Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Georgi, a plant with therapeutic properties, has been extensively utilized in China for centuries. The extract derived from its roots is commonly referred to as Huang-Qin.

Materials and Methods

The informative data were gathered from many electronic databases, including Scopus, Science Direct, PubMed, and Web of Science. The study criteria for selection included analyzing scientific manuscripts that specifically investigated phytoconstituents and their pharmacological effects. The keywords used were , bioactive components, and pharmacological profile.

Results

root has been utilized to manage dysentery, diarrhea, hypertension, insomnia, inflammation, respiratory infections, and hemorrhaging. Wogonoside and baicalin are the primary bioactive constituents obtained from root. The flavones have been documented to possess many pharmacological properties, such as hepatoprotective, anti-cancer, antibacterial, antioxidant, antiviral, neuroprotective, and anticonvulsant activities.

Discussion

The main concern of this study is to enhance the accessibility of extensive research discoveries about the pharmacological potential of .

Conclusion

This manuscript's main concern is to enhance the accessibility of extensive research discoveries about the pharmacological potential of .

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322467240816112529
2024-08-30
2025-09-28
Loading full text...

Full text loading...

References

  1. ShangX. HeX. HeX. LiM. ZhangR. FanP. ZhangQ. JiaZ. The genus Scutellaria an ethnopharmacological and phytochemical review.J. Ethnopharmacol.2010128227931310.1016/j.jep.2010.01.006 20064593
    [Google Scholar]
  2. BochořákováH. PaulováH. SlaninaJ. MusilP. TáborskáE. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties.Phytother. Res.200317664064410.1002/ptr.1216 12820232
    [Google Scholar]
  3. HanJ. YeM. XuM. SunJ. WangB. GuoD. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2007848235536210.1016/j.jchromb.2006.10.061 17118721
    [Google Scholar]
  4. ZhaoQ. ChenX.Y. MartinC. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants.Sci. Bull. (Beijing)201661181391139810.1007/s11434‑016‑1136‑5 27730005
    [Google Scholar]
  5. JiangD. ZhaoZ. ZhangT. ZhongW. LiuC. YuanQ. HuangL. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria.Genes (Basel)20178922710.3390/genes8090227 28902130
    [Google Scholar]
  6. HuangW. ZhangW. Resources distribution survey of wild and cultivated Scutellaria baicalensis Georgi.Zhongguo Zhongyiyao Xinxi Zazhi20134245
    [Google Scholar]
  7. LiK. YaoF. XueQ. FanH. YangL. LiX. SunL. LiuY. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method.Chem. Cent. J.20181218210.1186/s13065‑018‑0445‑y 30003449
    [Google Scholar]
  8. YeF. XuiL. YiJ. ZhangW. ZhangD.Y. Anticancer activity of Scutellaria baicalensis and its potential mechanism.J. Altern. Complement. Med.20028556757210.1089/107555302320825075 12470437
    [Google Scholar]
  9. ChanchalD.K. SinghK. BhushanB. ChaudharyJ.S. KumarS. VarmaA.K. AgnihotriN. Garg, A An updated review of Chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes.Pharmacol. Res. Modern Chin. Med.20239100326
    [Google Scholar]
  10. CuiL. GuanX. DingW. LuoY. WangW. BuW. SongJ. TanX. SunE. NingQ. LiuG. JiaX. FengL. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota.Int. J. Biol. Macromol.20211661035104510.1016/j.ijbiomac.2020.10.259 33157130
    [Google Scholar]
  11. GengD. JiangM. DongH. WangR. LuH. LiuW. GuoL. HuangL. XiaoW. MeJA regulates the accumulation of baicalein and other 4′-hydroxyflavones during the hollowed root development in Scutellaria baicalensis.Front. Plant Sci.202313106784710.3389/fpls.2022.1067847 36684750
    [Google Scholar]
  12. LangX. ChenZ. YangX. YanQ. XuM. LiuW. HeQ. ZhangY. ChengW. ZhaoW. Scutellarein induces apoptosis and inhibits proliferation, migration, and invasion in ovarian cancer via inhibition of EZH2/FOXO1 signaling.J. Biochem. Mol. Toxicol.20213510e2287010.1002/jbt.22870 34350670
    [Google Scholar]
  13. FuJ. CaoH. WangN. ZhengX. LuY. LiuX. YangD. LiB. ZhengJ. ZhouH. An anti-sepsis monomer, 2′,5,6′,7-tetrahydroxyflavanonol (THF), identified from Scutellaria baicalensis Georgi neutralizes lipopolysaccharide in vitro and in vivo.Int. Immunopharmacol.20088121652165710.1016/j.intimp.2008.07.017 18755299
    [Google Scholar]
  14. QianZ. YuJ. ChenX. KangY. RenY. LiuQ. LuJ. ZhaoQ. CaiM. De novo production of plant 4′-deoxyflavones baicalein and oroxylin A from ethanol in crabtree-negative yeast.ACS Synth. Biol.20221141600161210.1021/acssynbio.2c00026 35389625
    [Google Scholar]
  15. LeeY.H. SeoE.K. LeeS.T. Skullcapflavone II inhibits degradation of type I collagen by suppressing MMP-1 transcription in human skin fibroblasts.Int. J. Mol. Sci.20192011273410.3390/ijms20112734 31167359
    [Google Scholar]
  16. ZhiH. JinX. ZhuH. LiH. ZhangY. LuY. ChenD. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury.J. Pharm. Biomed. Anal.202017711287610.1016/j.jpba.2019.112876 31525575
    [Google Scholar]
  17. HouW. LiuC. LiS. ZhangY. JinY. LiX. LiuZ. NiuH. XiaJ. An efficient strategy based on two‐stage chromatography and in vitro evaluation for rapid screening and isolation of acetylcholinesterase inhibitors from Scutellaria baicalensis Georgi.J. Sep. Sci.20224561170118410.1002/jssc.202100918 34990521
    [Google Scholar]
  18. AskeyB.C. LiuD. RubinG.M. KunikA.R. SongY.H. DingY. KimJ. Metabolite profiling reveals organ‐specific flavone accumulation in Scutellaria and identifies a scutellarin isomer isoscutellarein 8-O-β-glucuronopyranoside.Plant Direct2021512e37210.1002/pld3.372 34977451
    [Google Scholar]
  19. DengX. LeiH.Y. RenY.S. AiJ. LiY.Q. LiangS. ChenL.L. LiaoM.C. A novel strategy for active compound efficacy status identification in multi-tropism Chinese herbal medicine (Scutellaria baicalensis Georgi) based on multi-indexes spectrum-effect gray correlation analysis.J. Ethnopharmacol.202330011567710.1016/j.jep.2022.115677 36064148
    [Google Scholar]
  20. TroninaT. MrozowskaM. BartmańskaA. PopłońskiJ. SordonS. HuszczaE. Simple and rapid method for wogonin preparation and its biotransformation.Int. J. Mol. Sci.20212216897310.3390/ijms22168973 34445678
    [Google Scholar]
  21. YamadaY. SaitoH. ArakiM. TsuchimotoY. MuroiS. SuzukiK. ToumeK. KimJ.D. MatsuzakaT. SoneH. ShimanoH. NakagawaY. Wogonin, A compound in Scutellaria baicalensis, activates ATF4-FGF21 signaling in mouse hepatocyte AML12 cells.Nutrients20221419392010.3390/nu14193920 36235573
    [Google Scholar]
  22. WangL. TanN. WangH. HuJ. DiwuW. WangX. A systematic analysis of natural α-glucosidase inhibitors from flavonoids of Radix scutellariae using ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology.BMC Complement Med Ther.202020172
