Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

is an evergreen shrub of the Buxaceae family. A comprehensive survey of the literature has been conducted, revealing that alkaloids are the predominant metabolites characterized by their noteworthy biological activities. Of particular interest are the alkaloids that have exhibited significant cytotoxic activity against various cell lines, including HL-60, SMMC-7721, A549, MCF-7, SW480, ES2, and A2780 cell lines. CVB-D, buxbodine B, and buxmicrophyllines F can inhibit the growth of tumor cells and induce tumor cell apoptosis. This paper reviews the chemical constituents, antitumor effect, and mechanism of alkaloids in recent years so as to provide a reference for its further development and utilization of medicinal plants of the genus .

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072319642240816044828
2024-09-23
2026-01-02
Loading full text...

Full text loading...

References

  1. QiuM.H. LiD.Z. Study on chemotaxonomy of buxaceae.Chin. J. Appl. Environ. Biol.20028387391
    [Google Scholar]
  2. AtaA. IversonC.D. KalhariK.S. AkhterS. BetteridgeJ. MeshkatalsadatM.H. OrhanI. SenerB. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities.Phytochemistry20107114-151780178610.1016/j.phytochem.2010.06.017 20655557
    [Google Scholar]
  3. YanY.X. SunY. LiZ.R. ZhouL. QiuM.H. Chemistry and biological activities of buxus alkaloids.Curr. Bioact. Compd.201171476410.2174/157340711795163811
    [Google Scholar]
  4. ZhangJ. QinX.Y. ZhangS.D. XuX.S. PeiJ.P. FuJ.J. Chemical constituents of plants from the genus Buxus.Chem. Biodivers.20151291289130610.1002/cbdv.201400185 26363874
    [Google Scholar]
  5. SzabóL.U. SchmidtT.J. Target-guided isolation of o-tigloylcyclovirobuxeine-b from buxus sempervirens l. by centrifugal partition chromatography.Molecules20202520480410.3390/molecules25204804 33086707
    [Google Scholar]
  6. SzabóL.U. KaiserM. MäserP. SchmidtT.J. antiprotozoal nor-triterpene alkaloids from buxus sempervirens l.antibiotics (basel)202110669610.3390/antibiotics10060696 34200688
    [Google Scholar]
  7. KhanA. AliS. GilaniA.H. AhmedM. ChoudharyM.I. Antispasmodic, bronchodilator, vasorelaxant and cardiosuppressant effects of Buxus papillosa.BMC Complement. Altern. Med.20171715410.1186/s12906‑017‑1558‑x 28100216
    [Google Scholar]
  8. MunikishoreR. LiuR. ZhangS. ZhaoQ.S. NianY. ZuoZ. Structurally modified Cyclovirobuxine-D Buxus alkaloids as effective analgesic agents through Cav3.2 T-Type calcium channel inhibition.Bioorg. Chem.202313510649310.1016/j.bioorg.2023.106493 36996509
    [Google Scholar]
  9. GongY. LiuR. ZhaH. DongD. LuN. YanH. WanL. NianY. Analgesic Buxus alkaloids with enhanced selectivity for the low‐voltage‐gated calcium channel ca v 3.2 over ca v 3.1 through a new binding mode.Angew. Chem. Int. Ed.202463120231346110.1002/anie.202313461
    [Google Scholar]
  10. WangY.L. XiangZ.N. YuanY. ZhouJ.W. TianL.Y. ChenJ.C. WanL.S. Triterpenoid alkaloids from Buxus rugulosa and their cytotoxic activities.Phytochem. Lett.202036869010.1016/j.phytol.2020.01.002
    [Google Scholar]
  11. LinL. XuJ. ChaiL. DaiH. PengX. QiuM. Structurally diverse alkaloids from the Buxus sinica and their cytotoxicity.Phytochemistry202422411414710.1016/j.phytochem.2024.114147 38777139
    [Google Scholar]
  12. BaiS.T. ZhuG.L. PengX.R. DongJ.R. YuM.Y. ChenJ.C. WanL.S. QiuM.H. Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines.Molecules2016219112510.3390/molecules21091125 27571056
    [Google Scholar]
  13. WangY.H. CuiL.T. SunY.J. LiY.Y. LuoJ. KongL.Y. Structurally diverse triterpenoid alkaloids from Buxus rugulosa.J. Asian Nat. Prod. Res.2024261182510.1080/10286020.2023.2297071
