Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Breast cancer remains a major global health concern, ranking among the leading causes of illness and mortality in women worldwide. Despite the effectiveness of conventional treatments such as surgery, chemotherapy (CT), endocrine therapy (ET), radiation therapy (RT), and targeted therapies, these approaches often fall short in providing a cure for advanced-stage patients and frequently result in adverse side effects. This limitation drives the ongoing search for therapeutic natural compounds with minimal or no side effects. Alkaloids, in particular, have garnered attention for their broad spectrum of therapeutic properties against various malignancies, including breast cancer. The objective of this review is to systematically evaluate the therapeutic potential of 14 selected alkaloids that have been tested in and some models of breast cancer along by focusing on their mechanistic actions targeting key molecular signaling pathways involved in breast cancer progression. Majorly, the capability of alkaloids to induce cell cycle arrest, pro-apoptotic mechanisms modulating various molecular signaling pathways were discussed. Notably, pathways such as the intrinsic and extrinsic mitochondrial apoptotic pathways, PI3K/AKT/mTOR, RAS/RAF/MEK/MAPK, Wnt/β-catenin, and NF-κB cascades were highlighted. Insights into conclusion the isoquinoline and indole derivatives, particularly berberine, piperine, capsaicin, matrine, and harmine, have demonstrated significant potential effects and these compounds also exhibited the ability to overcome drug resistance, and shown synergistic effects with conventional therapies. Finally, this comprehensive review could provide an overall insight into the application of these alkaloid compounds towards the prevention of breast cancer and a foundation for future studies aimed at improving their clinical effectiveness, offering valuable prospects.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072331654241211032635
2024-12-18
2025-11-14
Loading full text...

Full text loading...

References

  1. GeorgeB.P. ChandranR. AbrahamseH. Role of phytochemicals in cancer chemoprevention: Insights.Antioxidants2021109145510.3390/antiox10091455 34573087
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review.Cancers20211317428710.3390/cancers13174287 34503097
    [Google Scholar]
  4. LimaS.M. KehmR.D. TerryM.B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns.E. Clinic Med.20213810098510.1016/j.eclinm.2021.100985 34278281
    [Google Scholar]
  5. ShrihastiniV. MuthuramalingamP. AdarshanS. SujithaM. ChenJ.T. ShinH. RameshM. Plant derived bioactive compounds, their anti-cancer effects and In Silico approaches as an alternative target treatment strategy for breast cancer: An updated overview.Cancers20211324622210.3390/cancers13246222 34944840
    [Google Scholar]
  6. SomannaS.N. Nandagudi SrinivasaM. ChaluvarayaswamyR. MalilaN. Time interval between self-detection of symptoms to treatment of breast cancer.Asian Pac. J. Cancer Prev.202021116917410.31557/APJCP.2020.21.1.169 31983180
    [Google Scholar]
  7. MasoudV. PagèsG. Targeted therapies in breast cancer: New challenges to fight against resistance.World J. Clin. Oncol.20178212013410.5306/wjco.v8.i2.120 28439493
    [Google Scholar]
  8. MooT.A. SanfordR. DangC. MorrowM. Overview of breast cancer therapy.PET Clin.201813333935410.1016/j.cpet.2018.02.006 30100074
    [Google Scholar]