    [Google Scholar]
  23. LongH.L. XuG.Y. DengA.J. LiZ.H. MaL. LuY. ZhangZ.H. WuF. QinH.L. Two new flavonoids from the roots of Scutellaria baicalensis.J. Asian Nat. Prod. Res.201517775676010.1080/10286020.2014.999048 25647080
    [Google Scholar]
  24. TsaiP.J. HuangW.C. HsiehM.C. SungP.J. KuoY.H. WuW.H. Flavones isolated from Scutellariae radix suppress Propionibacterium acnes-induced cytokine production in vitro and in vivo.Molecules20152111510.3390/molecules21010015 26712724
    [Google Scholar]
  25. ParkE.J. ZhaoY.Z. LianL. KimY.C. SohnD.H. Skullcapflavone I from Scutellaria baicalensis induces apoptosis in activated rat hepatic stellate cells.Planta Med.200571988588710.1055/s‑2005‑871280 16206047
    [Google Scholar]
  26. WooS.U. JangH.R. ChinY.W. YimH. 7-O-Methylwogonin from Scutellaria baicalensis disturbs mitotic progression by inhibiting Plk1 activity in Hep3B cells.Planta Med.201985321722410.1055/a‑0731‑0394 30199903
    [Google Scholar]
  27. JiaD. ChenX. CaoY. WuX. DingX. ZhangH. ZhangC. ChaiY. ZhuZ. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: A strategy for rapid screening active compounds in vivo.J. Pharm. Biomed. Anal.2016118273310.1016/j.jpba.2015.10.013 26512996
    [Google Scholar]
  28. KimuraY. SumiyoshiM. Two hydroxyflavanones isolated from Scutellaria baicalensis roots prevent colitis-associated colon cancer in C57BL/6 J mice by inhibiting programmed cell death-1, interleukin 10, and thymocyte selection-associated high mobility group box proteins TOX/TOX2.Phytomedicine202210015407610.1016/j.phymed.2022.154076 35378414
    [Google Scholar]
  29. WenR. DongX. ZhuangH. PangF. DingS. LiN. MaiY. ZhouS. WangJ. ZhangJ. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis.Phytomedicine202311615488110.1016/j.phymed.2023.154881 37209607
    [Google Scholar]
  30. PaudelM.K. SakamotoS. HuyL.V. TanakaH. MiyamotoT. TakanoA. MorimotoS. Development of an immunoassay using an anti-wogonin glucuronide monoclonal antibody.J. Immunoassay Immunochem.201738545747010.1080/15321819.2016.1273236 28027008
    [Google Scholar]
  31. WangY. JiaM. GaoY. ZhaoB. Multiplex quantitative analysis of 9 compounds of Scutellaria baicalensis georgi in the plasma of respiratory syncytial virus-infected mice based on HPLC-MS/MS and pharmacodynamic effect correlation analysis.Molecules20232816600110.3390/molecules28166001 37630252
    [Google Scholar]
  32. TanY.Q. LinF. DingY.K. DaiS. LiangY.X. ZhangY.S. LiJ. ChenH.W. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases.Phytomedicine202210715445810.1016/j.phymed.2022.154458 36152591
    [Google Scholar]
  33. WangZ.L. GaoH.M. WangS. ZhangM. ChenK. ZhangY.Q. WangH.D. HanB.Y. XuL.L. SongT.Q. YunC.H. QiaoX. YeM. Dissection of the general two-step di-C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants.Proc. Natl. Acad. Sci. USA202011748308163082310.1073/pnas.2012745117 33199630
    [Google Scholar]
  34. XieL. WangX. BasnetP. MatsunagaN. YamajiS. YangD. CaiS. TaniT. Evaluation of variation of acteoside and three major flavonoids in wild and cultivated Scutellaria baicalensis roots by micellar electrokinetic chromatography.Chem. Pharm. Bull. (Tokyo)200250789689910.1248/cpb.50.896 12130846
    [Google Scholar]
  35. JiaoY. ShiC. SunY. Unraveling the role of Scutellaria baicalensis for the treatment of breast cancer using network pharmacology, molecular docking, and molecular dynamics simulation.Int. J. Mol. Sci.2023244359410.3390/ijms24043594 36835006
    [Google Scholar]
  36. NagaiT. SuzukiY. TomimoriT. YamadaH. Antiviral activity of plant flavonoid, 5,7,4′-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses.Biol. Pharm. Bull.199518229529910.1248/bpb.18.295 7742801
    [Google Scholar]
  37. WangH. HuiK.M. XuS. ChenY. WongJ.T. XueH. Two flavones from Scutellaria baicalensis Georgi and their binding affinities to the benzodiazepine site of the GABAA receptor complex.Pharmazie20025712857858 12561253
    [Google Scholar]
  38. LiuB. ShiR.B. ZhuL.J. HPLC fingerprint of flavonoids of Kushen Tang and its correlation to Scutellaria baicalensis and Sophora flavescens.Zhongguo Zhongyao Zazhi2007321616311634 18027653
    [Google Scholar]
  39. CuiM.Y. LuA.R. LiJ.X. LiuJ. FangY.M. PeiT.L. ZhongX. WeiY.K. KongY. QiuW.Q. HuY.H. YangJ. ChenX.Y. MartinC. ZhaoQ. Two types of O‐methyltransferase are involved in biosynthesis of anticancer methoxylated 4′‐deoxyflavones in Scutellaria baicalensis Georgi.Plant Biotechnol. J.202220112914210.1111/pbi.13700 34490975
    [Google Scholar]
  40. GuoJ. MeiZ.W. WangX.J. LiQ. QinJ. Molecular docking and network pharmacological analysis of Scutellaria baicalensis against renal cell carcinoma.Eur. Rev. Med. Pharmacol. Sci.202327231157411586 38095405
    [Google Scholar]
  41. LiuR.X. LiY.J. LiL. MiaoX.S. WangX.S. ZhangD. WeiS.L. Influence of cutting seedling on growth, quality and yield of both aerial and underground part by cutting seedling in Scutellaria baicalensis.Zhongguo Zhongyao Zazhi2016411120492054 28901100
    [Google Scholar]
  42. ChenC. GuY. WangR. ChaiX. JiangS. WangS. ZhuZ. ChenX. YuanY. Comparative two-dimensional GPC3 overexpressing SK-Hep1 cell membrane chromatography/C18/time-of-flight mass spectrometry for screening selective GPC3 inhibitor components from Scutellariae radix.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021116312249210.1016/j.jchromb.2020.122492 33418242
    [Google Scholar]
  43. CostineB. ZhangM. ChhajedS. PearsonB. ChenS. NadakudutiS.S. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties.Sci. Rep.20221211320110.1038/s41598‑022‑17586‑1 35915209
    [Google Scholar]
  44. XingS. WangM. PengY. ChenD. LiX. Simulated gastrointestinal tract metabolism and pharmacological activities of water extract of Scutellaria baicalensis roots.J. Ethnopharmacol.2014152118318910.1016/j.jep.2013.12.056 24412378
    [Google Scholar]
  45. YuanY. WuC. LiuY. YangJ. HuangL. The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants.PLoS One2013810e7727510.1371/journal.pone.0077275 24143216
    [Google Scholar]
  46. GuoF. GuanR. SunX. ZhangC. ShanC. LiuM. CuiN. WangP. LinH. Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers.BMC Plant Biol.202323164310.1186/s12870‑023‑04591‑3 38097929
    [Google Scholar]
  47. ZhaoQ. ZhangY. WangG. HillL. WengJ.K. ChenX.Y. XueH. MartinC. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis.Sci. Adv.201624e150178010.1126/sciadv.1501780 27152350
    [Google Scholar]
  48. ZhouP. ZuoL. LiuC. XiongB. LiZ. ZhouX. YueH. JiaQ. ZhengT. ZouJ. DuS. ChenD. SunZ. Unraveling spatial metabolome of the aerial and underground parts of Scutellaria baicalensis by matrix-assisted laser desorption/ionization mass spectrometry imaging.Phytomedicine202412315525910.1016/j.phymed.2023.155259 38096718
