Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Ayurveda, Siddha, and Unani are some important traditional healing systems of India having long back evidence-based rejuvenation therapies addressing various infertility and reproductive disorders. Surprisingly, the United Nations has revealed data on infertility that show that it affects around one in every six individuals, highlighting the utmost importance of actively questioning and confronting the misunderstanding and lack of discussion related to infertility. Even though allopathic drugs like Clomiphene citrate, Anastrozole, Letrozole, Human Chronic Gonadotropin (hCG), and Human Menopausal Gonadotropin (hPG) are available on the market, there are a range of traditional and indigenous medical techniques that have been used for millennia to promote and cure health, including Ayurveda, Siddha, and Unani to deliver safe and potent drugs having reproductive rejuvenation with proven evidence. Various botanicals are proven to heal both male and female infertility issues with clinical evidence due to the presence of various potent phytochemicals. Hence this review critically assesses the evidence-based literature focused on the mapping of botanical sources, phytochemicals, reproductive pharmacology, and their clinical evidence.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072334775241209052941
2024-12-18
2025-11-14
Loading full text...

Full text loading...

References

  1. MerzenichH. ZeebH. BlettnerM. Decreasing sperm quality: a global problem?BMC Public Health201010s12410.1186/1471‑2458‑10‑24 20085639
    [Google Scholar]
  2. LevineH. JørgensenN. Martino-AndradeA. MendiolaJ. Weksler-DerriD. MindlisI. PinottiR. SwanS.H. Temporal trends in sperm count: a systematic review and meta-regression analysis.Hum. Reprod. Update201723664665910.1093/humupd/dmx022 28981654
    [Google Scholar]
  3. FeferkornI. AzaniL. Kadour-PeeroE. HizkiyahuR. ShremG. Salmon-DivonM. DahanM.H. Geographic variation in semen parameters from data used for the World Health Organization semen analysis reference ranges.Fertil. Steril.2022118347548210.1016/j.fertnstert.2022.05.037 35750517
    [Google Scholar]
  4. OmolaoyeT.S. El ShahawyO. SkosanaB.T. BoillatT. LoneyT. du PlessisS.S. The mutagenic effect of tobacco smoke on male fertility.Environ. Sci. Pollut. Res. Int.20222941620556206610.1007/s11356‑021‑16331‑x 34536221
    [Google Scholar]
  5. ShowellM.G. Mackenzie-ProctorR. BrownJ. YazdaniA. StankiewiczM.T. HartR.J. Antioxidants for male subfertility.Cochrane Libr.201412CD00741110.1002/14651858.CD007411.pub3 25504418
    [Google Scholar]
  6. PizzornoJ. Environmental toxins and infertility.Integr. Med. (Encinitas)2018172811 30962779
    [Google Scholar]
  7. HarlevA. AgarwalA. GunesS.O. ShettyA. du PlessisS.S. Smoking and male infertility: an evidence-based review.World J. Mens Health201533314316010.5534/wjmh.2015.33.3.143 26770934
    [Google Scholar]
  8. AfeicheM.C. GaskinsA.J. WilliamsP.L. TothT.L. WrightD.L. TanrikutC. HauserR. ChavarroJ.E. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic.J. Nutr.201414471091109810.3945/jn.113.190173 24850626
    [Google Scholar]
  9. JaradatN. ZaidA.N. Herbal remedies used for the treatment of infertility in males and females by traditional healers in the rural areas of the West Bank/Palestine.BMC Complement. Altern. Med.201919119410.1186/s12906‑019‑2617‑2 31366346
    [Google Scholar]