  9. NounouM.I. ElAmrawyF. AhmedN. AbdelraoufK. GodaS. Syed-Sha-QhattalH. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies.Breast Cancer (Auckl.)20159s2Suppl. 2BCBCR.S2942010.4137/BCBCR.S29420 26462242
    [Google Scholar]
  10. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614 32116665
    [Google Scholar]
  11. GahtoriR. TripathiA.H. KumariA. NegiN. PaliwalA. TripathiP. JoshiP. RaiR.C. UpadhyayS.K. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms.Future J. Pharm. Sci.2023911410.1186/s43094‑023‑00465‑5
    [Google Scholar]
  12. GreenwellM. RahmanP.K. Medicinal plants: Their use in anticancer treatment.Int. J. Pharm. Sci. Res.201561041034112 26594645
    [Google Scholar]
  13. OlofinsanK. AbrahamseH. GeorgeB.P. Therapeutic role of alkaloids and alkaloid derivatives in cancer management.Molecules20232814557810.3390/molecules28145578 37513450
    [Google Scholar]
  14. Gutiérrez-GrijalvaE.P. López-MartínezL.X. Contreras-AnguloL.A. Elizalde-RomeroC.A. HerediaJ.B. Plant alkaloids: Structures and bioactive properties.Plant-derived Bioactives: Chemistry and Mode of Action. SwamyM.K. SingaporeSpringer20208511710.1007/978‑981‑15‑2361‑8_5
    [Google Scholar]
  15. HabliZ. ToumiehG. FatfatM. RahalO. Gali-MuhtasibH. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms.Molecules201722225010.3390/molecules22020250 28208712
    [Google Scholar]
  16. PantP. PandeyS. Dall’AcquaS. The Influence of environmental conditions on secondary metabolites in medicinal plants: A literature review.Chem. Biodivers.20211811e210034510.1002/cbdv.202100345 34533273
    [Google Scholar]
  17. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—an update and forward look.Molecules2021267183610.3390/molecules26071836 33805869
    [Google Scholar]
  18. BalloutF. HabliZ. MonzerA. RahalO.N. FatfatM. Gali-MuhtasibH. Anticancer alkaloids: Molecular mechanisms and clinical manifestations.Bioactive Natural Products for the Management of Cancer: From Bench to Bedside. SharmaA. SingaporeSpringer201910.1007/978‑981‑13‑7607‑8_1
    [Google Scholar]
  19. DeyP. KunduA. KumarA. GuptaM. LeeB.M. BhaktaT. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).Recent Advances in Natural Products Analysis.Elsevier202050556710.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  20. QinR. YouF.M. ZhaoQ. XieX. PengC. ZhanG. HanB. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets.J. Hematol. Oncol.202215113310.1186/s13045‑022‑01350‑z 36104717
    [Google Scholar]
  21. IslamM.T. MubarakM.S. Pyrrolidine alkaloids and their promises in pharmacotherapy.Adv. Tradit. Med.201924
    [Google Scholar]
  22. Kohnen-JohannsenK.L. KayserO. Tropane Alkaloids: Chemistry, pharmacology, biosynthesis and production.Molecules2019244796
    [Google Scholar]
  23. KhanA.Y. Suresh KumarG. Natural isoquinoline alkaloids: Binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme.Biophys. Rev.20157440742010.1007/s12551‑015‑0183‑5 28510102
    [Google Scholar]
  24. AshiharaH. YokotaT. CrozierA. Purine alkaloids, cytokinins and purine-like neurotoxin alkaloids.Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes.Berlin, GermanySpringer201310.1007/978‑3‑642‑22144‑6_32
    [Google Scholar]
  25. MoreiraR. PereiraD.M. ValentãoP. AndradeP.B. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety.Int. J. Mol. Sci.2018196166810.3390/ijms19061668 29874826
    [Google Scholar]
  26. CordellG.A. LamahewageS.N.S. Ergothioneine, Ovothiol A, and Selenoneine—histidine-derived, biologically significant, trace global alkaloids.Molecules2022279267310.3390/molecules27092673 35566030
    [Google Scholar]