    [Google Scholar]
  49. ZhangX. QiZ. FanX. ZhangH. PeiJ. ZhaoL. Biochemical characterization of a flavone synthase I from Daucus carota and its application for bioconversion of flavanones to flavones.Appl. Biochem. Biotechnol.2023195293394610.1007/s12010‑022‑04176‑0 36242726
    [Google Scholar]
  50. LimB.O. Effects of wogonin, wogonoside, and 3,5,7,2′,6′-pentahydroxyflavone on chemical mediator production in peritoneal exduate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes.J. Ethnopharmacol.2003841232910.1016/S0378‑8741(02)00257‑X 12499072
    [Google Scholar]
  51. XuT. WangQ. LiuM. A network pharmacology approach to explore the potential mechanisms of huangqin-baishao herb pair in treatment of cancer.Med. Sci. Monit.202026e923199e110.12659/MSM.923199 32609659
    [Google Scholar]
  52. WangY. CaoH. SunS. DaiJ. FangJ. LiQ. YanC. MaoW. ZhangY. Total flavonoid aglycones extract in Radix scutellariae inhibits lung carcinoma and lung metastasis by affecting cell cycle and DNA synthesis.J. Ethnopharmacol.201619426927910.1016/j.jep.2016.07.052 27444692
    [Google Scholar]
  53. ZhaoZ. LiuB. SunJ. LuL. LiuL. QiuJ. LiQ. YanC. JiangS. MohammadtursunN. MaW. LiM. DongJ. GongW. Scutellaria flavonoids effectively inhibit the malignant phenotypes of non-small cell lung cancer in an Id1-dependent manner.Int. J. Biol. Sci.20191571500151310.7150/ijbs.33146 31337979
    [Google Scholar]
  54. ZhangZ. NongL. ChenM. GuX. ZhaoW. LiuM. ChengW. Baicalein suppresses vasculogenic mimicry through inhibiting RhoA/ROCK expression in lung cancer A549 cell line.Acta Biochim. Biophys. Sin. (Shanghai)20205291007101510.1093/abbs/gmaa075 32672788
    [Google Scholar]
  55. DuG. HanG. ZhangS. LinH. WuX. WangM. JiL. LuL. YuL. LiangW. Baicalin suppresses lung carcinoma and lung metastasis by SOD mimic and HIF-1α inhibition.Eur. J. Pharmacol.20106301-312113010.1016/j.ejphar.2009.12.014 20036231
    [Google Scholar]
  56. ZhaoY. YaoJ. WuX.P. ZhaoL. ZhouY.X. ZhangY. YouQ.D. GuoQ.L. LuN. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL‐6/STAT3 signaling pathway.Mol. Carcinog.201554S1Suppl. 1E81E9310.1002/mc.22182 24976450
    [Google Scholar]
  57. YangL. WangQ. LiD. ZhouY. ZhengX. SunH. YanJ. ZhangL. LinY. WangX. Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins.Apoptosis201318561862610.1007/s10495‑013‑0808‑8 23371323
    [Google Scholar]
  58. LuoM. MoJ. YuQ. ZhouS. NingR. ZhangY. SuC. WangH. CuiJ. Wogonoside induces apoptosis in human non-small cell lung cancer A549 cells by promoting mitochondria dysfunction.Biomed. Pharmacother.201810659359810.1016/j.biopha.2018.06.077 29990847
    [Google Scholar]
  59. YanY. YaoL. SunH. PangS. KongX. ZhaoS. XuS. Effects of wogonoside on invasion and migration of lung cancer A549 cells and angiogenesis in xenograft tumors of nude mice.J. Thorac. Dis.20201241552156010.21037/jtd‑20‑1555 32395292
    [Google Scholar]
  60. WeiL. YaoY. ZhaoK. HuangY. ZhouY. ZhaoL. GuoQ. LuN. Oroxylin A inhibits invasion and migration through suppressing ERK/GSK‐3β signaling in snail‐expressing non‐small‐cell lung cancer cells.Mol. Carcinog.201655122121213410.1002/mc.22456 26741501
    [Google Scholar]
  61. DengX. LiuJ. LiuL. SunX. HuangJ. DongJ. Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway.Int. J. Biol. Sci.20201681403141610.7150/ijbs.41768 32210728
    [Google Scholar]
  62. CathcartM.C. UseckaiteZ. DrakefordC. SemikV. LysaghtJ. GatelyK. O’ByrneK.J. PidgeonG.P. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo.BMC Cancer201616170710.1186/s12885‑016‑2740‑0 27586635
    [Google Scholar]
  63. DiaoX. YangD. ChenY. LiuW. Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase.Biosci. Rep.2019394BSR2018169210.1042/BSR20181692 30898980
    [Google Scholar]
  64. BewleyA.F. FarwellD.G. Oral leukoplakia and oral cavity squamous cell carcinoma.Clin. Dermatol.201735546146710.1016/j.clindermatol.2017.06.008 28916027
    [Google Scholar]
  65. VillaA. SonisS. Oral leukoplakia remains a challenging condition.Oral Dis.2018241-217918310.1111/odi.12781 29480606
    [Google Scholar]
  66. LodiG. FranchiniR. WarnakulasuriyaS. VaroniE.M. SardellaA. KerrA.R. CarrassiA. MacDonaldL.C. WorthingtonH.V. Interventions for treating oral leukoplakia to prevent oral cancer.Cochrane Database Syst. Rev.201677CD00182910.1002/14651858.CD001829.pub4
    [Google Scholar]
  67. HolmstrupP. DabelsteenE. Oral leukoplakia-to treat or not to treat.Oral Dis.201622649449710.1111/odi.12443 26785709
    [Google Scholar]
  68. ZhaoT. TangH. XieL. ZhengY. MaZ. SunQ. LiX. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J. Pharm. Pharmacol.20197191353136910.1111/jphp.13129 31236960
    [Google Scholar]
  69. FukutakeM. YokotaS. KawamuraH. IizukaA. AmagayaS. FukudaK. KomatsuY. Inhibitory effect of Coptidis rhizoma and Scutellariae radix on azoxymethane-induced aberrant crypt foci formation in rat colon.Biol. Pharm. Bull.199821881481710.1248/bpb.21.814 9743248
    [Google Scholar]
  70. HuangX. LiC. YuL. Progress in the analysis and pharmacological effects of Scutellaria baicalensis.J. Guizhou Univ. Tradit. Chin. Med.202042027982
    [Google Scholar]
  71. WangY-F. TingL. TangZ-H. ChenX-P. WangY-T. LuJ. Advances in chemical composition and pharmacological research of Chinese medicine Scutellaria baicalensis.Chin. J. Tradit. Chin. Med.20153301206211
    [Google Scholar]
  72. YanX.Y. LiuZ. ChaoR. YeL. In vitro antidiabetic activity and related properties of flavonoids.West China J. Pharm.20153004430432
    [Google Scholar]
  73. TangH. HuangL. SunC. ZhaoD. Exploring the structure–activity relationship and interaction mechanism of flavonoids and α-glucosidase based on experimental analysis and molecular docking studies.Food Funct.20201143332335010.1039/C9FO02806D 32226990
    [Google Scholar]
  74. ZhuJ. ChenC. ZhangB. HuangQ. The inhibitory effects of flavonoids on α-amylase and α-glucosidase.Crit. Rev. Food Sci. Nutr.202060469570810.1080/10408398.2018.1548428 30638035
    [Google Scholar]
  75. KwakH.J. YangD. HwangY. JunH.S. CheonH.G. Baicalein protects rat insulinoma INS-1 cells from palmitate-induced lipotoxicity by inducing HO-1.PLoS One2017124e017643210.1371/journal.pone.0176432 28445528
    [Google Scholar]
  76. YangJ.R. LuoJ.G. KongL.Y. Determination of α-glucosidase inhibitors from Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration.Chin. J. Nat. Med.201513320821410.1016/S1875‑5364(15)30006‑6 25835365
    [Google Scholar]
  77. FuY. LuoJ. JiaZ. ZhenW. ZhouK. GilbertE. LiuD. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice.Int. J. Endocrinol.2014201423846742 25147566