  10. MooreA.M.D. PithavadianR. Aphrodisiacs in the global history of medical thought.J. Glob. Hist.2021161244310.1017/S1740022820000108
    [Google Scholar]
  11. SubaV. Reverse Pharmacology: A Tool for Drug Discovery from Traditional Medicine BT - Evidence Based Validation of Traditional Medicines: A comprehensive Approach.SingaporeSpringer Singapore202129931010.1007/978‑981‑15‑8127‑4_15
    [Google Scholar]
  12. ChassagneF. CabanacG. HubertG. DavidB. MartiG. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products®.Phytochem. Rev.201918360162210.1007/s11101‑019‑09606‑2
    [Google Scholar]
  13. KatiyarC. KanjilalS. GuptaA. KatiyarS. Drug discovery from plant sources: An integrated approach.Ayu2012331101910.4103/0974‑8520.100295 23049178
    [Google Scholar]
  14. da Silva Leitão PeresN. Cabrera Parra BortoluzziL. Medeiros MarquesL.L. FormigoniM. FuchsR.H.B. DrovalA.A. Reitz CardosoF.A. Medicinal effects of Peruvian maca (Lepidium meyenii): a review.Food Funct.2020111839210.1039/C9FO02732G 31951246
    [Google Scholar]
  15. KarimiA. MajlesiM. Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts.J. Nephropharmacology2015412730
    [Google Scholar]
  16. PfausJ.G. Pathways of sexual desire.J. Sex. Med.2009661506153310.1111/j.1743‑6109.2009.01309.x 19453889
    [Google Scholar]
  17. MorshedM.N. AhnJ.C. MathiyalaganR. RupaE.J. AkterR. KarimM.R. JungD.H. YangD.U. YangD.C. JungS.K. Antioxidant activity of Panax ginseng to regulate ROS in various chronic diseases.Appl. Sci. (Basel)20231352893289810.3390/app13052893
    [Google Scholar]
  18. Lee-ØdegårdS. GundersenT.E. DrevonC.A. Effect of a plant extract of fenugreek (Trigonella foenum-graecum) on testosterone in blood plasma and saliva in a double blind randomized controlled intervention study.PLoS One2024199e0310170e031017510.1371/journal.pone.0310170 39288153
    [Google Scholar]
  19. SurhY.J. Reverse pharmacology applicable for botanical drug development - inspiration from the legacy of traditional wisdom.J. Tradit. Complement. Med.2011115710.1016/S2225‑4110(16)30051‑7 24716100
    [Google Scholar]
  20. KhaleghiS. BakhtiariM. AsadmobiniA. EsmaeiliF. Tribulus terrestris extract improves human sperm parameters in vitro .J. Evid. Based Complementary Altern. Med.201722340741210.1177/2156587216668110 27694560
    [Google Scholar]
  21. SahinK. OrhanC. AkdemirF. TuzcuM. GencogluH. SahinN. TurkG. YilmazI. OzercanI.H. JuturuV. Comparative evaluation of the sexual functions and NF-κB and Nrf2 pathways of some aphrodisiac herbal extracts in male rats.BMC Complement. Altern. Med.201616131810.1186/s12906‑016‑1303‑x 27561457
    [Google Scholar]
  22. LimaS. YamadaS. ReisB. SilvaG. AokiT. PostigoS. Assessment of the effects of Tribulus terrestris on sexual function of menopausal women.Rev. Bras. Ginecol. Obstet.201638314014610.1055/s‑0036‑1571472 26902700
    [Google Scholar]
  23. NeychevV. MitevV. Pro-sexual and androgen enhancing effects of Tribulus terrestris L.: Fact or Fiction.J. Ethnopharmacol.201617934535510.1016/j.jep.2015.12.055 26727646
    [Google Scholar]
  24. HussainA.A. MohammedA.A. IbrahimH.H. AbbasA.H. Study the biological activities of Tribulus terrestris extracts.World Acad. Sci. Eng. Technol.200957943343510.24126/jobrc.2010.4.1.95
    [Google Scholar]
  25. WatanabeM. FukudaA. NabekuraJ. The role of GABA in the regulation of GnRH neurons.Front. Neurosci.2014838710.3389/fnins.2014.00387 25506316
    [Google Scholar]