  27. DeyP. KunduA. ChakrabortyH.J. KarB. ChoiW.S. LeeB.M. BhaktaT. AtanasovA.G. KimH.S. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives.Int. J. Cancer201914571731174410.1002/ijc.31965 30387881
    [Google Scholar]
  28. DaleyS. CordellG.A. Alkaloids in contemporary drug discovery to meet global disease needs.Molecules20212613380010.3390/molecules26133800 34206470
    [Google Scholar]
  29. BhambhaniS. KondhareK.R. GiriA.P. Diversity in chemical structures and biological properties of plant alkaloids.Molecules20212611337410.3390/molecules26113374 34204857
    [Google Scholar]
  30. Abdel-DaimM.M. SayedA.A. AbdeenA. AleyaL. AliD. AlkahtaneA.A. AlarifiS. AlkahtaniS. Piperine enhances the antioxidant and anti-inflammatory activities of Thymoquinone against Microcystin-LR-Induced hepatotoxicity and neurotoxicity in mice.Oxid. Med. Cell. Longev.2019201911010.1155/2019/1309175 31178949
    [Google Scholar]
  31. HuangY.L. CuiS.Y. CuiX.Y. CaoQ. DingH. SongJ.Z. HuX. YeH. YuB. ShengZ.F. WangZ.J. ZhangY.H. Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms.Phytomedicine201623141821182910.1016/j.phymed.2016.10.021 27912885
    [Google Scholar]
  32. RaufA. Abu-IzneidT. KhalilA.A. ImranM. ShahZ.A. EmranT.B. MitraS. KhanZ. AlhumaydhiF.A. AljohaniA.S.M. KhanI. RahmanM.M. JeandetP. GondalT.A. Berberine as a potential anticancer agent: A comprehensive review.Molecules20212623736810.3390/molecules26237368 34885950
    [Google Scholar]
  33. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.00010 29497610
    [Google Scholar]
  34. LiW. ShaoY. HuL. ZhangX. ChenY. TongL. LiC. ShenX. DingJ. BM6, a new semi-synthetic vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles.Cancer Biol. Ther.20076578779410.4161/cbt.6.5.4006 17387272
    [Google Scholar]
  35. MartinoF. PerestreloA.R. VinarskýV. PagliariS. ForteG. Cellular Mechanotransduction: From tension to function.Front. Physiol.2018982410.3389/fphys.2018.00824 30026699
    [Google Scholar]
  36. LuJ.J. BaoJ.L. ChenX.P. HuangM. WangY.T. Alkaloids isolated from natural herbs as the anticancer agents.Evid. Based Complement. Alternat. Med.2012201211210.1155/2012/485042 22988474
    [Google Scholar]
  37. LohJ.S. TanL.K.S. LeeW.L. MingL.C. HowC.W. FooJ.B. KifliN. GohB.H. OngY.S. Do lipid-based nanoparticles hold promise for advancing the clinical translation of anticancer alkaloids?Cancers20211321534610.3390/cancers13215346 34771511
    [Google Scholar]
  38. ZhongX.D. ChenL.J. XuX.Y. LiuY.J. TaoF. ZhuM.H. LiC.Y. ZhaoD. YangG.J. ChenJ. Berberine as a potential agent for breast cancer therapy.Front. Oncol.20221299377510.3389/fonc.2022.993775 36119505
    [Google Scholar]
  39. BasharA.A. HossanM.S. JahanR. Al-NahainA. HaqueA.M. RahmatullahM. Berberine: A potential therapeutic candidate for breast cancer.J. Pharm. Pharm. Sci.2014318581869
    [Google Scholar]
  40. AykulS. Martinez-HackertE. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.Anal. Biochem.20165089710310.1016/j.ab.2016.06.025 27365221
    [Google Scholar]
  41. KimJ. LeeK.M. KoE. HanW. LeeJ. ShinI. BaeJ.Y. KimS. NohD.Y. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231.Planta Med.2008741394210.1055/s‑2007‑993779 18203057
    [Google Scholar]
  42. ZhaoY. JingZ. LvJ. ZhangZ. LinJ. CaoX. ZhaoZ. LiuP. MaoW. Berberine activates caspase-9/cytochrome c-mediated apoptosis to suppress triple-negative breast cancer cells in vitro and in vivo.Biomed. Pharmacother.201795182410.1016/j.biopha.2017.08.045 28826092
    [Google Scholar]
  43. El KhalkiL. MaireV. DuboisT. ZyadA. Berberine Impairs the survival of triple negative breast cancer cells: Cellular and molecular analyses.Molecules202025350610.3390/molecules25030506 31991634