    [Google Scholar]
  78. WeiX-F. LinS-B. XiongH-P. YuY. QiangZ. JingX. Discussion on the effect of baicalin on pancreatic islet function in diabetic rats and its mechanism.J. Integr. Cardiovasc. Cerebrovasc. Dis. Chin. West. Med.2019171929332935
    [Google Scholar]
  79. GuoY-Y. LiuM-M. YangX-H. RenL-L. LiuZ-H. LiuY-F. YiZ. Study on the effect and mechanism of baicalin on insulin secretion in rats.Chin. J. Pharmacol.20183406820824
    [Google Scholar]
  80. KuoY.T. LinC.C. KuoH.T. HungJ.H. LiuC.H. JasseyA. YenM.H. WuS.J. LinL.T. Identification of baicalin from Bofutsushosan and Daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways.Yao Wu Shi Pin Fen Xi2019271240248 30648577
    [Google Scholar]
  81. HouY. ZhouW. Effect of baicalin on fasting blood glucose in type 2 diabetic mice induced by high-fat feeding plus low-dose STZ.Guangdong Med.2016371725692572
    [Google Scholar]
  82. XuT. GeX. LuC. DaiW. ChenH. XiaoZ. WuL. LiangG. YingS. ZhangY. DaiY. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway.Aging (Albany NY)201911219310932710.18632/aging.102371 31692453
    [Google Scholar]
  83. DongS. ZhongY. LuW. LiG. JiangH. MaoB. Baicalin inhibits lipopolysaccharide-induced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells.Inflammation20153841493150110.1007/s10753‑015‑0124‑2 25630720
    [Google Scholar]
  84. Al-MuhsenS. JohnsonJ.R. HamidQ. Remodeling in asthma.J. Allergy Clin. Immunol.2011128345146210.1016/j.jaci.2011.04.047 21636119
    [Google Scholar]
  85. MollazadehH. MahdianD. HosseinzadehH. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness.Phytomedicine201953435210.1016/j.phymed.2018.09.024 30668411
    [Google Scholar]
  86. KoterM. FraniakI. StrychalskaK. BroncelM. Chojnowska-JezierskaJ. Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia.Int. J. Biochem. Cell Biol.200436220521510.1016/S1357‑2725(03)00195‑X 14643886
    [Google Scholar]
  87. BroncelM. DuchnowiczP. In vitro influence of baicalin on the erythrocyte membrane in patients with mixed hyperlipidemia.Adv. Clin. Exp. Med.20071612127
    [Google Scholar]
  88. KahnB.B. AlquierT. CarlingD. HardieD.G. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism.Cell Metab.200511152510.1016/j.cmet.2004.12.003 16054041
    [Google Scholar]
  89. SongK.H. LeeS.H. KimB.Y. ParkA.Y. KimJ.Y. Extracts of Scutellaria baicalensis reduced body weight and blood triglyceride in db/db Mice.Phytother. Res.201327224425010.1002/ptr.4691 22532505
    [Google Scholar]
  90. PuP. WangX.A. SalimM. ZhuL.H. WangL. ChenJ. XiaoJ.F. DengW. ShiH.W. JiangH. LiH.L. Baicalein, a natural product, selectively activating AMPKα2 and ameliorates metabolic disorder in diet-induced mice.Mol. Cell. Endocrinol.20123621-212813810.1016/j.mce.2012.06.002 22698522
    [Google Scholar]
  91. DongQ. ChuF. WuC. HuoQ. GanH. LiX. LiuH. Scutellaria baicalensis Georgi extract protects against alcohol-induced acute liver injury in mice and affects the mechanism of ER stress.Mol. Med. Rep.20161343052306210.3892/mmr.2016.4941 26936686
    [Google Scholar]
  92. DiBaiseJ.K. Foxx-OrensteinA.E. Role of the gastroenterologist in managing obesity.Expert Rev. Gastroenterol. Hepatol.20137543945110.1586/17474124.2013.811061 23899283
    [Google Scholar]
  93. NtambiJ.M. Young-CheulK. Adipocyte differentiation and gene expression.J. Nutr.2000130123122S3126S10.1093/jn/130.12.3122S 11110885
    [Google Scholar]
  94. RosenE.D. MacDougaldO.A. Adipocyte differentiation from the inside out.Nat. Rev. Mol. Cell Biol.200671288589610.1038/nrm2066 17139329
    [Google Scholar]
  95. LeeH. Antiobesity effect of baicalin involves the modulations of proadipogenic and antiadipogenic regulators of the adipogenesis pathway.Phytother. Res.20092311165123
    [Google Scholar]
  96. ChaM.H. KimI.C. LeeB.H. YoonY. Baicalein inhibits adipocyte differentiation by enhancing COX-2 expression.J. Med. Food20069214515310.1089/jmf.2006.9.145 16822198
    [Google Scholar]
  97. HaoM. LiY. LiuL. YuanX. GaoY. GuanZ. LiW. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes.Bioorg. Med. Chem.201725205506551210.1016/j.bmc.2017.08.013 28818460
    [Google Scholar]
  98. HiraiT. NomuraK. IkaiR. NakashimaK. InoueM. Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor α in C2C12 myotubes.Biomed. Pharmacother.201910950351010.1016/j.biopha.2018.10.154 30399586
    [Google Scholar]
  99. LibbyP. Inflammation in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.179705 22895665
    [Google Scholar]
  100. HajjarD.P. GottoA.M.Jr Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases.Am. J. Pathol.201318251474148110.1016/j.ajpath.2013.01.010 23608224
    [Google Scholar]
  101. WuY. WangF. FanL. ZhangW. WangT. DuY. BaiX. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways.Biomed. Pharmacother.2018971673167910.1016/j.biopha.2017.12.024 29793330
    [Google Scholar]
  102. LiuL. LiaoP. WangB. FangX. LiW. GuanS. Oral administration of baicalin and geniposide induces regression of atherosclerosis via inhibiting dendritic cells in ApoE-knockout mice.Int. Immunopharmacol.201420119720410.1016/j.intimp.2014.02.037 24631514
    [Google Scholar]
  103. KimK.I. ParkK.U. ChunE.J. ChoiS.I. ChoY.S. YounT.J. ChoG.Y. ChaeI.H. SongJ. ChoiD.J. KimC.H. A novel biomarker of coronary atherosclerosis: Serum DKK1 concentration correlates with coronary artery calcification and atherosclerotic plaques.J. Korean Med. Sci.20112691178118410.3346/jkms.2011.26.9.1178 21935273
    [Google Scholar]
  104. WangB. LiaoP.P. LiuL.H. FangX. LiW. GuanS.M. Baicalin and geniposide inhibit the development of atherosclerosis by increasing Wnt1 and inhibiting dickkopf-related protein-1 expression.J. Geriatr. Cardiol.20161310846854 27928227
    [Google Scholar]
  105. ZhangL. PuZ. WangJ. ZhangZ. HuD. WangJ. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway.Int. J. Mol. Sci.20141558153816810.3390/ijms15058153 24821539
    [Google Scholar]
  106. HuangX. WuP. HuangF. XuM. ChenM. HuangK. LiG. XuM. YaoD. WangL. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling.J. Biomed. Sci.20172415210.1186/s12929‑017‑0359‑3 28774332
    [Google Scholar]
  107. RemkováA. RemkoM. The role of renin-angiotensin system in prothrombotic state in essential hypertension.Physiol. Res.2010591132310.33549/physiolres.931525 19249905
    [Google Scholar]
  108. DengY.F. AlukoR.E. JinQ. ZhangY. YuanL.J. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme.Pharm. Biol.201250440140610.3109/13880209.2011.608076 22136493
    [Google Scholar]
  109. WangA.W. SongL. MiaoJ. WangH.X. TianC. JiangX. HanQ.Y. YuL. LiuY. DuJ. XiaY.L. LiH.H. Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice.Am. J. Hypertens.201528451852610.1093/ajh/hpu194 25362112