    [Google Scholar]
  14. XiangZ.N. YiW.Q. WangY.L. ShaoL.D. ZhangC.Q. YuanY. PanJ. WanL.S. ChenJ.C. Buxaustroines A-N, a series of 17(13→18) abeo -cycloartenol triterpenoidal alkaloids from Buxus austro-yunnanensis and their cardioprotective activities.J. Nat. Prod.201982113111312010.1021/acs.jnatprod.9b00652 31686503
    [Google Scholar]
  15. LamC.W. WakemanA. JamesA. AtaA. GenganR.M. RossS.A. Bioactive steroidal alkaloids from Buxus Macowanii Oliv.Steroids201595737910.1016/j.steroids.2014.12.002 25528196
    [Google Scholar]
  16. ZhaoL. ZhangL.Q. LinL.W. ZhouL. YangL. ZhangJ.H. QiuM.H. Alkaloids chemical constituents of Buxus rugulosa.Zhong Yao Cai2023461102105
    [Google Scholar]
  17. XiangZ.N. SuJ.C. LiuY.H. DengB. ZhaoN. PanJ. HuZ.F. ChenF.H. ChengB.Y. ChenJ.C. WanL.S. Structurally diverse alkaloids from Buxus Sempervirens with cardioprotective activity.Bioorg. Chem.202110910475310.1016/j.bioorg.2021.104753 33652163
    [Google Scholar]
  18. VoH.Q. Viet PhamT. LeA.T. HoangH.N.T. NguyenP.Q.D. DoanL.N.T. NguyenH.T. HoD.V. Two new lupane-type triterpenes from the stems and leaves of Buxus latistyla gagnep. and their cytotoxic activity.Nat. Prod. Commun.2024195193457810.1177/1934578X241246689
    [Google Scholar]
  19. PanL. Muñoz AcuñaU. ChaiH. ParkH.Y. NinhT.N. ThanhB.V. MerinoE.F. CasseraM.B. RakotondraibeL.H. Carcache de BlancoE.J. SoejartoD.D. KinghornA.D. New bioactive lupane triterpene coumaroyl esters isolated from Buxus cochinchinensis.Planta Med.20158112-1311331140 26132853
    [Google Scholar]
  20. CaiS. RisingerA.L. NairS. PowellD.R. AndersonT.J.C. MooberryS.L. CichewiczR.H. Antimalarial metabolites from Buxus sempervirens.Planta Med.2015811110.1055/s‑0035‑1556486
    [Google Scholar]
  21. WangY.H. YinY. CuiL.T. LiQ.R. KongL.Y. LuoJ. Lignans with (N, N-diethyl)methyl amino group from Buxus rugulosa.Chin. J. Nat. Med.202119967567910.1016/S1875‑5364(21)60064‑X 34561078
    [Google Scholar]
  22. WangM. XuG.B. LiuJ. ZhangY-H. LiuJ.H. LiJ. ZhouM. XiaoY.H. HeX. LiaoS.G. Buxusoside, a flavonoid disaccharide from Buxus sinica.Nat. Prod. Commun.2017124193457810.1177/1934578X1701200416 30520588
    [Google Scholar]
  23. YanY.X. SongN.L. ZhangJ.H. QiuM.H. Two new degrade triterpenoids from Buxus bodinieri Levl.Nat. Prod. Res.20243891524153010.1080/14786419.2022.2155645 36484597
    [Google Scholar]
  24. WangR. IshaqM. ZhangH. TuG. YuH. YanS. XiaoX. MaX. JinH. Chemical constituents of Buxus sinica var. parvifolia.Chem. Nat. Compd.202258111011210.1007/s10600‑022‑03609‑w
    [Google Scholar]
  25. PuckettR.T. SimG.A. AbushanabE. KupchanS.M. The structure of buxenine-G.Tetrahedron Lett.19667323815381810.1016/S0040‑4039(01)99972‑1
    [Google Scholar]
  26. YanY.X. HuX.D. ChenJ.C. SunY. ZhangX.M. QingC. QiuM.H. Cytotoxic triterpenoid alkaloids from Buxus microphylla.J. Nat. Prod.200972230831110.1021/np800719h 19133780
    [Google Scholar]
  27. YanY.X. ChenJ.C. SunY. WangY.Y. SuJ. LiY. QiuM.H. Triterpenoid alkaloids from Buxus microphylla.Chem. Biodivers.2010771822182710.1002/cbdv.200900259 20658671
    [Google Scholar]
  28. YanY.X. ZhouL. SunY. ChenJ.C. SuJ. LiY. QiuM.H. Triterpenoid alkaloid derivatives from Buxus rugulosa.Nat. Prod. Bioprospect.201112717410.1007/s13659‑011‑0010‑z
    [Google Scholar]
  29. YanY.X. SunY. ChenJ.C. SuJ. LiY. QiuM.H. A new triterpenoid alkaloid from Buxus sempervirens.Z. Naturforsch. B. J. Chem. Sci.201166101076107810.1515/znb‑2011‑1013
    [Google Scholar]
  30. ZhaoL. Study on chemical constituents and antitumor activity of Buxus rugulosaKunming University of Science and Technology2022