    [Google Scholar]
  44. Jabbarzadeh KaboliP. LeongM.P.Y. IsmailP. LingK.H. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study.Pharmacol. Rep.2019711132310.1016/j.pharep.2018.07.005 30343043
    [Google Scholar]
  45. KarnamK.C. EllutlaM. BodduluruL.N. KasalaE.R. UppulapuS.K. KalyankumarrajuM. LahkarM. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats.Biomed. Pharmacother.20179220721410.1016/j.biopha.2017.05.069 28544934
    [Google Scholar]
  46. DianL. XuZ. SunY. LiJ. LuH. ZhengM. WangJ. DrobotL. HorakI. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/β-catenin signaling and EMT.Phytochemistry202220011321710.1016/j.phytochem.2022.113217 35504329
    [Google Scholar]
  47. PonnusamyL. KothandanG. ManoharanR. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.202018661116589710.1016/j.bbadis.2020.165897 32682817
    [Google Scholar]
  48. Rahmanian-DevinP. Baradaran RahimiV. JaafariM.R. GolmohammadzadehS. Sanei-farZ. AskariV.R. Noscapine, an emerging medication for different diseases: A mechanistic review.Evid. Based Complement. Alternat. Med.2021202111610.1155/2021/8402517 34880922
    [Google Scholar]
  49. KocakC. KocakF.E. OzturkB. TekinG. VatansevH. Cytotoxic, anti-proliferative and apoptotic effects of noscapine on human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines.Bratisl. Med. J.20201211435010.4149/BLL_2020_007 31950839
    [Google Scholar]
  50. DoddapaneniR. PatelK. ChowdhuryN. SinghM. Noscapine chemosensitization enhances docetaxel anticancer activity and nanocarrier uptake in triple negative breast cancer.Exp. Cell Res.20163461657310.1016/j.yexcr.2016.05.006 27177833
    [Google Scholar]
  51. ChouguleM.B. PatelA.R. JacksonT. SinghM. Antitumor activity of Noscapine in combination with Doxorubicin in triple negative breast cancer.PLoS One201163e1773310.1371/journal.pone.0017733 21423660
    [Google Scholar]
  52. XuJ. DuB. LiuY. TaoC. Magnoflorine promotes Huh-7 cell apoptosis and autophagy by regulating PI3K/Akt/mTOR pathway.Qual. Assur. Saf. Crops Foods2022141394510.15586/qas.v14i1.1013
    [Google Scholar]
  53. (b) Okon, E.; Kukula-Koch, W.; Halasa, M.; Jarzab, A.; Baran, M.; Dmoszynska-Graniczka, M.; Angelis, A.; Kalpoutzakis, E.; Guz, M.; Stepulak, A.; Wawruszak, A. Magnoflorine—isolation and the anticancer potential against NCI-H1299 Lung, MDA-MB-468 Breast, T98G Glioma, and TE671 Rhabdomyosarcoma cancer cells.Biomolecules20201011153210.3390/biom10111532 33182753
    [Google Scholar]
  54. OkonE. LuszczkiJ.J. Kukula-KochW. HalasaM. JarzabA. KhurelbatD. StepulakA. WawruszakA. Synergistic or additive pharmacological interactions between Magnoflorine and Cisplatin in human cancer cells of different histological origin.Int. J. Mol. Sci.2020218284810.3390/ijms21082848 32325867
    [Google Scholar]
  55. WeiT. XiaojunX. PeilongC. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways.Biomed. Pharmacother.202012110913910.1016/j.biopha.2019.109139 31707337
    [Google Scholar]
  56. LuanF. HeX. ZengN. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems.J. Pharm. Pharmacol.202072111491151210.1111/jphp.13339 32696989
    [Google Scholar]
  57. GuoY. PeiX. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/7517431 30713576
    [Google Scholar]
  58. N, B.; Chandrashekar, K.R.; Prabhu, A.; Rekha, P.D. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell. Dev. Biol. Anim.201955533134010.1007/s11626‑019‑00332‑9 30945115
    [Google Scholar]