    [Google Scholar]
  110. JaworskaK. HucT. SamborowskaE. DobrowolskiL. BielinskaK. GawlakM. UfnalM. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite.PLoS One20171212e0189310 27053010
    [Google Scholar]
  111. WuD. DingL. TangX. WangW. ChenY. ZhangT. Baicalin protects against hypertension-associated intestinal barrier impairment in part through enhanced microbial production of short-chain fatty acids.Front. Pharmacol.201910127110.3389/fphar.2019.01271 31719823
    [Google Scholar]
  112. ZumlaA. ChanJ.F.W. AzharE.I. HuiD.S.C. YuenK.Y. Coronaviruses-drug discovery and therapeutic options.Nat. Rev. Drug Discov.201615532734710.1038/nrd.2015.37 26868298
    [Google Scholar]
  113. AdedejiA.O. SarafianosS.G. Antiviral drugs specific for coronaviruses in preclinical development.Curr. Opin. Virol.20148455310.1016/j.coviro.2014.06.002 24997250
    [Google Scholar]
  114. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  115. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑3 32015508
    [Google Scholar]
  116. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  117. LanJ. GeJ. YuJ. ShanS. ZhouH. FanS. ZhangQ. ShiX. WangQ. ZhangL. WangX. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑5 32225176
    [Google Scholar]
  118. PillaiyarT. ManickamM. NamasivayamV. HayashiY. JungS.H. An overview of severe acute respiratory syndrome-coronavirus (SARSCoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy.J. Med. Chem.201659146595662810.1021/acs.jmedchem.5b01461 26878082
    [Google Scholar]
  119. ZhouL. LiuY. ZhangW. WeiP. HuangC. PeiJ. YuanY. LaiL. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors.J. Med. Chem.200649123440344310.1021/jm0602357 16759084
    [Google Scholar]
  120. YangH. XieW. XueX. YangK. MaJ. LiangW. ZhaoQ. ZhouZ. PeiD. ZiebuhrJ. HilgenfeldR. YuenK.Y. WongL. GaoG. ChenS. ChenZ. MaD. BartlamM. RaoZ. Design of wide-spectrum inhibitors targeting coronavirus main proteases.PLoS Biol.2005310e32410.1371/journal.pbio.0030324 16128623
    [Google Scholar]
  121. WuC.Y. JanJ.T. MaS.H. KuoC.J. JuanH.F. ChengY.S.E. HsuH.H. HuangH.C. WuD. BrikA. LiangF.S. LiuR.S. FangJ.M. ChenS.T. LiangP.H. WongC.H. Small molecules targeting severe acute respiratory syndrome human coronavirus.Proc. Natl. Acad. Sci. USA200410127100121001710.1073/pnas.0403596101 15226499
    [Google Scholar]
  122. LuoH. TangQ. ShangY. LiangS. YangM. RobinsonN. LiuJ. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID19)? A review of historical classics, research evidence and current prevention programs.Chin. J. Integr. Med.202026424325010.1007/s11655‑020‑3192‑6 32065348
    [Google Scholar]
  123. JoS. KimS. ShinD.H. KimM.S. Inhibition of SARS-CoV 3CL protease by flavonoids.J. Enzyme Inhib. Med. Chem.202035114515110.1080/14756366.2019.1690480 31724441
    [Google Scholar]
  124. JoS. KimH. KimS. ShinD.H. KimM.S. Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors.Chem. Biol. Drug Des.20199462023203010.1111/cbdd.13604 31436895
    [Google Scholar]
  125. SuH. YaoS. ZhaoW. LiM. LiuJ. ShangW. XieH. KeC. HuH. GaoM. YuK. LiuH. ShenJ. TangW. ZhangL. XiaoG. NiL. WangD. ZuoJ. JiangH. BaiF. WuY. YeY. XuY. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑6 32737471
    [Google Scholar]
  126. BoehnckeW.H. SchönM.P. Psoriasis.Lancet2015386999798399410.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  127. AfoninaI.S. Van NuffelE. BeyaertR. Immune responses and therapeutic options in psoriasis.Cell. Mol. Life Sci.20217862709272710.1007/s00018‑020‑03726‑1 33386888
    [Google Scholar]
  128. WengS.W. ChenB.C. WangY.C. LiuC.K. SunM.F. ChangC.M. LinJ.G. YenH.R. Traditional Chinese medicine use among patients with psoriasis in Taiwan: A nationwide population-based study.Evid. Based Complement. Alternat. Med.2016201611310.1155/2016/3164105 27822287
    [Google Scholar]
  129. LeeH.Y. Improvement of skin barrier dysfunction by Scutellaria baicalensis GEOGI extracts through lactic acid fermentation.J. Cosmet. Dermatol.201918118319110.1111/jocd.12521 29543386
    [Google Scholar]
  130. Ayala-FontánezN. SolerD.C. McCormickT.S. Current knowledge on psoriasis and autoimmune diseases.Psoriasis (Auckl.)20166732 29387591
    [Google Scholar]
  131. KamataM. TadaY. Dendritic cells and macrophages in the pathogenesis of psoriasis.Front. Immunol.20221394107110.3389/fimmu.2022.941071 35837394
    [Google Scholar]
  132. UttarkarS. BrembillaN.C. BoehnckeW.H. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies.J. Allergy Clin. Immunol.201914341302131010.1016/j.jaci.2018.12.1011 30664891
    [Google Scholar]
  133. BellezzaI. GiambancoI. MinelliA. DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.010 29499228
    [Google Scholar]
  134. YadavK. SinghD. SinghM.R. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis.Int. J. Biol. Macromol.2018118Pt B1796181010.1016/j.ijbiomac.2018.07.021 30017989
    [Google Scholar]
  135. WynnT. BarronL. Macrophages: Master regulators of inflammation and fibrosis.Semin. Liver Dis.201030324525710.1055/s‑0030‑1255354 20665377
    [Google Scholar]
  136. Amezcua-GuerraL.M. BojalilR. Espinoza-HernandezJ. Vega-MemijeM.E. Lacy-NieblaR.M. Ortega-SpringallF. Ortega-HernándezJ. Sánchez-MuñozF. SpringallR. Serum of patients with psoriasis modulates the production of MMP-9 and TIMP-1 in cells of monocytic lineage.Immunol. Invest.201847772573410.1080/08820139.2018.1489831 29979898
    [Google Scholar]
  137. BernardoB.C. WeeksK.L. PretoriusL. McMullenJ.R. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies.Pharmacol. Ther.2010128119122710.1016/j.pharmthera.2010.04.005 20438756
    [Google Scholar]
  138. LiZ. WangJ. YangX. Functions of autophagy in pathological cardiac hypertrophy.Int. J. Biol. Sci.201511667267810.7150/ijbs.11883 25999790
    [Google Scholar]
  139. NakamuraM. SadoshimaJ. Mechanisms of physiological and pathological cardiac hypertrophy.Nat. Rev. Cardiol.201815738740710.1038/s41569‑018‑0007‑y 29674714
    [Google Scholar]
  140. XuF.P. ChenM.S. WangY.Z. YiQ. LinS.B. ChenA.F. LuoJ.D. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes.Circulation2004110101269127510.1161/01.CIR.0000140766.52771.6D 15313952
    [Google Scholar]
  141. XiongW. HuaJ. LiuZ. CaiW. BaiY. ZhanQ. LaiW. ZengQ. RenH. XuD. PTEN induced putative kinase 1 (PINK1) alleviates angiotensin II-induced cardiac injury by ameliorating mitochondrial dysfunction.Int. J. Cardiol.201826619820510.1016/j.ijcard.2018.03.054 29887448
    [Google Scholar]
  142. LiY. ChenQ. RanD. WangH. DuW. LuoY. JiangW. YangY. YangJ. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein.Free Radic. Biol. Med.201913423924710.1016/j.freeradbiomed.2019.01.019 30659940
    [Google Scholar]
