astaxanthin and co‐products.Can. J. Chem. Eng.2022100102835284910.1002/cjce.24317
    [Google Scholar]
  126. ImhoffJ.F. LabesA. WieseJ. Bio-mining the microbial treasures of the ocean: New natural products.Biotechnol. Adv.201129546848210.1016/j.biotechadv.2011.03.00121419836
    [Google Scholar]
  127. NwodoU.U. GreenE. OkohA.I. Bacterial exopolysaccharides: functionality and prospects.Int. J. Mol. Sci.20121311140021401510.3390/ijms13111400223203046
    [Google Scholar]
  128. GuillermeJ.B. CouteauC. CoiffardL. Applications for marine resources in cosmetics.Cosmetics2017433510.3390/cosmetics4030035
    [Google Scholar]
  129. PrabhuS. PdR. YoungC.C. HameedA. LinS.Y. AbA. Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties.Appl. Biochem. Biotechnol.2013171481783110.1007/s12010‑013‑0397‑623900617
    [Google Scholar]
  130. KogejT. GostinčarC. VolkmannM. GorbushinaA.A. Gunde-CimermanN. Mycosporines in extremophilic fungi—novel complementary osmolytes?Environ. Chem.20063210511010.1071/EN06012
    [Google Scholar]
  131. ZhangD. YangX. KangJ.S. ChoiH.D. SonB.W. Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala.J. Antibiot. (Tokyo)2008611404210.1038/ja.2008.10818305359
    [Google Scholar]
  132. ZhangD. LiX. KangJ.S. ChoiH.D. SonB.W. A New α-Pyrone Derivative, 6-[(E)-Hept-α-pyrone, with Tyrosinase Inhibitory Activity from.Notes2007285887
    [Google Scholar]
  133. MohanrasuK. RaoR.G.R. SudhakarM. RajaR. JeyakanthanJ. ArunA. Marine microbial pharmacognosy: Prospects and perspectives.Marine Niche: Applications in Pharmaceutical Sciences.20208911010.1007/978‑981‑15‑5017‑1_5.
    [Google Scholar]
  134. UppalaL. A review on active ingredients from marine sources used in cosmetics.SOJ Pharm Pharm Sci2015231310.15226/2374‑6866/2/3/00136
    [Google Scholar]
  135. GallowayA.W.E. WinderM. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids.PLoS One2015106e013005310.1371/journal.pone.013005326076015
    [Google Scholar]
  136. DutkiewiczS. CermenoP. JahnO. FollowsM.J. HickmanA.E. TaniguchiD.A.A. WardB.A. Dimensions of marine phytoplankton diversity.Biogeosciences202017360963410.5194/bg‑17‑609‑2020
    [Google Scholar]
  137. BabithaS. KimE-K. Effect of on the pigmentation of skin.Marine CosmeceuticalsBoca Raton, FL, USACRC Press2011636610.1201/b10120‑6
    [Google Scholar]
  138. Mohd NaniS.Z. MajidF.A.A. JaafarA.B. MahdzirA. MusaM.N. Potential health benefits of deep sea water: A review.Evid. Based Complement. Alternat. Med.201620161652047510.1155/2016/652047528105060
    [Google Scholar]
  139. MourelleM.L. GómezC.P. LegidoJ.L. Microalgal peloids for cosmetic and wellness uses.Mar. Drugs2021191266610.3390/md1912066634940665
    [Google Scholar]
  140. BakJ.P. KimY.M. SonJ. KimC.J. KimE.H. Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice.BMC Complement. Altern. Med.201212110810.1186/1472‑6882‑12‑10822834904
    [Google Scholar]
  141. HentatiF. TounsiL. DjomdiD. PierreG. DelattreC. UrsuA.V. FendriI. AbdelkafiS. MichaudP. Bioactive polysaccharides from seaweeds.Molecules20202514315210.3390/molecules2514315232660153
    [Google Scholar]
  142. KatzU. ShoenfeldY. ZakinV. ShererY. SukenikS. Scientific evidence of the therapeutic effects of dead sea treatments: A systematic review.Semin Arthritis Rheum201242218620010.1016/j.semarthrit.2012.02.006
    [Google Scholar]
  143. Al BawabA. BozeyaA. Abu-MallouhS. DaqourI. Abu-ZuraykR.A. The Dead Sea mud and salt: A review of its characterization, contaminants, and beneficial effects.IOP Conf. Ser. Mater. Sci. Eng.20181200310.1088/1757‑899X/305/1/012003
    [Google Scholar]
  144. FytianosG. RahdarA. KyzasG.Z. Nanomaterials in cosmetics: Recent updates.Nanomaterials (Basel)202010597910.3390/nano1005097932443655