  59. YuanB. YaoM. WangX. SatoA. OkazakiA. KomuroH. HayashiH. ToyodaH. PeiX. HuX. HiranoT. TakagiN. Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo.Cancer Cell Int.201818111310.1186/s12935‑018‑0613‑0 30123091
    [Google Scholar]
  60. WangY. YueW. LangH. DingX. ChenX. ChenH. Resuming sensitivity of Tamoxifen-resistant breast cancer cells to Tamoxifen by Tetrandrine.Integr. Cancer Ther.202120153473542199682210.1177/1534735421996822 33660534
    [Google Scholar]
  61. DuJ. LiJ. SongD. LiQ. LiL. LiB. LiL. Matrine exerts anti breast cancer activity by mediating apoptosis and protective autophagy via the AKT/mTOR pathway in MCF 7 cells.Mol. Med. Rep.20202253659366610.3892/mmr.2020.11449 33000249
    [Google Scholar]
  62. LiL.Q. LiX.L. WangL. DuW.J. GuoR. LiangH.H. LiuX. LiangD.S. LuY.J. ShanH.L. JiangH.C. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells.Cell. Physiol. Biochem.201230363164110.1159/000341444 22832383
    [Google Scholar]
  63. YuP. LiuQ. LiuK. YagasakiK. WuE. ZhangG. Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-κB signaling.Cytotechnology200959321922910.1007/s10616‑009‑9225‑9 19760125
    [Google Scholar]
  64. XiaoX. AoM. XuF. LiX. HuJ. WangY. LiD. ZhuX. XinC. ShiW. Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β-catenin pathway.Oncol. Lett.201815216911697 29434864
    [Google Scholar]
  65. BasithS. CuiM. HongS. ChoiS. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases.Molecules201621896610.3390/molecules21080966 27455231
    [Google Scholar]
  66. ChangH.C. ChenS.T. ChienS.Y. KuoS.J. TsaiH.T. ChenD.R. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction.Hum. Exp. Toxicol.201130101657166510.1177/0960327110396530 21300690
    [Google Scholar]
  67. ChenM. XiaoC. JiangW. YangW. QinQ. TanQ. LianB. LiangZ. WeiC. Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-mediated NF-κB pathway.Drug Des. Devel. Ther.20211512514010.2147/DDDT.S269901 33469265
    [Google Scholar]
  68. RadwanY. ArafaK.K. GhoniemM.G. Al-FarrajE.S. El-SherbinyI.M. An in-vitro quantitative investigation on the synergistic effect of capsaicin and 5-fluorouracil encapsulated into lipid nanocapsules to treat breast cancer.Drug Dev. Ind. Pharm.202349327128010.1080/03639045.2023.2203252 37067846
    [Google Scholar]
  69. WuD. JiaH. ZhangZ. LiS. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β catenin signaling pathway.Mol. Med. Rep.20202264868487610.3892/mmr.2020.11585 33173974
    [Google Scholar]
  70. LiangD. LiQ. DuL. DouG. Pharmacological effects and clinical prospects of Cepharanthine.Molecules20222724893310.3390/molecules27248933 36558061
    [Google Scholar]
  71. GaoS. LiX. DingX. QiW. YangQ. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells.Cell. Physiol. Biochem.20174141633164810.1159/000471234 28359054
    [Google Scholar]
  72. ShenL. JiangX. LiZ. LiJ. WangM. JiaG. DingX. LeiL. GongQ. GaoN. Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis.Acta Pharmacol. Sin.202243117719310.1038/s41401‑021‑00715‑3 34294886
    [Google Scholar]
  73. LiL. ZhangC. HuangC. TianX. SunW. JiangS. Research advances in antitumor mechanism of Evodiamine.J. Chem. Chem. Eng.2022
    [Google Scholar]
  74. DuJ. WangX.F. ZhouQ.M. ZhangT.L. LuY.Y. ZhangH. SuS.B. Evodiamine induces apoptosis and inhibits metastasis in MDA-MB-231 human breast cancer cells in vitro and in vivo.Oncol. Rep.201330268569410.3892/or.2013.2498 23708383
    [Google Scholar]
  75. WangS. WangL. ShiZ. ZhongZ. ChenM. WangY. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.PLoS One201495e9751210.1371/journal.pone.0097512 24830744
    [Google Scholar]