  143. ShiL. HaoZ. ZhangS. WeiM. LuB. WangZ. JiL. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC.Biochem. Pharmacol.201815092310.1016/j.bcp.2018.01.026 29338970
    [Google Scholar]
  144. DaiC. TangS. WangY. VelkovT. XiaoX. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response.J. Antimicrob. Chemother.20177292562256910.1093/jac/dkx185 28859441
    [Google Scholar]
  145. WuR. MuraliR. KabeY. FrenchS.W. ChiangY.M. LiuS. SherL. WangC.C. LouieS. TsukamotoH. Baicalein targets GTPase-mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition.Hepatology20186851726174010.1002/hep.30071 29729190
    [Google Scholar]
  146. WangY.F. XuY.L. TangZ.H. LiT. ZhangL.L. ChenX. LuJ.H. LeungC.H. MaD.L. QiangW.A. WangY.T. LuJ.J. Baicalein induces beclin 1- and extracellular signal-regulated kinase-dependent autophagy in ovarian cancer cells.Am. J. Chin. Med.201745112313610.1142/S0192415X17500094 28081631
    [Google Scholar]
  147. LiuW. WangX. LiuZ. WangY. YinB. YuP. DuanX. LiaoZ. ChenY. LiuC. LiX. DaiY. TaoZ. SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway.Br. J. Cancer201711781139115310.1038/bjc.2017.293 29017179
    [Google Scholar]
  148. WangY. HanE. XingQ. YanJ. ArringtonA. WangC. TullyD. KowolikC.M. LuD.M. FrankelP.H. ZhaiJ. WenW. HorneD. YipM.L.R. YimJ.H. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells.Cancer Lett.2015358217017910.1016/j.canlet.2014.12.033 25543165
    [Google Scholar]
  149. WangL. LingY. ChenY. LiC.L. FengF. YouQ.D. LuN. GuoQ.L. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells.Cancer Lett.20102971424810.1016/j.canlet.2010.04.022 20580866
    [Google Scholar]
  150. ZongJ. ZhangD. ZhouH. BianZ. DengW. DaiJ. YuanY. GanH. GuoH. TangQ. Baicalein protects against cardiac hypertrophy through blocking MEK‐ERK1/2 signaling.J. Cell. Biochem.201311451058106510.1002/jcb.24445 23225340
    [Google Scholar]
  151. ChenH.M. LiouS.F. HsuJ.H. ChenT.J. ChengT.L. ChiuC.C. YehJ.L. Baicalein inhibits HMGB1 release and MMP-2/-9 expression in lipopolysaccharide-induced cardiac hypertrophy.Am. J. Chin. Med.201442478579710.1142/S0192415X14500505 25004875
    [Google Scholar]
  152. ZhengF. WuJ. ZhaoS. LuoQ. TangQ. YangL. LiL. WuW. HannS.S. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells.J. Exp. Clin. Cancer Res.20153414110.1186/s13046‑015‑0160‑7 25948105
    [Google Scholar]
  153. LiJ. ChangW.T. LiC.Q. LeeC. HuangH.H. HsuC.W. ChenW.J. ZhuX. WangC.Z. Vanden HoekT.L. ShaoZ.H. Baicalein preventive treatment confers optimal cardioprotection by PTEN/Akt/NO activation.Am. J. Chin. Med.2017455987100110.1142/S0192415X17500525 28760044
    [Google Scholar]
  154. ZhaoF. FuL. YangW. DongY. YangJ. SunS. HouY. Cardioprotective effects of baicalein on heart failure via modulation of Ca2+ handling proteins in vivo and in vitro.Life Sci.201614521322310.1016/j.lfs.2015.12.036 26706290
    [Google Scholar]
  155. CuiG. Chui Wah LukS. LiR.A. ChanK.K.K. LeiS.W. WangL. ShenH. LeungG.P.H. LeeS.M.Y. Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway.J. Cardiovasc. Pharmacol.2015651394610.1097/FJC.0000000000000161 25343567
    [Google Scholar]
  156. ChangW.T. LiJ. HaungH.H. LiuH. HanM. RamachandranS. LiC.Q. SharpW.W. HamannK.J. YuanC.S. Vanden HoekT.L. ShaoZ.H. Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation.J. Cell. Biochem.2011112102873288110.1002/jcb.23201 21618589
    [Google Scholar]
  157. HuangH.H. ShaoZ.H. LiC.Q. Vanden HoekT.L. LiJ. Baicalein protects cardiomyocytes against mitochondrial oxidant injury associated with JNK inhibition and mitochondrial Akt activation.Am. J. Chin. Med.2014421799410.1142/S0192415X14500050 24467536
    [Google Scholar]
  158. MeirelesJ. MassanoJ. Cognitive impairment and dementia in Parkinson’s disease: Clinical features, diagnosis, and management.Front. Neurol.201238810.3389/fneur.2012.00088 22654785
    [Google Scholar]
  159. TolosaE. WenningG. PoeweW. The diagnosis of Parkinson’s disease.Lancet Neurol.200651758610.1016/S1474‑4422(05)70285‑4 16361025
    [Google Scholar]
  160. JennerP. Oxidative stress in Parkinson’s disease.Ann. Neurol.200353Suppl. 3S26S3610.1002/ana.10483
    [Google Scholar]
  161. UmenoA. BijuV. YoshidaY. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes.Free Radic. Res.201751441342710.1080/10715762.2017.1315114 28372523
    [Google Scholar]
  162. RunchelC. MatsuzawaA. IchijoH. Mitogen-activated protein kinases in mammalian oxidative stress responses.Antioxid. Redox Signal.201115120521810.1089/ars.2010.3733 21050144
    [Google Scholar]
  163. GiguèreN. Burke NanniS. TrudeauL.E. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease.Front. Neurol.2018945510.3389/fneur.2018.00455 29971039
    [Google Scholar]
  164. YanM.H. WangX. ZhuX. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic. Biol. Med.2013629010110.1016/j.freeradbiomed.2012.11.014 23200807
    [Google Scholar]
  165. YoudimM.B.H. BakhleY.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness.Br. J. Pharmacol.2006147S1Suppl. 1S287S29610.1038/sj.bjp.0706464 16402116
    [Google Scholar]
  166. KamatP.K. KalaniA. RaiS. SwarnkarS. TotaS. NathC. TyagiN. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies.Mol. Neurobiol.201653164866110.1007/s12035‑014‑9053‑6 25511446
    [Google Scholar]
  167. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  168. ByassP. The global burden of liver disease: A challenge for methods and for public health.BMC Med.201412115910.1186/s12916‑014‑0159‑5 25286285
    [Google Scholar]
  169. XiaoJ. WangF. WongN.K. HeJ. ZhangR. SunR. XuY. LiuY. LiW. KoikeK. HeW. YouH. MiaoY. LiuX. MengM. GaoB. WangH. LiC. Global liver disease burdens and research trends: Analysis from a Chinese perspective.J. Hepatol.201971121222110.1016/j.jhep.2019.03.004 30871980
    [Google Scholar]
  170. LaiC.C. HuangP.H. YangA.H. ChiangS.C. TangC.Y. TsengK.W. HuangC.H. baicalein reduces liver injury induced by myocardial ischemia and reperfusion.Am. J. Chin. Med.201644353155010.1142/S0192415X16500294 27109160
    [Google Scholar]
  171. DongY. XingY. SunJ. SunW. XuY. QuanC. Baicalein alleviates liver oxidative stress and apoptosis induced by highlevel glucose through the activation of the PERK/Nrf2 signaling pathway.Molecules202025359910.3390/molecules25030599 32019168
    [Google Scholar]
  172. ChenY. YuanW. YangY. YaoF. MingK. LiuJ. Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication.Poult. Sci.201897113816382510.3382/ps/pey255 29917156
    [Google Scholar]
  173. ChenY. ZengL. YangJ. WangY. YaoF. WuY. WangD. HuY. LiuJ. Anti-DHAV-1 reproduction and immuno-regulatory effects of a flavonoid prescription on duck virus hepatitis.Pharm. Biol.20175511545155210.1080/13880209.2017.1309554 28385083
    [Google Scholar]
