Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Objective

This work aims to evaluate the combined anti-diabetic effects of metformin and catechin and .

Methods

, anti-diabetic potentials of (α-amylase and α-glucosidase) catechin, metformin, and a combination of catechin and metformin were studied at different concentrations using acarbose as standard. An study determined their binding interactions with α-amylase (PDB ID: 1hvx) and α-glucosidase (PDB ID: 5zcb). The molecular docking study further revealed the binding energy and interacting residues of the docked 3D structure of the catechin, metformin, and acarbose as a standard with the α-amylase and α-glucosidase receptors.

Results

The result showed that a 100 μg/ml dosage of metformin and catechin demonstrated higher enzyme inhibition compared to the separate treatments. Compared to metformin and acarbose, the results of this study showed that catechin with 1hvx and 5zcb exhibited the highest binding affinity interaction hydrogen bonding and pi-interaction.

Conclusion

The study's findings showed that when compared to metformin and acarbose, catechin with 1hvx and 5zcb showed the highest binding affinity relationship hydrogen bonding and pi-interaction. Higher levels of enzyme inhibition were seen when metformin and catechin were administered together than when either medication was taken alone. Based on the aforementioned report, we deduced that metformin and catechin together had more potent anti-diabetic actions . We can conclude that catechin, in combination with metformin, may be developed into a possible oral hypoglycemic drug. High-affinity capacity catechin was found to have a strong inhibitory effect on α-glucosidase and α-amylase. The possible interaction pathways between these main inhibitors and two digestive enzymes were identified by docking studies. This study demonstrates the efficaciousness of catechin in preventing and treating post-hyperglycemia. This work suggests interesting directions for future research and clinical applications by endorsing the use of these phytocompounds as powerful anti-diabetic pharmaceuticals, either as single compounds or in combination with synthetic drugs.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072326477240816115418
2024-08-22
2025-09-29
Loading full text...

Full text loading...

