Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Cancer is a highly fatal disease that is typified by aberrant cells proliferating out of control. The properties of acquired cells, including as genomic instability and mutations, cellular death evasion, and proliferative signaling sustenance, are evidenced by the hallmarks of cancer and contribute to the establishment of malignant tumors. A protein called poly(ADP-ribose) polymerase-1 (PARP1) is essential for both cell survival and DNA damage repair, two processes that affect cellular control. Since homologous recombination deficient cells exhibit cellular death upon suppression of PARP1, the PARP protein has gained attention as a potential target for anticancer treatments. The Food and Drug Administration (FDA) has already approved a number of effective PARP1 inhibitors, including olaparib and niraparib. The final chemical has a 1,3,4-thiadiazole core in its structure. In fact, heterocyclic moieties have gained attention due to their numerous medicinal advantages, which include their capacity to combat cancer. The compounds derived from these substances have been studied as PARP1 inhibitors, with promising results. Thus, the goal of this study is to go over the importance of PARP1 in cancer as well as its role in cell regulation. It also attempts to offer a comprehensive assessment of the literature that has been published in the previous fifteen years about PARP1 inhibitors, including the different scaffolds, with an emphasis on features of the structure-activity relationship. This will provide vital information for the creation of fresh, more effective PARP1 inhibitors.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072325763241119063140
2024-10-17
2025-12-09
Loading full text...

Full text loading...

References

  1. UpadhyayA. Cancer: An unknown territory; rethinking before going ahead.Genes Dis.20218565566110.1016/j.gendis.2020.09.002 34291136
    [Google Scholar]
  2. QuailD. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.2013191423143710.1038/nm.3394
    [Google Scholar]
  3. BeataU. Genetic diversity, inbreeding and cancer.Royal Soc.285187518
    [Google Scholar]
  4. BeataU. Tumor evolution as a therapeutic target.Cancer Discov.201778805817
    [Google Scholar]
  5. RajP.P. Recent PARP inhibitor advancements in cancer therapy: A review.Curr. Enzym. Inhib.202218292
    [Google Scholar]
  6. KummarS. ChenA. ParchmentR.E. KindersR.J. JiJ. TomaszewskiJ.E. DoroshowJ.H. Advances in using PARP inhibitors to treat cancer.BMC Med.20121012510.1186/1741‑7015‑10‑25 22401667
    [Google Scholar]
  7. OginoH. NakayamaR. SakamotoH. YoshidaT. SugimuraT. MasutaniM. Analysis of poly(ADP-ribose) polymerase-1 (PARP1) gene alteration in human germ cell tumor cell lines.Cancer Genet. Cytogenet.2010197181510.1016/j.cancergencyto.2009.10.012 20113831
    [Google Scholar]
  8. CurtinN.J. PARP inhibitors for cancer therapy.Exp. Rev. Molecul. Med.200574120
    [Google Scholar]
  9. SchiewerM.J. GoodwinJ.F. HanS. BrennerJ.C. AugelloM.A. DeanJ.L. LiuF. PlanckJ.L. RavindranathanP. ChinnaiyanA.M. McCueP. GomellaL.G. RajG.V. DickerA.P. BrodyJ.R. PascalJ.M. CenteneraM.M. ButlerL.M. TilleyW.D. FengF.Y. KnudsenK.E. Dual roles of PARP-1 promote cancer growth and progression.Cancer Discov.20122121134114910.1158/2159‑8290.CD‑12‑0120 22993403
    [Google Scholar]
  10. NoshoK. YamamotoH. MikamiM. TaniguchiH. TakahashiT. AdachiY. ImamuraA. ImaiK. ShinomuraY. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis.Eur. J. Cancer200642142374238110.1016/j.ejca.2006.01.061 16809031
    [Google Scholar]
  11. KhodyrevaS.N. Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1).Proc. Natl. Acad. Sci.2010107512209022095
    [Google Scholar]
  12. KhodyrevaS.N. Early steps in the DNA base excision single-strand interruption repair pathway in mammalian cells.Cell Res.20101075122090
    [Google Scholar]
  13. PleschkeJ.M. Poly(ADP-ribose) binds to specific domains in dna damage checkpoint proteins.DNA: Replic. Repair. Recomb.2000275524097440980
    [Google Scholar]
  14. JanowskaS. PanethA. WujecM. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives-A Review.Molecules20202518430910.3390/molecules25184309 32962192
    [Google Scholar]