  174. ChenY. ZengL. LuY. YangY. XuM. WangY. LiuJ. Treatment effect of a flavonoid prescription on duck virus hepatitis by its hepatoprotective and antioxidative ability.Pharm. Biol.201755119820510.1080/13880209.2016.1255977 27927057
    [Google Scholar]
  175. PollicinoT. MusolinoC. IrreraN. BittoA. LombardoD. TimmoneriM. MinutoliL. RaimondoG. SquadritoG. SquadritoF. AltavillaD. Flavocoxid exerts a potent antiviral effect against hepatitis B virus.Inflamm. Res.20186718910310.1007/s00011‑017‑1099‑2 29018874
    [Google Scholar]
  176. ChenY. YaoF. MingK. ShiJ. ZengL. WangD. WuY. HuY. LiuJ. Assessment of the efect of baicalin on duck virus hepatitis.Curr. Mol. Med.201919537638610.2174/1566524019666190405095301 30950349
    [Google Scholar]
  177. HuangH. ZhouW. ZhuH. ZhouP. ShiX. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs.Toxicol. Appl. Pharmacol.2017323364310.1016/j.taap.2017.03.016 28322895
    [Google Scholar]
  178. XiaC. TangW. GengP. ZhuH. ZhouW. HuangH. ZhouP. ShiX. Baicalin down-regulating hepatitis B virus transcription depends on the liver-specific HNF4α-HNF1α axis.Toxicol. Appl. Pharmacol.202040311513110.1016/j.taap.2020.115131 32687838
    [Google Scholar]
  179. XiY. WuM. LiH. DongS. LuoE. GuM. ShenX. JiangY. LiuY. LiuH. Baicalin attenuates high fat diet-induced obesity and liver dysfunction: Dose-response and potential role of CaMKKβ/AMPK/ACC Pathway.Cell. Physiol. Biochem.20153562349235910.1159/000374037 25896320
    [Google Scholar]
  180. Kalapos-KovácsB. MagdaB. JaniM. FeketeZ. SzabóP.T. AntalI. KrajcsiP. KlebovichI. Multiple ABC transporters efflux baicalin.Phytother. Res.201529121987199010.1002/ptr.5477 26400418
    [Google Scholar]
  181. TaimingL. XuehuaJ. Investigation of the absorption mechanisms of baicalin and baicalein in rats.J. Pharm. Sci.20069561326133310.1002/jps.20593 16628739
    [Google Scholar]
  182. LiM. ShiA. PangH. XueW. LiY. CaoG. YanB. DongF. LiK. XiaoW. HeG. DuG. HuX. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects.J. Ethnopharmacol.201415621021510.1016/j.jep.2014.08.031 25219601
    [Google Scholar]
  183. NohK. KangY. NepalM. JeongK. OhD. KangM. LeeS. KangW. JeongH. JeongT. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics.Molecules201621333710.3390/molecules21030337 26978333
    [Google Scholar]
  184. FongY.K. LiC.R. WoS.K. WangS. ZhouL. ZhangL. LinG. ZuoZ. In vitro and in situ evaluation of herb–drug interactions during intestinal metabolism and absorption of Baicalein.J. Ethnopharmacol.2012141274275310.1016/j.jep.2011.08.042 21906668
    [Google Scholar]
  185. ZhangR. CuiY. WangY. TianX. ZhengL. CongH. WuB. HuoX. WangC. ZhangB. WangX. YuZ. Catechol-O-methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species.Eur. J. Drug Metab. Pharmacokinet.201742698199210.1007/s13318‑017‑0419‑9 28536775
    [Google Scholar]
  186. AkaoT. KawabataK. YanagisawaE. IshiharaK. MizuharaY. WakuiY. SakashitaY. KobashiK. Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form.J. Pharm. Pharmacol.201052121563156810.1211/0022357001777621 11197087
    [Google Scholar]
  187. LuT. SongJ. HuangF. DengY. XieL. WangG. LiuX. Comparative pharmacokinetics of baicalin after oral administration of pure baicalin, Radix scutellariae extract and Huang-Lian-Jie-Du-Tang to rats.J. Ethnopharmacol.2007110341241810.1016/j.jep.2006.09.036 17110066
    [Google Scholar]
  188. TangY. ZhuH. ZhangY. HuangC. Determination of human plasma protein binding of baicalin by ultrafiltration and high‐performance liquid chromatography.Biomed. Chromatogr.200620101116111910.1002/bmc.655 16708379
    [Google Scholar]
  189. WeiY. PiC. YangG. XiongX. LanY. YangH. ZhouY. YeY. ZouY. ZhengW. ZhaoL. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations.Molecules201621444410.3390/molecules21040444 27104507
    [Google Scholar]
  190. ZhangL. XingD. WangW. WangR. DuL. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae radix extract.J. Ethnopharmacol.2006103112012510.1016/j.jep.2005.07.013 16159703
    [Google Scholar]
  191. HuangH. ZhangY. YangR. TangX. Determination of baicalin in rat cerebrospinal fluid and blood using microdialysis coupled with ultra-performance liquid chromatography-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088741-2778310.1016/j.jchromb.2008.09.005 18805743
    [Google Scholar]
  192. BaekS.H. BaeO.N. ParkJ.H. Recent methodology in ginseng analysis.J. Ginseng Res.201236211913410.5142/jgr.2012.36.2.119 23717112
    [Google Scholar]
  193. KongN. ChenX. FengJ. DuanT. LiuS. SunX. ChenP. PanT. YanL. JinT. XiangY. GaoQ. WenC. MaW. LiuW. ZhangM. YangZ. WangW. ZhangR. ChenB. XieT. SuiX. TaoW. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1.Acta Pharm. Sin. B202111124045405410.1016/j.apsb.2021.03.036 35024325
    [Google Scholar]
  194. LiM. MengZ. YuS. LiJ. WangY. YangW. WuH. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis.Chem. Biol. Interact.202236611013710.1016/j.cbi.2022.110137 36055377
    [Google Scholar]
  195. SongQ. PengS. ZhuX. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease.Neurotoxicology20218718819410.1016/j.neuro.2021.10.003 34666128
    [Google Scholar]
  196. LiuB. LiL. LiuG. DingW. ChangW. XuT. JiX. ZhengX. ZhangJ. WangJ. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes.Acta Pharmacol. Sin.202142570171410.1038/s41401‑020‑0496‑1 32796955
    [Google Scholar]
  197. RuiW. LiS. XiaoH. XiaoM. ShiJ. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson’s disease.Int. J. Neuropsychopharmacol.2020231176277310.1093/ijnp/pyaa060 32761175
    [Google Scholar]
  198. HeS. WangS. LiuS. LiZ. LiuX. WuJ. Baicalein potentiated M1 macrophage polarization in cancer through targeting PI3Kγ/NF-κB signaling.Front. Pharmacol.20211274383710.3389/fphar.2021.743837 34512367
    [Google Scholar]
  199. DuanL. ZhangY. YangY. SuS. ZhouL. LoP.C. CaiJ. QiaoY. LiM. HuangS. WangH. MoY. WangQ. Baicalin inhibits ferroptosis in intracerebral hemorrhage.Front. Pharmacol.20211262937910.3389/fphar.2021.629379 33815110
    [Google Scholar]
  200. OrzechowskaB.U. WróbelG. TurlejE. JatczakB. SochockaM. ChaberR. Antitumor effect of baicalin from the Scutellaria baicalensis radix extract in B-acute lymphoblastic leukemia with different chromosomal rearrangements.Int. Immunopharmacol.20207910611410.1016/j.intimp.2019.106114 31881375
    [Google Scholar]
  201. ShiH. QiaoF. LuW. HuangK. WenY. YeL. ChenY. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway.Eur. J. Pharmacol.202293417527010.1016/j.ejphar.2022.175270 36184988
    [Google Scholar]
  202. WangX. YuJ. SunY. WangH. ShanH. WangS. Baicalin protects LPS-induced blood–brain barrier damage and activates Nrf2-mediated antioxidant stress pathway.Int. Immunopharmacol.20219610772510.1016/j.intimp.2021.107725 34162131
    [Google Scholar]