References

  1. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.023 29496507
    [Google Scholar]
  2. Al-KhafajyD.A. Role of CoQ10 and IGFBP-1 in obese male patients with diabetic mellitus type II.Indian J. Forensic Med. Toxicol.202115122042209
    [Google Scholar]
  3. HuY. HouZ. LiuD. YangX. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.Food Funct.2016731523153610.1039/C5FO01467K 26899161
    [Google Scholar]
  4. ChatterjeeS. KhuntiK. DaviesM.J. Type 2 diabetes.Lancet2017389100852239225110.1016/S0140‑6736(17)30058‑2 28190580
    [Google Scholar]
  5. Saberzadeh-ArdestaniB. KaramzadehR. BasiriM. Hajizadeh-SaffarE. FarhadiA. ShapiroA.M. TahamtaniY. BaharvandH. Type 1 diabetes mellitus: cellular and molecular pathophysiology at a glance.Cell J.2018203294301 29845781
    [Google Scholar]
  6. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  7. GiovanniniP. HowesM.J. EdwardsS.E. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review.J. Ethnopharmacol.2016184587110.1016/j.jep.2016.02.034 26924564
    [Google Scholar]
  8. VermaS. Diabetes mellitus treatment using herbal drugs.Int. J. Phytomed.2018101110
    [Google Scholar]
  9. ChenR. XuS. DingY. LiL. HuangC. BaoM. LiS. WangQ. Dissecting causal associations of type 2 diabetes with 111 types of ocular conditions: a Mendelian randomization study.Front. Endocrinol.202314130746810.3389/fendo.2023.1307468 38075077
    [Google Scholar]
  10. LiJ.M. LiX. ChanL.W. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  11. MakindeE.A. RadenahmadN. AdekoyaA.E. OlatunjiO.J. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin‐induced diabetes in rats.J. Food Biochem.2020446e1323910.1111/jfbc.13239 32281660
    [Google Scholar]
  12. XiongD. HuW. HanX. CaiY. Rhein inhibited ferroptosis and EMT to attenuate diabetic nephropathy by regulating the rac1/NOX1/β-catenin Axis. Front. Biosci.-.Landmark202328510010.31083/j.fbl2805100 37258467
    [Google Scholar]
  13. ZhangC. GeH. ZhangS. LiuD. JiangZ. LanC. LiL. FengH. HuR. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage.Neurol. Ther.20211021001101310.1007/s40120‑021‑00279‑8 34515953
    [Google Scholar]
  14. LuoM. CaoQ. WangD. TanR. ShiY. ChenJ. ChenR. TangG. ChenL. MeiZ. XiaoZ. The impact of diabetes on postoperative outcomes following spine surgery: A meta-analysis of 40 cohort studies with 2.9 million participants.Int. J. Surg.202210410678910.1016/j.ijsu.2022.106789 35918006
    [Google Scholar]
  15. GuoW. ZhangZ. LiL. LiangX. WuY. WangX. MaH. ChengJ. ZhangA. TangP. WangC.Z. WanJ.Y. YaoH. YuanC.S. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes.Pharmacol. Res.202218210635510.1016/j.phrs.2022.106355 35842183
    [Google Scholar]
  16. YaoH. ZhangA. LiD. WuY. WangC.Z. WanJ.Y. YuanC.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis.BMJ2024384e07641010.1136/bmj‑2023‑076410 38286487
    [Google Scholar]
  17. KaurR. AfzalM. KazmiI. AhamdI. AhmedZ. AliB. AhmadS. AnwarF. Polypharmacy (herbal and synthetic drug combination): A novel approach in the treatment of type-2 diabetes and its complications in rats.J. Nat. Med.201367366267110.1007/s11418‑012‑0720‑5 23151907
    [Google Scholar]
  18. ZhangZ. LengY. ChenZ. FuX. LiangQ. PengX. XieH. GaoH. XieC. The efficacy and safety of Chinese herbal medicine as an add-on therapy for type 2 diabetes mellitus patients with carotid atherosclerosis: An updated meta-analysis of 27 randomized controlled trials.Front. Pharmacol.202314109171810.3389/fphar.2023.1091718 37033624
    [Google Scholar]
  19. LiuH. PengS. YuanH. HeY. TangJ. ZhangX. Chinese herbal medicine combined with western medicine for the treatment of type 2 diabetes mellitus with hyperuricemia: A systematic review and meta-analysis.Front. Pharmacol.202314110251310.3389/fphar.2023.1102513 36762115
    [Google Scholar]
  20. SivakumarT. DeepaB.J. A critical review on Antidiabetic Potential of Herbal plants and its their bioactive components.J. Uni. Shanghai Sci. TechnoL. Vol.20232501303314
    [Google Scholar]
  21. NarwadeS. A review on herbal medicinal plants used in diabetic treatment.J. Pharmacogn. Phytochem.2023121597603
    [Google Scholar]
  22. Tanzidi-RoodiO. Evaluation of a new herbal formulation (Viabet®) efficacy in patients with type 2 diabetes as an adjuvant to metformin: A randomized, triple-blind, placebo-controlled clinical trial.J. Herb. Med.202337100617
    [Google Scholar]
  23. ShaheenM.Y. Al-ZawawiA.S. DivakarD.D. AldulaijanH.A. BasudanA.M. Role of chlorhexidine and herbal oral rinses in managing periodontitis.Int. Dent. J.202373223524210.1016/j.identj.2022.06.027 35907673
    [Google Scholar]