    [Google Scholar]
  31. HuD. LiuX. WangY. ChenS. Cyclovirobuxine D ameliorates acute myocardial ischemia by KATP channel opening, nitric oxide release and anti-thrombosis.Eur. J. Pharmacol.20075691-210310910.1016/j.ejphar.2007.04.038 17555743
    [Google Scholar]
  32. LiangT. QuL.C. LiangW. LvG.H. XuL. SongX. Preliminary studies on liver toxicity of cyclovirobuxine D in long-term treatment in rats. Pharma. Clinic. Chinese. Materia.Medica2013296265
    [Google Scholar]
  33. ZhangJ. ChenY. LinJ. JiaR. AnT. DongT. ZhangY. YangX. Cyclovirobuxine D exerts anticancer effects by suppressing the EGFR-FAK-AKT/ERK1/2-Slug signaling pathway in human hepatocellular carcinoma.DNA Cell Biol.202039335536710.1089/dna.2019.4990 31913706
    [Google Scholar]
  34. ZengC. ZouT. QuJ. ChenX. ZhangS. LinZ. Cyclovirobuxine D induced-mitophagy through the p65/BNIP3/LC3 axis potentiates its apoptosis-inducing effects in lung cancer cells.Int. J. Mol. Sci.20212211582010.3390/ijms22115820 34072333
    [Google Scholar]
  35. LuJ. SunD. GaoS. GaoY. YeJ. LiuP. Cyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cells.J. Pharmacol. Sci.20141251748210.1254/jphs.14013FP 24758922
    [Google Scholar]
  36. WuJ. TanZ. ChenJ. DongC. Cyclovirobuxine D inhibits cell proliferation and induces mitochondria-mediated apoptosis in human gastric cancer cells.Molecules20152011206592066810.3390/molecules201119729 26610442
    [Google Scholar]
  37. JiangF. ChenY. RenS. LiZ. SunK. XingY. ZhuY. PiaoD. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1 AKT/ERK Snail signaling pathway.Int. J. Oncol.202057118319610.3892/ijo.2020.5038 32319595
    [Google Scholar]
  38. ZhouL. TangH. WangF. OuS. WuT. FangY. XuJ. GuoK. Cyclovirobuxine D inhibits cell proliferation and migration and induces apoptosis in human glioblastoma multiforme and low grade glioma.Oncol. Rep.202043380781610.3892/or.2020.7459 32020219
    [Google Scholar]
  39. ZhangL. FuR.Q. DuanD.Y. LiZ.W. ChenJ.H. Apoptosis of t98g cells induced by cyclovirobuxine d and its effect on autophagy.China Pharmaceuticals2021302529
    [Google Scholar]
  40. ZhangL. FuR. DuanD. LiZ. LiB. MingY. LiL. NiR. ChenJ. Cyclovirobuxine D induces apoptosis and mitochondrial damage in Glioblastoma cells through ROS-Mediated mitochondrial translocation of cofilin.Front. Oncol.20211165618410.3389/fonc.2021.656184 33816313
    [Google Scholar]
  41. MaX.D. YangJ. ChenL. WuB. LiJ. WangW.W. LiangG.B. Mechanism and experimental verification of Cyclovirobuxine D in inhibiting renal carcinoma cells based on network pharmacology and bioinformatics.Hainan Med. J.202334462469
    [Google Scholar]
  42. WangY.L. WuW. SuY.N. AiZ.P. MouH.C. WanL.S. LuoY. QiuM.H. ZhangJ.H. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis.Phytomedicine20206815318710.1016/j.phymed.2020.153187 32097779
    [Google Scholar]
  43. LuS.Q. Establishment of a tumorsuppressor gene promoter-based environmental genotoxicity screening system and its application in screening of antitumor drugs.Kunming University of Science and Technology, Thesis of Doctor Degree2017
    [Google Scholar]
  44. WuW. Mechanism of action of natural boxwood alkaloids KBA01 targeting mutant p53.Kunming University of Science and Technology, Thesis of Doctor Degree2016
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072319642240816044828
Loading
/content/journals/cbc/10.2174/0115734072319642240816044828
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): action mechanism; alkaloid; antitumor; Buxus; cell lines; tumor cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test