  26. AhmadM.K. MahdiA.A. ShuklaK.K. IslamN. RajenderS. MadhukarD. ShankhwarS.N. AhmadS. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males.Fertil. Steril.201094398999610.1016/j.fertnstert.2009.04.046 19501822
    [Google Scholar]
  27. SundaramRS. GowthamL. ManikandanP. VenugopalV. The role of reactive microglia in neurodegenerative disease: Multiple triggers with a common mechanism.IJRAPR2012222940
    [Google Scholar]
  28. MikulskaP. MalinowskaM. IgnacykM. SzustowskiP. NowakJ. PestaK. SzelągM. SzklannyD. JudaszE. KaczmarekG. EjiohuoO.P. Paczkowska-WalendowskaM. GościniakA. Cielecka-PiontekJ. Ashwagandha (Withania somnifera)-current research on the health-promoting activities: A Narrative Review.Pharmaceutics2023154105710.3390/pharmaceutics15041057 37111543
    [Google Scholar]
  29. MararajahS. GiribabuN. SallehN. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H2O2)-induced oxidative stress.J. Ethnopharmacol.2024318Pt B)(318Pt B11702611703510.1016/j.jep.2023.117026 37572930
    [Google Scholar]
  30. VermaS. KumarJ. Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L.).J. Pharmacogn. Phytochem.201983587590
    [Google Scholar]
  31. GiribabuN. KumarK.E. RekhaS.S. MuniandyS. SallehN. Chlorophytum borivilianum (Safed Musli) root extract prevents impairment in characteristics and elevation of oxidative stress in sperm of streptozotocin-induced adult male diabetic Wistar rats.BMC Complement. Altern. Med.201414129129510.1186/1472‑6882‑14‑291 25104050
    [Google Scholar]
  32. KenjaleR. ShahR. SathayeS. Effects of Chlorophytum borivilianum on sexual behaviour and sperm count in male rats.Phytother. Res.200822679680110.1002/ptr.2369 18412148
    [Google Scholar]
  33. OkoloR.U. Phytochemical, aphrodisiac and anti-hypertensive properties of Pausinystalia yohimbe.Int J Allied Med Sci Clin Res.201643400403
    [Google Scholar]
  34. OjatulaA.O. Spermatogenic Efficacy of Pausinystalia yohimbe (K. Schum.) pierre ex beille roots in male rats.JIRB20208291710.47277/JIRB/8(2)/9
    [Google Scholar]
  35. TaghipourZ. BahmanzadehM. RahimiR. The effects of clove and its constituents on reproductive system: a comprehensive review.Reprod. Sci.20233092591261410.1007/s43032‑023‑01223‑x 37040058
    [Google Scholar]
  36. DehghaniF. HeshmatpourA. PanjehshahinM.R. Talaei-KhozaniT. Toxic effects of water/alcoholic extract of Syzygium aromaticum on sperm quality, sex hormones and reproductive tissues in male mouse.IUFS J. Biol.201271295102
    [Google Scholar]
  37. MishraR.K. SinghS.K. Safety assessment of Syzygium aromaticum flower bud (clove) extract with respect to testicular function in mice.Food Chem. Toxicol.200846103333333810.1016/j.fct.2008.08.006 18765266
    [Google Scholar]
  38. MoghimianM. AalamiS. Abtahi-EvariS-H. SoltaniM. Effect of Syzygium aromaticum (clove) extract on morphine withdrawal side effect in male reproductive system should be addressed.Physiol. Pharmacol.2018222109117
    [Google Scholar]
  39. PatwardhanB. Bridging Ayurveda with evidence-based scientific approaches in medicine.EPMA J.2014511910.1186/1878‑5085‑5‑19 25395997
    [Google Scholar]
  40. SinghN. GargM. PrajapatiP. SinghP.K. ChopraR. KumariA. MittalA. Adaptogenic property of Asparagus racemosus: Future trends and prospects.Heliyon202394e14932e1493510.1016/j.heliyon.2023.e14932 37095959
    [Google Scholar]
  41. UdaniJ.K. GeorgeA.A. MusthapaM. PakdamanM.N. AbasA. Effects of a proprietary freeze‐dried water extract of Eurycoma longifolia (Physta) and Polygonum minus on sexual performance and well‐being in men: a randomized, double‐blind, placebo‐controlled study.Evid. Based Complement. Alternat. Med.20142014117952910.1155/2014/179529 24550993