  203. LiuH. ChengY. ChuJ. WuM. YanM. WangD. XieQ. AliF. FangY. WeiL. YangY. ShenA. PengJ. Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway.Biomed. Pharmacother.202114311212410.1016/j.biopha.2021.112124 34492423
    [Google Scholar]
  204. LiuX. JiangL. LiY. HuangY. HuX. ZhuW. WangX. WuY. MengX. QiX. Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease.Acta Pharmacol. Sin.20224319611010.1038/s41401‑021‑00721‑5 34253875
    [Google Scholar]
  205. DaiJ.M. GuoW.N. TanY.Z. NiuK.W. ZhangJ.J. LiuC.L. YangX.M. TaoK.S. ChenZ.N. DaiJ.Y. Wogonin alleviates liver injury in sepsis through Nrf2‐mediated NF‐κB signalling suppression.J. Cell. Mol. Med.202125125782579810.1111/jcmm.16604 33982381
    [Google Scholar]
  206. ShiX. ZhangB. ChuZ. HanB. ZhangX. HuangP. HanJ. Wogonin inhibits cardiac hypertrophy by activating Nrf-2-mediated antioxidant responses.Cardiovasc. Ther.2021202111310.1155/2021/9995342 34290825
    [Google Scholar]
  207. HuangJ. ZhouM. ZhangH. FangY. ChenG. WenJ. LiuL. Characterization of the mechanism of Scutellaria baicalensis on reversing radio-resistance in colorectal cancer.Transl. Oncol.20222410148810.1016/j.tranon.2022.101488 35872478
    [Google Scholar]
  208. CaiX. PengS. WangL. TangD. ZhangP. Scutellaria baicalensis in the treatment of hepatocellular carcinoma: Network pharmacology analysis and experimental validation.Evid. Based Complement. Alternat. Med.2023202311410.1155/2023/4572660 36874613
    [Google Scholar]
  209. WangA. GuoD. ChengH. JiangH. LiuX. TieM. Regulatory mechanism of Scutellaria baicalensis Georgi on bone cancer pain based on network pharmacology and experimental verification.PeerJ202210e1439410.7717/peerj.14394 36415861
    [Google Scholar]
  210. ZhuX. MaoY. GuoM. YuH. HaoL. HuaQ. LuZ. HongM. AnF. Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens.J. Biosci. Bioeng.2020130545746310.1016/j.jbiosc.2020.06.008 32747300
    [Google Scholar]
  211. XianY. SuY. LiangJ. LongF. FengX. XiaoY. LianH. XuJ. ZhaoJ. LiuQ. SongF. Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation.Biochem. Pharmacol.202119311476110.1016/j.bcp.2021.114761 34492273
    [Google Scholar]
  212. LeeY.J. ImD.S. Inhibitory effect of oroxylin A in a mouse model of atopic dermatitis.Inflammation202346267968710.1007/s10753‑022‑01764‑4 36456726
    [Google Scholar]
  213. HuangH. CaiH. ZhangL. HuaZ. ShiJ. WeiY. Oroxylin A inhibits carcinogen-induced skin tumorigenesis through inhibition of inflammation by regulating SHCBP1 in mice.Int. Immunopharmacol.20208010612310.1016/j.intimp.2019.106123 31927505
    [Google Scholar]
  214. CaoH.J. ZhouW. XianX.L. SunS.J. DingP.J. TianC.Y. TianF.L. JiangC.H. FuT.T. ZhaoS. DaiJ.Y. A mixture of baicalein, wogonin, and oroxylin-A inhibits EMT in the A549 cell line via the PI3K/AKT-TWIST1-glycolysis pathway.Front. Pharmacol.20221282148510.3389/fphar.2021.821485 35222014
    [Google Scholar]
  215. LiX. LiuJ. FangY. HuangD. HeM. WangF. HanQ. Potential therapeutic mechanism of Scutellaria baicalensis Georgi against ankylosing spondylitis based on a comprehensive pharmacological model.BioMed Res. Int.2022202211410.1155/2022/9887012 36588535
    [Google Scholar]
  216. WangY. HuT. WeiJ. YinX. GaoZ. LiH. Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation.Int. J. Biol. Macromol.202221553154010.1016/j.ijbiomac.2022.06.107 35724902
    [Google Scholar]
  217. CaoY. CaoW. QiuY. ZhouY. GuoQ. GaoY. LuN. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis.Pharmacol. Res.202015910498110.1016/j.phrs.2020.104981 32492489
    [Google Scholar]
  218. JiY. HanJ. LeeN. YoonJ.H. YounK. HaH.J. YoonE. KimD.H. JunM. Neuroprotective effects of baicalein, wogonin, and oroxylin A on amyloid beta-induced toxicity via NF-κB/MAPK pathway modulation.Molecules20202521508710.3390/molecules25215087 33147823
    [Google Scholar]
  219. ZhaoX. KongD. ZhouQ. WeiG. SongJ. LiangY. DuG. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway.Biomed. Pharmacother.202114011155610.1016/j.biopha.2021.111556 34087694
    [Google Scholar]
  220. YouW. DiA. ZhangL. ZhaoG. Effects of wogonin on the growth and metastasis of colon cancer through the Hippo signaling pathway.Bioengineered20221322586259710.1080/21655979.2021.2019173 35037825
    [Google Scholar]
  221. XingJ. ChenX. ZhongD. Absorption and enterohepatic circulation of baicalin in rats.Life Sci.200578214014610.1016/j.lfs.2005.04.072 16107266
    [Google Scholar]
  222. JiangS. XuJ. QianD. ShangE. LiuP. SuS. LengX. GuoJ. DuanJ. DuL. ZhaoM. Comparative metabolites in plasma and urine of normal and type 2 diabetic rats after oral administration of the traditional Chinese scutellaria-coptis herb couple by ultra performance liquid chromatography-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014965273210.1016/j.jchromb.2014.05.028 24976485
    [Google Scholar]
  223. LaiM.Y. HsiuS.L. ChenC.C. HouY.C. ChaoP.D.L. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of Scutellariae radix in humans.Biol. Pharm. Bull.2003261798310.1248/bpb.26.79 12520178
    [Google Scholar]
  224. QiQ. PengJ. LiuW. YouQ. YangY. LuN. WangG. GuoQ. Toxicological studies of wogonin in experimental animals.Phytother. Res.200923341742210.1002/ptr.2645 19003942
    [Google Scholar]
  225. TalbiA. ZhaoD. LiuQ. LiJ. FanA. YangW. HanX. ChenX. Pharmacokinetics, tissue distribution, excretion and plasma protein binding studies of wogonin in rats.Molecules20141955538554910.3390/molecules19055538 24786691
    [Google Scholar]
  226. ZhangL. LinG. ZuoZ. Involvement of UDP-glucuronosyl] transferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein.Pharm. Res.2007241818910.1007/s11095‑006‑9126‑y 17109214
    [Google Scholar]
  227. ChenY.C. ShenS.C. LeeW.R. LinH.Y. KoC.H. ShihC.M. YangL.L. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1.Arch. Toxicol.2002765-635135910.1007/s00204‑002‑0346‑6 12107653
    [Google Scholar]
  228. LiC. ZhangL. ZhouL. WoS.K. LinG. ZuoZ. Comparison of intestinal absorption and disposition of structurally similar bioactive flavones in Radix Scutellariae.AAPS J.2012141233410.1208/s12248‑011‑9310‑9 22167378
    [Google Scholar]
  229. HassaninM. TolbaM. TadrosM. ElmazarM. SingabA.N. Wogonin a promising component of Scutellaria baicalensis: A review on its chemistry, pharmacokinetics and biological activities.Arch. Pharmaceut. Sci. Ain Shams Univ.20193217017910.21608/aps.2019.18854.1016
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322467240816112529
Loading
/content/journals/cbc/10.2174/0115734072322467240816112529
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): baicalin; flavonoids; Scutellaria baicalensis; terpenoids; volatile oil; wogonin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test