  24. ChangC.L. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds.Evid. Based Complement. Alternat. Med.2013201337865710.1155/2013/378657
    [Google Scholar]
  25. LiangD. CaiX. GuanQ. OuY. ZhengX. LinX. Burden of type 1 and type 2 diabetes and high fasting plasma glucose in Europe, 1990-2019: a comprehensive analysis from the global burden of disease study 2019.Front. Endocrinol.202314130743210.3389/fendo.2023.1307432 38152139
    [Google Scholar]
  26. RakotondrabeT.F. FanM.X. MuemaF.W. GuoM.Q. Modulating inflammation-mediated diseases via natural phenolic compounds loaded in nanocarrier systems.Pharmaceutics202315269910.3390/pharmaceutics15020699 36840021
    [Google Scholar]
  27. MohammedH.A. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development.Nanotechnol. Rev.202312120220517
    [Google Scholar]
  28. Mavridi-PrinteziA. MenichettiA. MordiniD. AmoratiR. MontaltiM. Recent applications of melanin-like nanoparticles as antioxidant agents.Antioxidants202312486310.3390/antiox12040863 37107238
    [Google Scholar]
  29. BiddeciG. SpinelliG. ColombaP. Di BlasiF. Halloysite nanotubes and sepiolite for health applications.Int. J. Mol. Sci.2023245480110.3390/ijms24054801 36902232
    [Google Scholar]
  30. NatesanV. KimS.J. The trend of organic based nanoparticles in the treatment of diabetes and its perspectives.Biomol. Ther.202331116
    [Google Scholar]
  31. SpencerJ.P. Abd El MohsenM.M. Rice-EvansC. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity.Arch. Biochem. Biophys.2004423114816110.1016/j.abb.2003.11.010 14989269
    [Google Scholar]
  32. MaheshwariN. MahmoodR.J. rotective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells.Environ. Sci. Pollut. Res. Int.202027121382613843
    [Google Scholar]
  33. MatsumotoN. Reduction of blood glucose levels by tea catechin.Biosci. Biotechnol. Biochem.1993574525527
    [Google Scholar]
  34. FuM. ShenW. GaoW. NamujiaL. YangX. CaoJ. SunL. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase.Bioorg. Chem.202111510523510.1016/j.bioorg.2021.105235 34388484
    [Google Scholar]
  35. AdrarN.S. MadaniK. AdrarS.J. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions.PharmaNutrition20197100142
    [Google Scholar]
  36. FoegedingE.A. Protein-polyphenol particles for delivering structural and health functionality.Food Hydrocoll.201772163173
    [Google Scholar]
  37. AmalrajT. IgnacimuthuS. Evaluation of the hypoglycaemic effect of Memecylon umbellatumin normal and alloxan diabetic mice.J. Ethnopharmacol.199862324725010.1016/S0378‑8741(98)00070‑1 9849636
    [Google Scholar]
  38. JafriM.A. AslamM. JavedK. SinghS. Effect of Punica granatum Linn. (flowers) on blood glucose level in normal and alloxan-induced diabetic rats.J. Ethnopharmacol.200070330931410.1016/S0378‑8741(99)00170‑1 10837992
    [Google Scholar]
  39. KimuraI. Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions.Yakugaku Zasshi2006126313314310.1248/yakushi.126.133 16508237
    [Google Scholar]
  40. Alarcon-AguilarF.J. Jimenez-EstradaM. Reyes-ChilpaR. Roman-RamosR. Hypoglycemic effect of extracts and fractions from Psacalium decompositum in healthy and alloxan-diabetic mice.J. Ethnopharmacol.2000721-2212710.1016/S0378‑8741(00)00202‑6 10967449
    [Google Scholar]
  41. NoorA. Antidiabetic activity of Aloe vera and histology of organs in streptozotocin-induced diabetic rats.Curr. Sci.200894810701076
    [Google Scholar]
  42. Trejo-GonzálezA. Gabriel-OrtizG. Puebla-PérezA.M. Huízar-ContrerasM.D. del Rosario Munguía-MazariegosM. Mejía-ArreguínS. CalvaE. A purified extract from prickly pear cactus (Opuntia fuliginosa) controls experimentally induced diabetes in rats.J. Ethnopharmacol.1996551273310.1016/S0378‑8741(96)01467‑5 9121164
    [Google Scholar]
  43. DaiT. ChenJ. McClementsD.J. LiT. LiuC. Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation.Int. J. Biol. Macromol.201913031532210.1016/j.ijbiomac.2019.02.105 30794902
    [Google Scholar]
  44. DashJ.R. Protective effect of epicatechin in diabetic-induced peripheral neuropathy: A review.J. Appl. Pharmaceut. Sci.2023131056063
    [Google Scholar]
  45. LebovitzH.E. AmericaN. Alpha-Glucosidase inhibitors.Endocrinol. Metab. Clin. North Am.199726353955110.1016/S0889‑8529(05)70266‑8 9314014
    [Google Scholar]
  46. DashJ.R. An overview of the therapeutic efficacy of (-)-epicatechin in the management of diabetes mellitus.Nat. Prod. J.20241434552
    [Google Scholar]
  47. StrattonC.F. NewmanD.J. TanD.S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins.Bioorg. Med. Chem. Lett.201525214802480710.1016/j.bmcl.2015.07.014 26254944
    [Google Scholar]
  48. SegneanuA.E. Bioactive molecules profile from natural compounds.Amino Acid - New Insights and Roles in Plant and Animal2017