    [Google Scholar]
  42. PraseethaS. SukumaranS.T. RavindranR. SugathanS. Medicinal plants as control for prevalent and infectious diseases.Conservation and Sustainable Utilization of Bioresources202314917010.1007/978‑981‑19‑5841‑0_7
    [Google Scholar]
  43. EzzatS.M. EzzatM.I. OkbaM.M. HassanS.M. AlkorashyA.I. KararM.M. AhmedS.H. MohamedS.O. Brain cortical and hippocampal dopamine: a new mechanistic approach for Eurycoma longifolia well-known aphrodisiac activity and its chemical characterization.Evid. Based Complement. Alternat. Med.2019201911310.1155/2019/7543460 31275418
    [Google Scholar]
  44. SadeghzadehF. SadeghzadehA. Changizi-AshtiyaniS. AlimoradianA. MashayekheiM. ZareiA. Jalali-MashayekhiF. The effects of hydro-alcoholic extracts of Allium sativum L. and orchismaculata L. on spermatogenesis index and testosterone level in cyclophosphamide-treated rats.J. Kerman Univ. Med. Sci.2020273232243
    [Google Scholar]
  45. WarangeP.V. SaravananJ. PraveenT.K. RymbaiE. DeepaS. Evaluation of aphrodisiac activity of Allium sativum in male rats.Int J Sci Technol Res.201981016831686
    [Google Scholar]
  46. ZenicoT. CiceroA.F.G. ValmorriL. MercurialiM. BercovichE. Subjective effects of Lepidium meyenii (Maca) extract on well-being and sexual performances in patients with mild erectile dysfunction: a randomised, double-blind clinical trial.Andrologia2009412959910.1111/j.1439‑0272.2008.00892.x 19260845
    [Google Scholar]
  47. SakthivelK.M. VishnupriyaS. Priya DharshiniL.C. RasmiR.R. RameshB. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin.J. Pharm. Pharmacol.202274214716110.1093/jpp/rgab047 33847360
    [Google Scholar]
  48. GaoF. HuY. YeX. LiJ. ChenZ. FanG. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections.Food Chem.201314131962197110.1016/j.foodchem.2013.05.013 23870916
    [Google Scholar]
  49. DauT.D. Effects of Cnidium monnieri (L.) Cuss. fruit extract on sexual behaviors in male rats.Clin Phytosci202068010.1186/s40816‑020‑00227‑3
    [Google Scholar]
  50. BishtD. KumarD. KumarD. DuaK. ChellappanD.K. Phytochemistry and pharmacological activity of the genus artemisia.Arch. Pharm. Res.202144543947410.1007/s12272‑021‑01328‑4 33893998
    [Google Scholar]
  51. ChoiB.R. KimH.K. ShinY.S. ChaeM.R. LeeS.W. YangS.K. ParkK.S. ParkJ.K. 674 Penile Erection Induced by Scoparone from Artemisia capillaris through NO-cGMP Signaling Pathway.J. Sex. Med.201815Suppl. 3S387S38810.1016/j.jsxm.2018.04.582
    [Google Scholar]
  52. KimH.K. ChoiB.R. BakY.O. ZhaoC. LeeS.W. JeonJ.H. SoI. ParkJ.K. The role of capillarisin from Artemisia capillaris on penile erection.Phytother. Res.201226680080510.1002/ptr.3635 22072532
    [Google Scholar]
  53. LiW. TangY. ChenY. DuanJ.A. Advances in the chemical analysis and biological activities of chuanxiong.Molecules2012179106141065110.3390/molecules170910614 22955453
    [Google Scholar]
  54. ShiJ. LiR. YangS. PhangY. ZhengC. ZhangH. The protective effects and potential mechanisms of Ligusticum chuanxiong: focus on anti‐inflammatory, antioxidant, and antiapoptotic activities.Evid. Based Complement. Alternat. Med.202020201820598310.1155/2020/8205983 33133217
    [Google Scholar]
  55. KimS.M. ParkE.J. LeeH.J. Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways.Inflammopharmacology20223062373238310.1007/s10787‑022‑01075‑y 36219321
    [Google Scholar]