  76. PatelK. GadewarM. TripathiR. PrasadS.K. PatelD.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”.Asian Pac. J. Trop. Biomed.20122866066410.1016/S2221‑1691(12)60116‑6 23569990
    [Google Scholar]
  77. OckC.W. KimG.D. Harmine Hydrochloride mediates the induction of G2/M Cell cycle arrest in breast cancer cells by regulating the MAPKs and AKT/FOXO3a signaling pathways.Molecules20212621671410.3390/molecules26216714 34771123
    [Google Scholar]
  78. NafieE. LolargaJ. LamB. GuoJ. AbdollahzadehE. RodriguezS. GlackinC. LiuJ. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1.PLoS One2021162e024765210.1371/journal.pone.0247652 33626096
    [Google Scholar]
  79. LaiL. FuQ. LiuY. JiangK. GuoQ. ChenQ. YanB. WangQ. ShenJ. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model.Acta Pharmacol. Sin.201233452353010.1038/aps.2011.209 22388073
    [Google Scholar]
  80. Ghassemi-radJ. FernandoW. HoskinD. Piperlongumine loaded nanoparticles inhibit the growth, migration and invasion and epithelial to mesenchymal transition of triple negative breast cancer cells.Int. j. funct. nutr.2020211110.3892/ijfn.2020.11
    [Google Scholar]
  81. BaillyC. The steroidal alkaloids α-tomatine and tomatidine: Panorama of their mode of action and pharmacological properties.Steroids202117610893310.1016/j.steroids.2021.108933 34695457
    [Google Scholar]
  82. FriedmanM. LevinC.E. LeeS.U. KimH.J. LeeI.S. ByunJ.O. KozukueN. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells.J. Agric. Food Chem.200957135727573310.1021/jf900364j 19514731
    [Google Scholar]
  83. SuchaL. HrochM. RezacovaM. RudolfE. HavelekR. SisperaL. CmielovaJ. KohlerovaR. BezroukA. TomsikP. The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction.Oncol. Rep.20133062593260210.3892/or.2013.2778 24100733
    [Google Scholar]
  84. TomsikP. MicudaS. SuchaL. CermakovaE. SubaP. ZivnyP. MazurovaY. KnizekJ. NiangM. RezacovaM. The anticancer activity of alpha-tomatine against mammary adenocarcinoma in mice.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2013157215316110.5507/bp.2013.031 23681309
    [Google Scholar]
  85. DuQ. MengX. WangS. A comprehensive review on the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of Tetrahydropalmatine.Front. Pharmacol.20221389007810.3389/fphar.2022.890078 35559252
    [Google Scholar]
  86. SivakumaranN. SamarakoonS.R. AdhikariA. EdiriweeraM.K. TennekoonK.H. MalavigeN. ThabrewI. ShresthaR.L.S. Cytotoxic and apoptotic effects of govaniadine isolated from Corydalis govaniana wall. roots on human breast cancer (MCF-7) Cells.BioMed Res. Int.2018201811110.1155/2018/3171348 30140694
    [Google Scholar]
  87. WuG. ChenG. ZhouJ. ZhuH. ChuJ. ZhangF. Liriodenine enhances radiosensitivity in esophageal cancer ECA 109 cells by inducing apoptosis and G2/M arrest.Oncol. Lett.20181645020502610.3892/ol.2018.9253 30250568
    [Google Scholar]
  88. WirasathienL. BoonarkartC. PengsuparpT. SuttisriR. Biological activities of alkaloids from Pseuduvaria setosa.Pharm. Biol.200644427427810.1080/13880200600714111
    [Google Scholar]
  89. LiZ.H. GaoJ. HuP.H. XiongJ.P. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression.Oncol. Lett.20171421979198410.3892/ol.2017.6418 28781641
    [Google Scholar]
  90. TranL.T.T. DangN.Y.T. In silico and in vitro evaluation of alkaloids from Goniothalamus elegans Ast. for breast cancer treatment.Nat. Prod. Commun.2022173
    [Google Scholar]
  91. FaragM. Abdel-MageedW. BasudanO. El-GamalA. Persicaline, A new antioxidant sulphur-containing imidazoline alkaloid from Salvadora persica Roots.Molecules201823248310.3390/molecules23020483 29473845