  15. KalidharU. 1,3,4-Thiadiazole derivatives and their biological activities: A review.Res. J. Pharmaceut Biol. Chem. Sci.20112410911106
    [Google Scholar]
  16. JanowskaS. KhylyukD. BielawskaA. SzymanowskaA. GornowiczA. BielawskiK. NoworólJ. MandziukS. WujecM. New 1,3,4-Thiadiazole Derivatives with Anticancer Activity.Molecules2022276181410.3390/molecules27061814 35335177
    [Google Scholar]
  17. MorsyS.M.I. BadawiA.M. CecchiA. ScozzafavaA. SupuranC.T. Carbonic anhydrase inhibitors. Biphenylsulfonamides with inhibitory action towards the transmembrane, tumor-associated isozymes IX possess cytotoxic activity against human colon, lung and breast cancer cell lines.J. Enzyme Inhib. Med. Chem.200924249950510.1080/14756360802218441 18608752
    [Google Scholar]
  18. El-AshmawayM.B. Synthesis, in vitro antitumor activity and DNA-binding affinity of novel thiadiazolopyrimidine and thiadiazoloquinazoline derivatives.Mans. J. Pharm. Sci.2010266068
    [Google Scholar]
  19. YangX.H. WenQ. ZhaoT.T. SunJ. LiX. XingM. LuX. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents.Bioorg. Med. Chem.20122031181118710.1016/j.bmc.2011.12.057 22261027
    [Google Scholar]
  20. GriffinR.J. SrinivasanS. BowmanK. CalvertA.H. CurtinN.J. NewellD.R. PembertonL.C. GoldingB.T. Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP).J. Med. Chem.199841265247525610.1021/jm980273t 9857092
    [Google Scholar]
  21. SteinhagenH. GerischM. MittendorfJ. SchlemmerK.H. AlbrechtB. Substituted uracil derivatives as potent inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1).Bioorg. Med. Chem. Lett.200212213187319010.1016/S0960‑894X(02)00602‑9 12372530
    [Google Scholar]
  22. PellicciariR. CamaioniE. CostantinoG. MarinozziM. MacchiaruloA. MoroniF. NataliniB. Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors.Farmaco200358985185810.1016/S0014‑827X(03)00143‑5 13679179
    [Google Scholar]
  23. CalabreseC.R. AlmassyR. BartonS. BateyM.A. CalvertA.H. Canan-KochS. DurkaczB.W. HostomskyZ. KumpfR.A. KyleS. LiJ. MaegleyK. NewellD.R. NotarianniE. StratfordI.J. SkalitzkyD. ThomasH.D. WangL.Z. WebberS.E. WilliamsK.J. CurtinN.J. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361.J. Natl. Cancer Inst.2004961566710.1093/jnci/djh005 14709739
    [Google Scholar]
  24. MenearK.A. AdcockC. BoulterR. CockcroftX. CopseyL. CranstonA. DillonK.J. DrzewieckiJ. GarmanS. GomezS. JavaidH. KerriganF. KnightsC. LauA. LohV.M.Jr MatthewsI.T.W. MooreS. O’ConnorM.J. SmithG.C.M. MartinN.M.B. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1.J. Med. Chem.200851206581659110.1021/jm8001263 18800822
    [Google Scholar]
  25. RheeH.K. LimS.Y. JungM.J. KwonY. KimM.H. ChooH.Y.P. Synthesis of isoquinolinone-based tetracycles as poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors.Bioorg. Med. Chem.200917217537754110.1016/j.bmc.2009.09.014 19800803
    [Google Scholar]
  26. TongY. BouskaJ.J. EllisP.A. JohnsonE.F. LeversonJ. LiuX. MarcotteP.A. OlsonA.M. OsterlingD.J. PrzytulinskaM. RodriguezL.E. ShiY. SoniN. StavropoulosJ. ThomasS. DonawhoC.K. FrostD.J. LuoY. GirandaV.L. PenningT.D. Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents.J. Med. Chem.200952216803681310.1021/jm900697r 19888760
    [Google Scholar]
  27. KálaiT. BalogM. SzabóA. GulyásG. JekőJ. SümegiB. HidegK. New poly(ADP-ribose) polymerase-1 inhibitors with antioxidant activity based on 4-carboxamidobenzimidazole-2-ylpyrroline and -tetrahydropyridine nitroxides and their precursors.J. Med. Chem.20095261619162910.1021/jm801476y 19245212
    [Google Scholar]
  28. JonesP. AltamuraS. BoueresJ. FerrignoF. FonsiM. GiominiC. LamartinaS. MonteagudoE. OntoriaJ.M. OrsaleM.V. PalumbiM.C. PesciS. RoscilliG. ScarpelliR. Schultz-FademrechtC. ToniattiC. RowleyM. Discovery of 2-{4-[(3S)-Piperidin-3-Yl]Phenyl}-2H-Indazole-7-Carboxamide (MK-4827): A Novel Oral Poly(ADP-Ribose)Polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 Mutant Tumors.J. Med. Chem.200952227170718510.1021/jm901188v 19873981
    [Google Scholar]
  29. FerrignoF. BrancaD. KinzelO. LilliniS. Llauger BufiL. MonteagudoE. MuragliaE. RowleyM. Schultz-FademrechtC. ToniattiC. TorrisiC. JonesP. Development of substituted 6-[4-fluoro-3-(piperazin-1-ylcarbonyl)benzyl]-4,5-dimethylpyridazin-3(2H)-ones as potent poly(ADP–ribose) polymerase-1 (PARP-1) inhibitors active in BRCA deficient cells.Bioorg. Med. Chem. Lett.20102031100110510.1016/j.bmcl.2009.11.087 20022747