  56. DauT.D. Aphrodisiac activity of Venthamarai Magarantha Chooranam (Stamens of Nelumbo nucifera white variety) on healthy wister albino rats.Int. J. Life Sci. Pharma Res.2012244450
    [Google Scholar]
  57. ChauhanA. SharmaK.V. ChauhanS. AgarwalM. Pharmacological evaluation for the antifertility effect of the ethanolic seed extract of Nelumbo nucifera (sacred lotus).Pharmacologyonline20092636643
    [Google Scholar]
  58. TafuriS. CocchiaN. VassettiA. CarotenutoD. EspositoL. MaruccioL. AvalloneL. CianiF. Lepidium meyenii (Maca) in male reproduction.Nat. Prod. Res.202135224550455910.1080/14786419.2019.1698572 31805775
    [Google Scholar]
  59. ShinB.C. LeeM.S. YangE.J. LimH.S. ErnstE. Maca (L. meyenii) for improving sexual function: a systematic review.BMC Complement. Altern. Med.20101014410.1186/1472‑6882‑10‑44 20691074
    [Google Scholar]
  60. ChungF. RubioJ. GonzalesC. GascoM. GonzalesG.F. Dose–response effects of Lepidium meyenii (Maca) aqueous extract on testicular function and weight of different organs in adult rats.J. Ethnopharmacol.2005981-214314710.1016/j.jep.2005.01.028 15763375
    [Google Scholar]
  61. Oketch-RabahH.A. Mondia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: a review.J. Diet. Suppl.20129427228410.3109/19390211.2012.726704 23039023
    [Google Scholar]
  62. OnohueanH. OnohueanF.E. IgbinobaS.I. EzeonwumeluJ.O.C. AguP.C. IfieJ.E. DeusdeditT. AjaP.M. Elucidation of chemical profiles and molecular targets of Mondia whitei leave fractions bioactive as novel therapeutics: an in vitro and in silico assay.J. Genet. Eng. Biotechnol.202220117010.1186/s43141‑022‑00440‑2 36574159
    [Google Scholar]
  63. LhH StimulatingF FshH RatsA MabongaC KamauD NandwaA Effect of Mondia whitei (mukombero) on Testosterone levels, Luteinizing Hormone (LH) and Follicle Stimulating Hormone (FSH) in male albino rats.2019
    [Google Scholar]
  64. WangY. HongC. ZhouC. XuD. QuH. Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds.Evid. Based Complement. Alternat. Med.20112011136305210.1093/ecam/nen087 19131395
    [Google Scholar]
  65. TayadeP.M. ChandrasekarM.J.N. BordeS.N. JoshiA.S. AngadiS.S. DevdheS.J. Effect of Psoralea corylifolia Linn in sexual erectile dysfunction in diabetic rats.Orient. Pharm. Exp. Med.2013131354010.1007/s13596‑013‑0106‑6
    [Google Scholar]
  66. XinD. WangH. YangJ. SuY.F. FanG.W. WangY.F. ZhuY. GaoX.M. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.Phytomedicine201017212613110.1016/j.phymed.2009.05.015 19577453
    [Google Scholar]
  67. ChandrasekaranM. BahkaliA.H. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review.Saudi J. Biol. Sci.201320210512010.1016/j.sjbs.2012.12.004 23961227
    [Google Scholar]
  68. AbediA. ParvizM. KarimianS.M. RodsariH.R.S. Aphrodisiac Activity of Aqueous Extract of Phoenix dactylifera Pollen in Male Rats.Advances in Sexual Medicine201331283410.4236/asm.2013.31006
    [Google Scholar]
  69. TajuddinA.S. AhmadS. LatifA. QasmiI.A. AminK.M.Y. An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg).BMC Complement. Altern. Med.200551161910.1186/1472‑6882‑5‑16 16033651
    [Google Scholar]
  70. ChenS. TangY. GaoY. NieK. WangH. SuH. WangZ. LuF. HuangW. DongH. Antidepressant potential of quercetin and its Glycoside derivatives: a comprehensive review and update.Front. Pharmacol.20221386537610.3389/fphar.2022.865376 35462940
    [Google Scholar]
  71. RotimiD.E. OlaoluT.D. AdeyemiO.S. Pharmacological action of quercetin against testicular dysfunction: A mini review.J. Integr. Med.202220539640110.1016/j.joim.2022.07.001 35850969