    [Google Scholar]
  92. HamzaA.A. KhasawnehM.A. ElwyH.M. HassaninS.O. ElhabalS.F. FawziN.M. Salvadora persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis.Biomed. Pharmacother.202214711266610.1016/j.biopha.2022.112666 35124384
    [Google Scholar]
  93. ELhabalS.F. ElwyH.M. HassaninS. El-RashedyA.A. HamzaA.A. KhasawnehM.A. Biosynthesis and characterization of gold and copper nanoparticles from Salvadora persica fruit extracts and their biological properties.Int. J. Nanomedicine2022176095611210.2147/IJN.S385543 36514376
    [Google Scholar]
  94. MohanyM. Al-zharaniM. NasrF.A. El-WetidyM.S. FaragM. Abdel-MageedW.M. El-GamalA. Al-RejaieS.S. NomanO.M. QurtamA.A. RudayniH.A. AleissaM.S. Persicaline, an alkaloid from Salvadora persica, inhibits proliferation and induces apoptosis and cell-cycle arrest in MCF-7 cells.Open Chem.20232112022030210.1515/chem‑2022‑0302
    [Google Scholar]
  95. PistrittoG. TrisciuoglioD. CeciC. GarufiA. D’OraziG. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies.Aging (Albany NY)20168460361910.18632/aging.100934 27019364
    [Google Scholar]
  96. MitsiogianniM. KoutsidisG. MavroudisN. TrafalisD.T. BotaitisS. FrancoR. ZoumpourlisV. AmeryT. GalanisA. PappaA. PanayiotidisM.I. The role of Isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents.Antioxidants20198410610.3390/antiox8040106 31003534
    [Google Scholar]
  97. SuraweeraC.D. HindsM.G. KvansakulM. Poxviral strategies to overcome host cell apoptosis.Pathogens2020101610.3390/pathogens10010006 33374867
    [Google Scholar]
  98. AsatiV. MahapatraD.K. BhartiS.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives.Eur. J. Med. Chem.201610931434110.1016/j.ejmech.2016.01.012 26807863
    [Google Scholar]
  99. MendozaM.C. ErE.E. BlenisJ. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation.Trends Biochem. Sci.201136632032810.1016/j.tibs.2011.03.006 21531565
    [Google Scholar]
  100. WildS.L. ElghajijiA. Grimaldos RodriguezC. WestonS.D. BurkeZ.D. ToshD. The canonical Wnt pathway as a key regulator in liver development, differentiation and homeostatic renewal.Genes20201110116310.3390/genes11101163 33008122
    [Google Scholar]
  101. XuX. ZhangM. XuF. JiangS. Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities.Mol. Cancer202019116510.1186/s12943‑020‑01276‑5 33234169
    [Google Scholar]
  102. DeyN. YoungB. AbramovitzM. BouzykM. BarwickB. DeP. Leyland-JonesB. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner.PLoS One2013810e7742510.1371/journal.pone.0077425 24143235
    [Google Scholar]
  103. ParkM. HongJ. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches.Cells2016521510.3390/cells5020015 27043634
    [Google Scholar]
  104. PomaP. LabbozzettaM. D’AlessandroN. NotarbartoloM. NF-κB Is a potential molecular drug target in triple-negative breast cancers.OMICS201721422523110.1089/omi.2017.0020 28388298
    [Google Scholar]
  105. WangW. NagS. ZhangR. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.Curr. Med. Chem.201422226428910.2174/0929867321666141106124315 25386819
    [Google Scholar]
  106. WangH. ZhangK. LiuJ. YangJ. TianY. YangC. LiY. ShaoM. SuW. SongN. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways.Front. Oncol.20211166071210.3389/fonc.2021.660712 33912467
    [Google Scholar]
  107. ChenD. MaY. GuoZ. LiuL. YangY. WangY. PanB. WuL. HuiY. YangW. Two natural alkaloids synergistically induce apoptosis in breast cancer cells by inhibiting STAT3 activation.Molecules202025121610.3390/molecules25010216 31948057