    [Google Scholar]
  145. Fonseca-SantosB. CorrêaM.A. ChorilliM. Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations.Braz. J. Pharm. Sci.2015511172610.1590/S1984‑82502015000100002
    [Google Scholar]
  146. AnestopoulosI. KiousiD.E. KlavarisA. MaijoM. SerpicoA. SuarezA. SanchezG. SalekK. ChasapiS.A. ZompraA.A. GalanisA. SpyrouliasG.A. GombauL. EustonS.R. PappaA. PanayiotidisM.I. Marine-derived surface active agents: Health-promoting properties and blue biotechnology-based applications.Biomolecules202010688510.3390/biom1006088532526944
    [Google Scholar]
  147. FerreiraM.S. ResendeD.I.S.P. LoboJ.M.S. SousaE. AlmeidaI.F. Marine ingredients for sensitive skin: market overview.Mar. Drugs202119846410.3390/md1908046434436303
    [Google Scholar]
  148. JayawardhanaH.H.A.C.K. JayawardenaT.U. SanjeewaK.K.A. LiyanageN.M. NagahawattaD.P. LeeH.G. KimJ.I. JeonY.J. Marine algal polyphenols as skin protective agents: current status and future prospectives.Mar. Drugs202321528510.3390/md2105028537233479
    [Google Scholar]
  149. D’AmbrosioM. SantosA.C. Alejo-ArmijoA. ParolaA.J. CostaP.M. Light-mediated toxicity of porphyrin-like pigments from a marine polychaeta.Mar. Drugs202018630210.3390/md1806030232517206
    [Google Scholar]
  150. GuzmánE. LuciaA. Essential oils and their individual components in cosmetic products.Cosmetics20218411410.3390/cosmetics8040114
    [Google Scholar]
  151. ResendeD.I.S.P. JesusA. Sousa LoboJ.M. SousaE. CruzM.T. CidadeH. AlmeidaI.F. Up-to-date overview of the use of natural ingredients in sunscreens.Pharmaceuticals (Basel)202215337210.3390/ph1503037235337168
    [Google Scholar]
  152. SharmeenJ. MahomoodallyF. ZenginG. MaggiF. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals.Molecules202126366610.3390/molecules2603066633514008
    [Google Scholar]
  153. BuchbauerG. BaserK.H.C. Handbook of Essential Oils: Science, Technology, and Applications, Second EditionCRC Press201510.1201/b19393.
    [Google Scholar]
  154. CorinaldesiC. BaroneG. MarcelliniF. Dell’AnnoA. DanovaroR. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products.Mar. Drugs201715411810.3390/md1504011828417932
    [Google Scholar]
  155. WorwoodV.A. The complete book of essential oils and aromatherapy, revised and expandedNew World Library2016
    [Google Scholar]
  156. LionettiN. RiganoL. The new sunscreens among formulation strategy, stability issues, changing norms, safety and efficacy evaluations.Cosmetics2017421510.3390/cosmetics4020015
    [Google Scholar]
  157. RepertS. MatthesS. RozhonW. Quantification of arbutin in cosmetics, drugs and food supplements by hydrophilic-interaction chromatography.Molecules20222717567310.3390/molecules2717567336080435
    [Google Scholar]
  158. NganS.L. HowB.S. TengS.Y. PromentillaM.A.B. YatimP. ErA.C. LamH.L. Prioritization of sustainability indicators for promoting the circular economy: The case of developing countries.Renew. Sustain. Energy Rev.201911131433110.1016/j.rser.2019.05.001
    [Google Scholar]
  159. WysokińskaZ. A review of transnational regulations in environmental protection and the circular economy.Comparative Economic Research. Central and Eastern Europe202023414916810.18778/1508‑2008.23.32
    [Google Scholar]
  160. KumavatS.N. KothariL.P. MundadaA.S. A review of registration and approval process of medical device in India and Japan.Int. J. Drug. Reg. Aff.2023114162410.22270/ijdra.v11i4.628
    [Google Scholar]
  161. VenkateshMP. KrishnaPD. Comparison of medical device regulations in India, Japan and South Korea.J. Pharm. Res. Int.20213353A823
    [Google Scholar]