    [Google Scholar]
  72. SirotkinA.V. Quercetin action on health and female reproduction in mammals.Crit. Rev. Food Sci. Nutr.202311510.1080/10408398.2023.2256001 37698182
    [Google Scholar]
  73. JiG. GuoQ. XueQ. KongR. WangS. LeiK. LiuR. WangX. Novel GPR120 agonists with improved pharmacokinetic profiles for the treatment of type 2 diabetes.Molecules20212622690710.3390/molecules26226907 34833999
    [Google Scholar]
  74. ShenB.Q. SankaranarayananI. PriceT.J. Tavares-FerreiraD. Sex-differences in prostaglandin signaling: a semi-systematic review and characterization of PTGDS expression in human sensory neurons.Sci. Rep.2023131467010.1038/s41598‑023‑31603‑x 36949072
    [Google Scholar]
  75. LorenzT.K. Interactions between inflammation and female sexual desire and arousal function.Curr. Sex. Health Rep.201911428729910.1007/s11930‑019‑00218‑7 33312080
    [Google Scholar]
  76. SantoroA. ChianeseR. TroisiJ. RichardsS. NoriS.L. FasanoS. GuidaM. PlunkE. ViggianoA. PierantoniR. MeccarielloR. Neuro-toxic and reproductive effects of BPA.Curr. Neuropharmacol.201917121109113210.2174/1570159X17666190726112101 31362658
    [Google Scholar]
  77. XuA. LiX. LiK. ZhangJ. LiY. GongD. ZhaoG. ZhengQ. YuanM. LinP. HuangL. Linoleic acid promotes testosterone production by activating Leydig cell GPR120/ERK pathway and restores BPA-impaired testicular toxicity.Steroids202016310867710.1016/j.steroids.2020.108677 32585208
    [Google Scholar]
  78. BourgeoisK. EgglestonW. Yohimbine.Encyclopedia of Toxicology.Elsevier202487387710.1016/B978‑0‑12‑824315‑2.00564‑9
    [Google Scholar]
  79. Meyler’s Side Effects of DrugsElsevier2016541543
    [Google Scholar]
  80. TariqS.H. MorleyJ.E. Erectile Dysfunction.Encyclopedia of Neuroscience.Elsevier20091183118910.1016/B978‑008045046‑9.00665‑3
    [Google Scholar]
  81. SubramanianA.P. JohnA.A. VellayappanM.V. BalajiA. JaganathanS.K. SupriyantoE. YusofM. Gallic acid: prospects and molecular mechanisms of its anticancer activity.RSC Advances2015545356083562110.1039/C5RA02727F
    [Google Scholar]
  82. KahkeshaniN. FarzaeiF. FotouhiM. AlaviS.S. BahramsoltaniR. NaseriR. MomtazS. AbbasabadiZ. RahimiR. FarzaeiM.H. BishayeeA. Pharmacological effects of gallic acid in health and diseases: A mechanistic review.Iran. J. Basic Med. Sci.201922322523710.22038/ijbms.2019.32806.7897 31156781
    [Google Scholar]
  83. El-Saber BatihaG. AlkazmiL.M. WasefL.G. BeshbishyA.M. NadwaE.H. RashwanE.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities.Biomolecules202010220210.3390/biom10020202 32019140
    [Google Scholar]
  84. MauryaP.K. Ellagic acid: insight into its protective effects in ageassociated disorders.3 Biotech.2022121234010.1007/s13205‑022‑03409‑7
    [Google Scholar]
  85. BaligaM.S. ShivashankaraA.R. VenkateshS. BhatH.P. PalattyP.L. BhandariG. RaoS. Phytochemicals in the prevention of ethanol-induced hepatotoxicity.Dietary Interventions in Liver Disease.Elsevier2019798910.1016/B978‑0‑12‑814466‑4.00007‑0
    [Google Scholar]
  86. GoswamiS. VishwanathM. GangadarappaS. RazdanR. InamdarM. Efficacy of ellagic acid and sildenafil in diabetesinduced sexual dysfunction.Pharmacogn. Mag.20141039Suppl. 358110.4103/0973‑1296.139790 25298678
    [Google Scholar]
  87. SinghA. SinghB. GautamA. Herbal-based resources against exanthematous viral infections and other viral diseases.Coronavirus Drug Discovery.Elsevier2022173202