    [Google Scholar]
  108. PanY. ZhangF. ZhaoY. ShaoD. ZhengX. ChenY. HeK. LiJ. ChenL. Berberine enhances chemosensitivity and induces apoptosis through Dose-orchestrated AMPK signaling in breast cancer.J. Cancer2017891679168910.7150/jca.19106 28775788
    [Google Scholar]
  109. IqbalN. IqbalN. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications.Mol. Biol. Int.201420141910.1155/2014/852748 25276427
    [Google Scholar]
  110. HuaH. ZhangH. KongQ. JiangY. Mechanisms for estrogen receptor expression in human cancer.Exp. Hematol. Oncol.2018712410.1186/s40164‑018‑0116‑7 30250760
    [Google Scholar]
  111. XiaX. HeJ. LiuB. ShaoZ. XuQ. HuT. YuC. LiuX. LiaoY. LiuN. HuangH. Targeting ERα degradation by L-Tetrahydropalmatine provides a novel strategy for breast cancer treatment.Int. J. Biol. Sci.202016122192220410.7150/ijbs.44005 32549765
    [Google Scholar]
  112. DoM.T. KimH.G. ChoiJ.H. KhanalT. ParkB.H. TranT.P. JeongT.C. JeongH.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.Food Chem.201314132591259910.1016/j.foodchem.2013.04.125 23870999
    [Google Scholar]
  113. ThoennissenN.H. O’KellyJ. LuD. IwanskiG.B. LaD.T. AbbassiS. LeiterA. KarlanB. MehtaR. KoefflerH.P. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway.Oncogene201029228529610.1038/onc.2009.335 19855437
    [Google Scholar]
  114. YinJ. XingH. YeJ. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism200857571271710.1016/j.metabol.2008.01.013 18442638
    [Google Scholar]
  115. LasagnaL. OwensA.H.Jr ShniderB.I. GoldG.L. Toxicity after large doses of noscapine.Cancer Chemother. Rep.1961153334 14462566
    [Google Scholar]
  116. YouL. YangC. DuY. LiuY. ChenG. SaiN. DongX. YinX. NiJ. Matrine exerts hepatotoxic effects via the ROS-dependent mitochondrial apoptosis pathway and inhibition of Nrf2-mediated antioxidant response.Oxid. Med. Cell. Longev.2019201911510.1155/2019/1045345 31737162
    [Google Scholar]
  117. WangX.P. YangR.M. Movement disorders possibly induced by traditional chinese herbs.Eur. Neurol.200350315315910.1159/000073056 14530621
    [Google Scholar]
  118. LiuT. LiuX. LiW. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy.Oncotarget2016726408004081510.18632/oncotarget.8315 27027348
    [Google Scholar]
  119. Reyes-EscogidoM.L. Gonzalez-MondragonE.G. Vazquez-TzompantziE. Chemical and pharmacological aspects of capsaicin.Molecules20111621253127010.3390/molecules16021253
    [Google Scholar]
  120. KrenzelokE.P. JacobsenT.D. Plant exposures a national profile of the most common plant genera.Vet. Hum. Toxicol.1997394248249 9251180
    [Google Scholar]
  121. SurhY.J. Sup LeeS. Capsaicin, a double-edged sword: Toxicity, metabolism, and chemopreventive potential.Life Sci.199556221845185510.1016/0024‑3205(95)00159‑4 7746093
    [Google Scholar]
  122. YangW. MaL. LiS. CuiK. LeiL. YeZ. Evaluation of the cardiotoxicity of evodiamine in vitro and in vivo.Molecules201722694310.3390/molecules22060943 28598372
    [Google Scholar]
  123. MarwatS.K. Medicinal and pharmacological potential of Harmala (Peganum harmala L.) seeds.Nuts and Seeds in Health and Disease Prevention.Academic Press2011585599
    [Google Scholar]
  124. RickC.M. UhligJ.W. JonesA.D. High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: Developmental and genetic aspects.Proc. Natl. Acad. Sci. USA19949126128771288110.1073/pnas.91.26.12877 7809139
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072331654241211032635
Loading
/content/journals/cbc/10.2174/0115734072331654241211032635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test