Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

This study aimed at evaluating the neuropharmacological impacts of betaine, a natural compound known for its antioxidant properties, in a rat model of Parkinson’s disease induced by rotenone.

Methods

Male Wistar rats were separated into various groups and administered betaine at two different doses (10 mg/kg and 20 mg/kg orally), in addition to rotenone (2 mg/kg subcutaneously), for 35 days.

Results

Various parameters were analyzed to determine the effectiveness of betaine. After receiving rotenone, the subjects displayed various behavioral alterations such as catalepsy, delayed beam walk, postural instability, unusual movement patterns, reduced weight, altered rearing behavior, impaired muscle coordination, decreased locomotor activity, and weakened grip strength. Interestingly, these effects were notably alleviated when betaine was given alongside. Betaine demonstrated a reduction in rotenone-induced oxidative stress by lowering levels of thiobarbituric acid reactive substances (TBARS) and superoxide anion generation (SAG), while increasing levels of catalase (CAT) and glutathione (GSH) in the cerebrum and midbrain regions. Moreover, betaine helped alleviate the reduction in dopamine (DA) levels caused by rotenone-induced neurodegeneration. In general, the protective impact of betaine against rotenone-induced PD symptoms outperformed the typical treatment with Levodopa+Carbidopa (L+C), especially at the higher dosage of 20 mg/kg.

Conclusion

These results indicate that betaine shows potential as a therapeutic option for PD because of its antioxidant properties.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072327534241203055525
2024-12-18
2025-11-14
Loading full text...

Full text loading...