    [Google Scholar]
  88. SemwalP. PainuliS. Abu-IzneidT. RaufA. SharmaA. DaştanS.D. KumarM. AlshehriM.M. TaheriY. DasR. MitraS. EmranT.B. Sharifi-RadJ. CalinaD. ChoW.C. Diosgenin: An updated pharmacological review and therapeutic perspectives.Oxid. Med. Cell. Longev.2022202211710.1155/2022/1035441 35677108
    [Google Scholar]
  89. KrügerT.H.C. GiraldiA. TenbergenG. The Neurobiology of Sexual Responses and Its Clinical Relevance.Psychiatry and Sexual Medicine.ChamSpringer International Publishing2021718410.1007/978‑3‑030‑52298‑8_7
    [Google Scholar]
  90. GongG. GuanY.Y. ZhangZ.L. RahmanK. WangS.J. ZhouS. LuanX. ZhangH. Isorhamnetin: A review of pharmacological effects.Biomed. Pharmacother.202012811030110.1016/j.biopha.2020.110301 32502837
    [Google Scholar]
  91. MustafaS. IjazM.U. ul Ain, Q.; Afsar, T.; Almajwal, A.; Shafique, H.; Razak, S. Isorhamnetin: a flavonoid, attenuated doxorubicin-induced testicular injury via regulation of steroidogenic enzymes and apoptotic signaling gene expression in male rats.Toxicol. Res. (Camb.)202211347548510.1093/toxres/tfac024 35782651
    [Google Scholar]
  92. KaltsasA. Oxidative stress and male infertility: The protective role of antioxidants.Medicina (Kaunas)20235910176910.3390/medicina59101769 37893487
    [Google Scholar]
  93. OiY. KawadaT. ShishidoC. WadaK. KominatoY. NishimuraS. ArigaT. IwaiK. Allyl-containing sulfides in garlic increase uncoupling protein content in brown adipose tissue, and noradrenaline and adrenaline secretion in rats.J. Nutr.1999129233634210.1093/jn/129.2.336 10024610
    [Google Scholar]
  94. RakelD. Benign Prostatic Hyperplasia.Integrative Medicine.Elsevier2018601607.e110.1016/B978‑0‑323‑35868‑2.00060‑8
    [Google Scholar]
  95. WatchoP. ZelefackF. NgouelaS. NguelefackT.B. KamtchouingP. TsamoE. KamanyiA. Enhancement of erectile function of sexually naïve rats by β–sitosterol and α–β–amyrin acetate isolated from the hexane extract of Mondia whitei.Asian Pac. J. Trop. Biomed.201223S1266S126910.1016/S2221‑1691(12)60397‑9
    [Google Scholar]
  96. AmbavadeS.D. MisarA.V. AmbavadeP.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review.Orient. Pharm. Exp. Med.201414319321110.1007/s13596‑014‑0151‑9
    [Google Scholar]
  97. HossainM.S. UrbiZ. SuleA. RahmanK.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology.ScientificWorldJournal2014201412810.1155/2014/274905 25950015
    [Google Scholar]
  98. SunM. SunM. ZhangJ. Osthole: an overview of its sources, biological activities, and modification development.Med. Chem. Res.202130101767179410.1007/s00044‑021‑02775‑w 34376964
    [Google Scholar]
  99. LiH. JiangH. LiuJ. Traditional Chinese medical therapy for erectile dysfunction.Transl. Androl. Urol.20176219219810.21037/tau.2017.03.02 28540226
    [Google Scholar]
  100. WangS.J. LinT.Y. LuC.W. HuangW.J. Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals.Neurochem. Int.2008536-841642310.1016/j.neuint.2008.09.013 18951936
    [Google Scholar]
  101. BalamuruganM. ParthasarathiK. CooperE.L. RanganathanL.S. Anti-inflammatory and anti-pyretic activities of earthworm extract—Lampito mauritii (Kinberg).J. Ethnopharmacol.2009121233033210.1016/j.jep.2008.10.021 19022370
    [Google Scholar]
  102. Sánchez-RecillasA. Estrada-SotoS. Millán-PachecoC. Villalobos-MolinaR. Calcium channel blockade mediates the tracheal relaxation of 6,7-dimethoxycoumarin isolated from Magnolia mexicana.Rev. Bras. Farmacogn.202333364165010.1007/s43450‑023‑00399‑2
    [Google Scholar]