    [Google Scholar]
  49. DaisyP. BalasubramanianK. RajalakshmiM. ElizaJ. SelvarajJ. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats.Phytomedicine2010171283610.1016/j.phymed.2009.10.018 19931438
    [Google Scholar]
  50. LiT. ProvidenciaR. MuN. YinY. ChenM. WangY. LiuM. YuL. GuC. MaH. Association of metformin monotherapy or combined therapy with cardiovascular risks in patients with type 2 diabetes mellitus.Cardiovasc. Diabetol.20212013010.1186/s12933‑020‑01202‑5 33516224
    [Google Scholar]
  51. NiuM.M. GuoH.X. ShangJ.C. MengX.C. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4–2.J. Agric. Food Chem.20237149197911980310.1021/acs.jafc.3c04916 38031933
    [Google Scholar]
  52. DashS. The promising role of oleanolic acid in the management of diabetes mellitus: A review.J. Appl. Pharm. Sci.2021119149157
    [Google Scholar]
  53. WickramaratneM.N. PunchihewaJ.C. WickramaratneD.B. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.BMC Complement. Altern. Med.201616146610.1186/s12906‑016‑1452‑y 27846876
    [Google Scholar]
  54. AdemiluyiA.O. ObohG. J. Pathology, Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.Exp. Toxicol. Pathol.2013653305309
    [Google Scholar]
  55. AuiewiriyanukulW. SaburiW. KatoK. YaoM. MoriH. Function and structure of GH 13_31 α‐glucosidase with high α‐(1→4)‐glucosidic linkage specificity and transglucosylation activity.FEBS Lett.2018592132268228110.1002/1873‑3468.13126 29870070
    [Google Scholar]
  56. SiddiqueM.H. Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach.J. Saudi Chem. Soc.2022262101418
    [Google Scholar]
  57. TanS.Y. Mei WongJ.L. SimY.J. WongS.S. Mohamed ElhassanS.A. TanS.H. Ling LimG.P. Rong TayN.W. AnnanN.C. BhattamisraS.K. CandasamyM. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  58. LiuL. ZhouY. ZhaoX. YangX. WanX. AnZ. ZhangH. TianJ. GeC. SongX. Bone marrow mesenchymal stem cell-derived exosomes alleviate diabetic kidney disease in rats by inhibiting apoptosis and inflammation.Front. Biosci. Landmark202328920310.31083/j.fbl2809203 37796685
    [Google Scholar]
  59. YangW. DingN. LuoR. ZhangQ. LiZ. ZhaoF. ZhangS. ZhangX. ZhouT. WangH. WangL. HuS. WangG. FengH. HuR. Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury.Bioact. Mater.20232711410.1016/j.bioactmat.2023.03.007 37006825
    [Google Scholar]
  60. ImadaS. Concentration of catechins and caffeine in black tea affects suppression of fat accumulation and hyperglycemia in high-fat diet-fed mice.Food Sci. Technol. Res.2011174353359
    [Google Scholar]
  61. HuangC.F. ChenY.W. YangC.Y. LinH.Y. WayT.D. ChiangW. LiuS.H. Extract of lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity.J. Agric. Food Chem.20115941087109410.1021/jf103382h 21235242
    [Google Scholar]
  62. XiaoJ. Advance on the flavonoid C-glycosides and health benefits.Crit. Rev. Food Sci. Nutr.2016561S29S45
    [Google Scholar]
  63. YaribeygiH. AtkinS.L. SahebkarA. A review of the molecular mechanisms of hyperglycemia‐induced free radical generation leading to oxidative stress.J. Cell. Physiol.201923421300131210.1002/jcp.27164 30146696
    [Google Scholar]
  64. XuY. Catechins play key role in green tea extract–induced postprandial hypoglycemic potential in vitro.Eur. Food Res. Technol.20132378999
    [Google Scholar]
  65. Al HroobA.M. AbukhalilM.H. HusseinO.E. MahmoudA.M. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate.Biomed. Pharmacother.20191092155217210.1016/j.biopha.2018.11.086 30551473
    [Google Scholar]
  66. OthmanA.I. El-SawiM.R. El-MissiryM.A. AbukhalilM.H. Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats.Biomed. Pharmacother.20179436237310.1016/j.biopha.2017.07.129 28772214
    [Google Scholar]
  67. SamarghandianS. Azimi-NezhadM. FarkhondehT. Catechin treatment ameliorates diabetes and its complications in] streptozotocin-induced diabetic rats.Dose Response2017151155932581769115810.1177/1559325817691158 28228702
    [Google Scholar]
  68. FærchK. VistisenD. PaciniG. TorekovS.S. JohansenN.B. WitteD.R. JonssonA. PedersenO. HansenT. LauritzenT. JørgensenM.E. AhrénB. HolstJ.J. Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation.Diabetes201665113473348110.2337/db16‑0240 27504013
    [Google Scholar]
  69. KiselyovV.V. VersteyheS. GauguinL. De MeytsP. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation.Mol. Syst. Biol.20095124310.1038/msb.2008.78 19225456
    [Google Scholar]
  70. HoC.K. SriramG. DippleK.M. Insulin sensitivity predictions in individuals with obesity and type II diabetes mellitus using mathematical model of the insulin signal transduction pathway.Mol. Genet. Metab.2016119328829210.1016/j.ymgme.2016.09.007 27746033