References

  1. HalliwellB. Reactive oxygen species and the central nervous system.J. Neurochem.19925951609162310.1111/j.1471‑4159.1992.tb10990.x 1402908
    [Google Scholar]
  2. Olanow, CW Oxidation reactions in Parkinson’s disease.Neurology19904010Suppl. 33237
    [Google Scholar]
  3. OlanowC.W. A radical hypothesis for neurodegeneration.Trends Neurosci.1993161143944410.1016/0166‑2236(93)90070‑3 7507613
    [Google Scholar]
  4. TristB.G. HareD.J. DoubleK.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease.Aging Cell2019186e1303110.1111/acel.13031 31432604
    [Google Scholar]
  5. JennerP. OlanowC.W. Oxidative stress and the pathogenesis of Parkinson’s disease.Neurology1996476_suppl_3)(Suppl. 3S161S17010.1212/WNL.47.6_Suppl_3.161S 8959985
    [Google Scholar]
  6. BergD. GerlachM. YoudimM.B.H. DoubleK.L. ZeccaL. RiedererP. BeckerG. Brain iron pathways and their relevance to Parkinson’s disease.J. Neurochem.200179222523610.1046/j.1471‑4159.2001.00608.x 11677250
    [Google Scholar]
  7. CastellaniR.J. PerryG. SiedlakS.L. NunomuraA. ShimohamaS. ZhangJ. MontineT. SayreL.M. SmithM.A. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans.Neurosci. Lett.20023191252810.1016/S0304‑3940(01)02514‑9 11814645
    [Google Scholar]
  8. JennerP. OlanowC.W. Understanding cell death in Parkinson’s disease.Ann. Neurol.1998443Suppl. 1S72S84 9749577
    [Google Scholar]
  9. BuneevaO. MedvedevA. Atypical Ubiquitination and Parkinson’s Disease.Int. J. Mol. Sci.2022237370510.3390/ijms23073705 35409068
    [Google Scholar]
  10. DexterD.T. CarterC.J. WellsF.R. Javoy-AgidF. AgidY. LeesA. JennerP. MarsdenC.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J. Neurochem.198952238138910.1111/j.1471‑4159.1989.tb09133.x 2911023
    [Google Scholar]
  11. BovéJ. ProuD. PerierC. PrzedborskiS. Toxin-induced models of Parkinson’s disease.NeuroRx20052348449410.1602/neurorx.2.3.484
    [Google Scholar]
  12. KotakeY. OhtaS. MPP+ analogs acting on mitochondria and inducing neuro-degeneration.Curr. Med. Chem.200310232507251610.2174/0929867033456558 14529466
    [Google Scholar]
  13. UverskyV.N. Neurotoxicant-induced animal models of Parkinson?s disease: Understanding the role of rotenone, maneb and paraquat in neurodegeneration.Cell Tissue Res.2004318122524110.1007/s00441‑004‑0937‑z 15258850
    [Google Scholar]
  14. KipE. Parr-BrownlieL.C. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders.Front. Neurosci.202317109253710.3389/fnins.2023.1092537 36875655
    [Google Scholar]
  15. AlamM. MayerhoferA. SchmidtW.J. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA.Behav. Brain Res.20041511-211712410.1016/j.bbr.2003.08.014 15084427
    [Google Scholar]
  16. CannonJ.R. TapiasV. NaH.M. HonickA.S. DroletR.E. GreenamyreJ.T. A highly reproducible rotenone model of Parkinson’s disease.Neurobiol. Dis.200934227929010.1016/j.nbd.2009.01.016 19385059
    [Google Scholar]
  17. BetarbetR. ShererT.B. MacKenzieG. Garcia-OsunaM. PanovA.V. GreenamyreJ.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat. Neurosci.20003121301130610.1038/81834 11100151
    [Google Scholar]
  18. SanfeliuC. BartraC. SuñolC. Rodríguez-FarréE. New insights in animal models of neurotoxicity-induced neurodegeneration.Front. Neurosci.202417124872710.3389/fnins.2023.1248727 38260026
    [Google Scholar]
  19. SaravananK.S. SindhuK.M. SenthilkumarK.S. MohanakumarK.P. l-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats.Neurochem. Int.2006491284010.1016/j.neuint.2005.12.016 16490285
    [Google Scholar]
  20. RenY. LiuW. JiangH. JiangQ. FengJ. Selective vulnerability of dopaminergic neurons to microtubule depolymerization.J. Biol. Chem.200528040341053411210.1074/jbc.M503483200 16091364
    [Google Scholar]
  21. SwarnkarS. SinghS. MathurR. PatroI.K. NathC. A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats.Toxicology20102721-3172210.1016/j.tox.2010.03.019 20371261
    [Google Scholar]
  22. ChuproskiA.P. AzevedoE.M. IlkiwJ. MilochJ. LimaM.M.S. Metabolic dysfunctions in the intranigral rotenone model of Parkinson’s disease.Exp. Brain Res.202324151289129810.1007/s00221‑023‑06605‑w 37000202
    [Google Scholar]
  23. VermaR. NehruB. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease.Neurochem. Int.200955636937510.1016/j.neuint.2009.04.001 19375462
    [Google Scholar]
  24. NehruB. VermaR. KhannaP. SharmaS.K. Behavioral alterations in rotenone model of Parkinson’s disease: Attenuation by co-treatment of centrophenoxine.Brain Res.2008120112212710.1016/j.brainres.2008.01.074 18308296
    [Google Scholar]
  25. KhuranaN. GajbhiyeA. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson’s disease.Neurotoxicology201339576410.1016/j.neuro.2013.08.005 23994302
    [Google Scholar]
  26. IngaleS.P. KastureS.B. Antioxidant and antiparkinsonian activity of Passiflora incarnata leaves.Orient. Pharm. Exp. Med.201414323123610.1007/s13596‑014‑0149‑3
    [Google Scholar]
  27. SinghA. GuptaA. MishraA. GuptaV. BansalP. KumarS. Medicinal plant for curing Alzheimer’s disease.Int. J. Pharm. Biol. Arch.201012108114
    [Google Scholar]
  28. CraigS.A.S. Betaine in human nutrition.Am. J. Clin. Nutr.200480353954910.1093/ajcn/80.3.539 15321791
    [Google Scholar]
  29. Akhavan-SalamatH. GhasemiH.A. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: Dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status.Trop. Anim. Health Prod.201648118118810.1007/s11250‑015‑0941‑1 26494545
    [Google Scholar]
  30. AlirezaeiM. GheisariH.R. RanjbarV.R. HajibemaniA. Betaine: A promising antioxidant agent for enhancement of broiler meat quality.Br. Poult. Sci.201253569970710.1080/00071668.2012.728283 23281766
    [Google Scholar]
  31. AlirezaeiM. JelodarG. GhayemiZ. MehrM.K. Antioxidant and methyl donor effects of betaine versus ethanol-induced oxidative stress in the rat liver.Comp. Clin. Pathol.201423116116810.1007/s00580‑012‑1589‑0