  103. ChenY. ZhangX. GaoW. CaoQ. YanF. XueC. XueC. Protective effects of ferulic acid against ionizing radiation-induced oxidative damage in rat lens through activating Nrf2 signal pathway.Int. J. Ophthalmol.202316568769310.18240/ijo.2023.05.03 37206165
    [Google Scholar]
  104. NobiliS. LucariniE. MurzilliS. VanelliA. Di Cesare MannelliL. GhelardiniC. Efficacy evaluation of plant products in the treatment of erectile dysfunction related to diabetes.Nutrients202113124520452510.3390/nu13124520 34960072
    [Google Scholar]
  105. GuvvalaP.R. RavindraJ.P. SelvarajuS. ArangasamyA. VenkataK.M. Ellagic and ferulic acids protect arsenic-induced male reproductive toxicity via regulating Nfe2l2, Ppargc1a and StAR expressions in testis.Toxicology201941311210.1016/j.tox.2018.11.012 30503583
    [Google Scholar]
  106. TodorovaV. IvanovK. IvanovaS. Comparison between the biological active compounds in plants with adaptogenic properties (Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng).Plants20211116410.3390/plants11010064 35009068
    [Google Scholar]
  107. Adarsh KrishnaT.P. EdacheryB. AthalathilS. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches.RSC Advances202212148815883210.1039/D1RA08771A 35424800
    [Google Scholar]
  108. Veeresh BabuS.V. VeereshB. PatilA.A. WarkeY.B. Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats.Eur. J. Pharmacol.20106262-326226510.1016/j.ejphar.2009.09.037 19786012
    [Google Scholar]
  109. FukudaM. DannoH. Omics and cell controlling technology for drug discovery.Nippon Yakurigaku Zasshi20241591485210.1254/fpj.23098 38171839
    [Google Scholar]
  110. Al-AmraniS. Al-JabriZ. Al-ZaabiA. AlshekailiJ. Al-KhaboriM. Proteomics: Concepts and applications in human medicine.World J. Biol. Chem.2021125576910.4331/wjbc.v12.i5.57 34630910
    [Google Scholar]
  111. PaananenJ. FortinoV. An omics perspective on drug target discovery platforms.Brief. Bioinform.20202161937195310.1093/bib/bbz122 31774113
    [Google Scholar]
  112. KhodadadianA. DarziS. Haghi-DaredehS. Genomics and transcriptomics: The powerful technologies in precision medicine.Int. J. Gen. Med.20201362710.2147/IJGM.S249970
    [Google Scholar]
  113. ChandranU. MehendaleN. PatilS. ChaguturuR. PatwardhanB. Network Pharmacology.Innovative Approaches in Drug Discovery.Elsevier201712716410.1016/B978‑0‑12‑801814‑9.00005‑2
    [Google Scholar]
  114. NoorF. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals (Basel)202215557210.3390/ph15050572 35631398
    [Google Scholar]
  115. YuanJ. WangJ. LiX. ZhangY. XianJ. WangC. ZhangJ. WuC. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials.Eur. J. Med. Chem.202326211589610.1016/j.ejmech.2023.115896 39491431
    [Google Scholar]
  116. EhigiatorB.E. OzoluaR.I. Reported aphrodisiac agents of plant origin and the mechanistic basis of their actions in erectile dysfunction.Plant Specialized Metabolites.ChamSpringer202412610.1007/978‑3‑031‑30037‑0_18‑1
    [Google Scholar]
  117. NiuQ. LiH. TongL. LiuS. ZongW. ZhangS. TianS. WangJ. LiuJ. LiB. WangZ. ZhangH. TCMFP: a novel herbal formula prediction method based on network target’s score integrated with semi-supervised learning genetic algorithms.Brief. Bioinform.2023243bbad10210.1093/bib/bbad102 36941113
    [Google Scholar]
  118. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072334775241209052941
Loading
/content/journals/cbc/10.2174/0115734072334775241209052941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test