  162. ChisvertA. SalvadorA. Analysis of Cosmetic ProductsElsevier ChisvertA. 200710.1016/B978‑0‑444‑52260‑3.X5020‑7.
    [Google Scholar]
  163. NovoveskáL. RossM.E. StanleyM.S. PradellesR. WasiolekV. SassiJ.F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction.Mar. Drugs2019171164010.3390/md1711064031766228
    [Google Scholar]
  164. HuangJ. StoneV. SunouchiT. TanV. TashiroT. Japanese skin care cluster.Harvard Business School2013
    [Google Scholar]
  165. AgrawalA. ChourasiyaSS. Natural products as cosmeceuticals in different countries: A regulatory perspective.Bioprospecting of Natural Sources for Cosmeceuticals202410.1039/9781837672288‑00018
    [Google Scholar]
  166. SoteloC.G. BlancoM. RamosP. VázquezJ.A. Perez-MartinR.I. Sustainable sources from aquatic organisms for cosmeceuticals ingredients.Cosmetics2021824810.3390/cosmetics8020048
    [Google Scholar]
  167. CouteauC. CoiffardL. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources.Mar. Drugs202018632210.3390/md1806032232570957
    [Google Scholar]
  168. RähseW. Cosmetic creams: Development, manufacture and marketing of effective skin care products.John Wiley & Sons2020
    [Google Scholar]
  169. BleekerE.A.J. SwartE. BraakhuisH. Fernández CruzM.L. FriedrichsS. GosensI. HerzbergF. JensenK.A. von der KammerF. KettelarijJ.A.B. NavasJ.M. RasmussenK. SchwirnK. VisserM. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety – A proposal for further actions.Regul. Toxicol. Pharmacol.202313910536010.1016/j.yrtph.2023.10536036804527
    [Google Scholar]
  170. AfifS. JafriS. LoudovikouA. TsagkarisC. Antidotes to toxins and drugs in the European Union: Public health, policy, and regulatory framework.Antidotes to Toxins and Drugs.Elsevier202425927810.1016/B978‑0‑12‑824472‑2.00010‑5
    [Google Scholar]
  171. SchneiderS.B. Global cosmetic regulations? A long way to go….Global Regulatory Issues for the Cosmetics Industry.Elsevier200918923310.1016/B978‑0‑8155‑1569‑2.50016‑6
    [Google Scholar]
  172. GuptaV. MohapatraS. MishraH. FarooqU. KumarK. AnsariM. AldawsariM. AlalaiweA. MirzaM. IqbalZ. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements.Gels20228317310.3390/gels803017335323286
    [Google Scholar]
  173. RajR.K. ChandrulK.K. Regulatory requirements for cosmetics in relation with regulatory authorities in India against US, Europe, Australia and Asean countries.Int. J. Pharma. Res. Health Sci.2016451332134110.21276/ijprhs.2016.05.01
    [Google Scholar]
  174. SinghB.M. JainA. MishraA. Cosmetic regulations in india vs. globally and challenges in harmonization.Int. J. Pharm. Sci. Drug Res.201810315015710.25004/IJPSDR.2018.100308
    [Google Scholar]
  175. VugigiS OtienoF. Regulatory compliance of cosmetic products in Kenya: A narrative review on quality and safety.AJPAM202421475710.58460/ajpam.v2i1.87.
    [Google Scholar]
  176. BasuT. ChughR. GujjarR.S. UpadhyayA.K. Approaches for in silico validation of safety (toxicity) data for cosmetics.Skin 3-D Models and Cosmetics Toxicity.Springer202318721010.1007/978‑981‑99‑2804‑0_11
    [Google Scholar]
  177. WidjanarkoR.A.K. AnggoroY. Evaluation of GMP compliance on cosmetics: Case study on cosmetic industries in Indonesia.JICP2021
    [Google Scholar]
  178. HartmanA. FDA’s Minimal regulation of cosmetics and the daring claims of cosmetic companies that cause consumers economic harm.W St UL Rev.20083653
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072308772240905142254
Loading
/content/journals/cbc/10.2174/0115734072308772240905142254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test