    [Google Scholar]
  32. AlirezaeiM. KhoshdelZ. DezfoulianO. RashidipourM. TaghadosiV. Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats.J. Physiol. Sci.201565324325210.1007/s12576‑015‑0360‑0 25665954
    [Google Scholar]
  33. AhnM. KangY. MoonJ. KimS. MoonC. ShinT. Oral administration of betaine ameliorates ethanol-induced gastric injury in rats through its antioxidant effects.Orient. Pharm. Exp. Med.201414323724310.1007/s13596‑014‑0158‑2
    [Google Scholar]
  34. ZhaoG. HeF. WuC. LiP. LiN. DengJ. ZhuG. RenW. PengY. Betaine in Inflammation: Mechanistic Aspects and Applications.Front. Immunol.20189107010.3389/fimmu.2018.01070 29881379
    [Google Scholar]
  35. SorgunO. ÇakırA. BoraE.S. ErdoğanM.A. UyanıkgilY. ErbaşO. Anti-inflammatory and antioxidant properties of betaine protect against sepsis-induced acute lung injury: CT and histological evidence.Braz. J. Med. Biol. Res.202356e1290610.1590/1414‑431x2023e12906 37970921
    [Google Scholar]
  36. CarterR.J. MortonJ. DunnettS.B. Motor coordination and balance in rodents. Current Protocols.Neuroscience.Hoboken, New JerseyWiley200110.1002/0471142301.ns0812s15
    [Google Scholar]
  37. CostallB. NaylorR.J. On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity.Psychopharmacology (Berl.)197434323324110.1007/BF00421964 4594816
    [Google Scholar]
  38. LudolphA.C. HeF. SpencerP.S. HammerstadJ. SabriM. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin.Can. J. Neurol. Sci.1991184492498
    [Google Scholar]
  39. GiraldoG. BrooksM. GiassonB.I. JanusC. Locomotor differences in mice expressing wild-type human α-synuclein.Neurobiol. Aging20186514014810.1016/j.neurobiolaging.2018.01.020 29477894
    [Google Scholar]
  40. KhuranaN. IsharM.P.S. GajbhiyeA. GoelR.K. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice.Eur. J. Pharmacol.20116621-3223010.1016/j.ejphar.2011.04.048 21554868
    [Google Scholar]
  41. TapiasV. CannonJ.R. GreenamyreJ.T. Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model.J. Neurosci. Res.201088242042710.1002/jnr.22201 19681169
    [Google Scholar]
  42. KumarV. Potential medicinal plants for CNS disorders: An overview.Phytother. Res.200620121023103510.1002/ptr.1970 16909441
    [Google Scholar]
  43. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  44. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.196361882888 13967893
    [Google Scholar]
  45. AebiH. Methods.Enzymatic Analysis.New YorkAcademic press1974
    [Google Scholar]
  46. Di WangH. PaganoP.J. DuY. CayatteA.J. QuinnM.T. BrecherP. CohenR.A. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide.Circ. Res.199882781081810.1161/01.RES.82.7.810 9562441
    [Google Scholar]
  47. SinghA.P. SinghM. BalakumarP. Effect of mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats.J. Cardiovasc. Pharmacol.200851659660410.1097/FJC.0b013e31817ae60f 18520950
    [Google Scholar]
  48. SharmaN. BafnaP. Effect of Cynodon dactylon on rotenone induced Parkinson’s disease.Orient. Pharm. Exp. Med.201212316717510.1007/s13596‑012‑0075‑1
    [Google Scholar]
  49. DavinelliS. MaesM. CorbiG. ZarrelliA. WillcoxDC. ScapagniniG. Dietary phytochemicals and neuro-inflammaging: From mechanistic insights to translational challenges.Immun. Ageing20161331610.1186/s12979‑016‑0070‑3
    [Google Scholar]
  50. BharwanaS.A. AliS. FarooqM.A. IqbalN. HameedA. AbbasF. AhmadM.S.A. Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton.Turk. J. Bot.201438228129210.3906/bot‑1304‑65
    [Google Scholar]
  51. OsmanH.S. Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline.Ann. Agric. Sci.201560238940210.1016/j.aoas.2015.10.004
    [Google Scholar]
  52. ChoiY. JungK. KimH.J. ChunJ. AhnM. JeeY. KoH.J. MoonC. MatsudaH. TanakaA. KimJ. ShinT. Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine.Exp. Neurobiol.202130430831710.5607/en21011 34483144
    [Google Scholar]
  53. MakhijaD.T. JagtapA.G. DeshpandeJ.V. ShankaranarayananJ. KulkarniS.K. Nutritional supplement of lutein attenuates dopaminergic neurodegeneration induced by rotenone in rats.PharmaNutrition201423959610.1016/j.phanu.2013.11.058
    [Google Scholar]
  54. DexterD.T. HolleyA.E. FlitterW.D. SlaterT.F. WellsF.R. DanielS.E. LeesA.J. JennerP. MarsdenC.D. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study.Mov. Disord.199491929710.1002/mds.870090115 8139611
    [Google Scholar]
  55. Al-QuraishyS. DkhilM.A. Abdel MoneimA.E. Protective effects of Portulaca oleracea against rotenone mediated depletion of glutathione in the striatum of rats as an animal model of Parkinson’s disease.Pestic. Biochem. Physiol.2012103210811410.1016/j.pestbp.2012.04.005
    [Google Scholar]
  56. ChanceB. SiesH. BoverisA. Hydroperoxide metabolism in mammalian organs.Physiol. Rev.197959352760510.1152/physrev.1979.59.3.527 37532
    [Google Scholar]
  57. JinZ. MenduS.K. BirnirB. GABA is an effective immunomodulatory molecule.Amino Acids2013451879410.1007/s00726‑011‑1193‑7 22160261
    [Google Scholar]
  58. NunomuraA. MoreiraP.I. CastellaniR.J. LeeH. ZhuX. SmithM.A. PerryG. Oxidative damage to RNA in aging and neurodegenerative disorders.Neurotox. Res.201222323124810.1007/s12640‑012‑9331‑x 22669748
    [Google Scholar]
  59. AlirezaeiM. Betaine protects cerebellum from oxidative stress following levodopa and benserazide administration in rats.Iran. J. Basic Med. Sci.20151810950957 26730328
    [Google Scholar]
  60. Lawson-YuenA. LevyH.L. The use of betaine in the treatment of elevated homocysteine.Mol. Genet. Metab.200688320120710.1016/j.ymgme.2006.02.004 16545978
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072327534241203055525
Loading
/content/journals/cbc/10.2174/0115734072327534241203055525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test