    [Google Scholar]
  71. CasparyW.F. Sucrose malabsorption in man after ingestion of α-glucosidehydrolase inhibitor.Lancet197831180761231123310.1016/S0140‑6736(78)92466‑2 77996
    [Google Scholar]
  72. IslamM.S. ChipitiT. IbrahimM.A. SinghM. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts.Pharmacogn. Mag.2015114423110.4103/0973‑1296.166018 26664010
    [Google Scholar]
  73. MsomiN.Z. Iso-mukaadial acetate from Warburgia salutaris enhances glucose uptake in the L6 rat myoblast cell line.Biomolecules201991052010.3390/biom9100520
    [Google Scholar]
  74. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  75. LipinskiC.A. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2012461-3326
    [Google Scholar]
  76. EganW.J. LauriG. Prediction of intestinal permeability.Adv. Drug Deliv. Rev.200254327328910.1016/S0169‑409X(02)00004‑2 11922948
    [Google Scholar]
  77. ChengA. MerzK.M. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships.J. Med. Chem.200346173572358010.1021/jm020266b 12904062
    [Google Scholar]
  78. TuntlandT. EthellB. KosakaT. BlascoF. ZangR.X. JainM. GouldT. HoffmasterK. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research.Front. Pharmacol.2014517410.3389/fphar.2014.00174 25120485
    [Google Scholar]
  79. ChengF. A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.20125211
    [Google Scholar]
  80. BarrettA. NdouT. HugheyC.A. StrautC. HowellA. DaiZ. KaletuncG. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes.J. Agric. Food Chem.20136171477148610.1021/jf304876g 23289516
    [Google Scholar]
  81. PoongunranJ. Alpha-glucosidase and alpha-amylase inhibitory activities of nine Sri Lankan antidiabetic plants.Br. J. Pharm. Res.201575365374
    [Google Scholar]
  82. SongY. MansonJ.E. BuringJ.E. SessoH.D. LiuS. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis.J. Am. Coll. Nutr.20057537638410.1080/07315724.2005.10719488 16192263
    [Google Scholar]
  83. El-BeshbishyH.A. BahashwanS.A. HealthI. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities.Toxicol. Ind. Health2012281425010.1177/0748233711403193 21636683
    [Google Scholar]
  84. HullattiK. TelagariM. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions.Indian J. Pharmacol.201547442542910.4103/0253‑7613.161270 26288477
    [Google Scholar]
  85. KamiyamaO. In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea.Food Chem.2010122410611066
    [Google Scholar]
  86. PedroodK. RezaeiZ. KhavaninzadehK. LarijaniB. IrajiA. HosseiniS. MojtabaviS. DianatpourM. RastegarH. FaramarziM.A. HamedifarH. HajimiriM.H. MahdaviM. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors.BMC Chem.20221615710.1186/s13065‑022‑00848‑4 35909126
    [Google Scholar]
  87. BrooijmansN. KuntzI.D. Molecular recognition and docking alogrithms.Annu. Rev. Biophys. Biomol. Struct.2003321335373
    [Google Scholar]
  88. GuedesI.A. PereiraF.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges.Front. Pharmacol.201891089
    [Google Scholar]
  89. GolluckeA.P. AguiarO.Jr BarbisanL.F. RibeiroD.A. Use of grape polyphenols against carcinogenesis: putative molecular mechanisms of action using in vitro and in vivo test systems.J. Med. Food201316319920510.1089/jmf.2012.0170 23477622
    [Google Scholar]
  90. LiaoJ. WangQ. WuF. HuangZ. In silico methods for identification of potential active sites of therapeutic targets.Molecules202227207103
    [Google Scholar]
  91. YangR. WangL. XieJ. LiX. LiuS. QiuS. HuY. ShenX. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in-vitro and in-vivo using cajanonic acid A.Int. J. Mol. Med.20184252329234210.3892/ijmm.2018.3836 30226559
    [Google Scholar]
  92. DeS. KumarS.A. Development of highly potent Arene-Ru (II)- ninhydrin complexes for inhibition of cancer cell growth.2020508119641
    [Google Scholar]
  93. DeS. Experimental and theoretical study on the biomolecular interaction of novel acenaphtho quinoxaline and dipyridophenazine analogues.ChemistrySelect20183381059310602
    [Google Scholar]
  94. SelvamP. DeS. PairaP. KumarS.K. KumarR.S. MoorthyA. GhoshA. KuoY.C. BanerjeeS. JeniferS.K. In vitro studies on the selective cytotoxic effect of luminescent Ru(II)-p-cymene complexes of imidazo-pyridine and imidazo quinoline ligands.Dalton Trans.20225145172631727610.1039/D2DT02237K 36317406
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072326477240816115418
Loading
/content/journals/cbc/10.2174/0115734072326477240816115418
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Catechin; diabetes; metformin; molecular docking; α-amylase; α-glucosidase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test