    [Google Scholar]
  30. TorrisiC. BisbocciM. IngenitoR. OntoriaJ.M. RowleyM. Schultz-FademrechtC. ToniattiC. JonesP. Discovery and SAR of novel, potent and selective hexahydrobenzonaphthyridinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1).Bioorg. Med. Chem. Lett.201020244845210.1016/j.bmcl.2009.12.002 20015648
    [Google Scholar]
  31. PatelM.R. PandyaK.G. Lau-CamC.A. SinghS. PinoM.A. BillackB. DegenhardtK. TaleleT.T. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors. (†)Chem. Biol. Drug Des.201279448849610.1111/j.1747‑0285.2011.01302.x 22177599
    [Google Scholar]
  32. YeN. ChenC.H. ChenT. SongZ. HeJ.X. HuanX.J. SongS.S. LiuQ. ChenY. DingJ. XuY. MiaoZ.H. ZhangA. Design, synthesis, and biological evaluation of a series of benzo[de][1,7]naphthyridin-7(8H)-ones bearing a functionalized longer chain appendage as novel PARP1 inhibitors.J. Med. Chem.20135672885290310.1021/jm301825t 23473053
    [Google Scholar]
  33. SyamY. Synthesis, cytotoxic evaluation and molecular docking study of novel quinazoline derivatives as PARP-1 inhibitors. Acta Poloniae Pharmaceutica ñ.Drug Res.201370833
    [Google Scholar]
  34. GianniniG. BattistuzziG. VesciL. MilazzoF.M. De PaolisF. BarbarinoM. GuglielmiM.B. CarolloV. GalloG. ArtaliR. DallavalleS. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold.Bioorg. Med. Chem. Lett.201424246246610.1016/j.bmcl.2013.12.048 24388690
    [Google Scholar]
  35. PatelM.R. BhattA. SteffenJ.D. CherguiA. MuraiJ. PommierY. PascalJ.M. TrombettaL.D. FronczekF.R. TaleleT.T. Discovery and structure-activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide derivatives as poly(ADP-ribose)polymerase-1 inhibitors.J. Med. Chem.201457135579560110.1021/jm5002502 24922587
    [Google Scholar]
  36. BertrandB. StefanL. PirrottaM. MonchaudD. BodioE. RichardP. Le GendreP. WarmerdamE. de JagerM.H. GroothuisG.M.M. PicquetM. CasiniA. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties.Inorg. Chem.20145342296230310.1021/ic403011h 24499428
    [Google Scholar]
  37. WangB. QianH. YiuS.M. SunJ. ZhuG. Platinated benzonaphthyridone is a stronger inhibitor of poly(ADP-ribose) polymerase-1 and a more potent anticancer agent than is the parent inhibitor.Eur. J. Med. Chem.20147136637310.1016/j.ejmech.2013.10.062 24361480
    [Google Scholar]
  38. WangJ. TanH. SunQ. GeZ. WangX. WangY. LiR. Design, synthesis and biological evaluation of pyridazino[3,4,5-de]quinazolin-3(2H)-one as a new class of PARP-1 inhibitors.Bioorg. Med. Chem. Lett.201525112340234410.1016/j.bmcl.2015.04.013 25899312
    [Google Scholar]
  39. SuyavaranA. RamamurthyC. MareeswaranR. ShanthiY.V. SelvakumarJ. MangalarajS. KumarM.S. RamanathanC.R. ThirunavukkarasuC. Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors.Bioorg. Med. Chem.201523348849810.1016/j.bmc.2014.12.017 25555733
    [Google Scholar]
  40. WangJ. WangX. LiH. JiD. LiY. XuY. ZhuQ. Design, synthesis and biological evaluation of novel 5-fluoro-1H-benzimidazole-4-carboxamide derivatives as potent PARP-1 inhibitors.Bioorg. Med. Chem. Lett.201626164127413210.1016/j.bmcl.2016.06.045 27353531
    [Google Scholar]
  41. WangB. ChuD. FengY. ShenY. Aoyagi-ScharberM. PostL.E. Discovery and Characterization of (8S, 9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1 H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3 H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent.J. Med. Chem.201659133535710.1021/acs.jmedchem.5b01498 26652717
    [Google Scholar]
  42. ElmongyE.I. KhedrM.A. TalebN.A. AwadH.M. AbbasS.E.S. Design, Synthesis, and Biological Evaluation of Some Cyclohepta[b]Thiophene and Substituted Pentahydrocycloheptathieno[2,3-d]Pyrimidine Derivatives.J. Heterocycl. Chem.20175421084109310.1002/jhet.2678
    [Google Scholar]
  43. ChadhaN. JaggiA.S. SilakariO. Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors.Mol. Divers.201721365566010.1007/s11030‑017‑9754‑7 28653128
    [Google Scholar]
  44. ZhouJ. JiM. ZhuZ. CaoR. ChenX. XuB. Discovery of 2-substituted 1 H -benzo[ d]immidazole-4-carboxamide derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors with in vivo anti-tumor activity.Eur. J. Med. Chem.2017132264110.1016/j.ejmech.2017.03.013 28340412
    [Google Scholar]
  45. ChenW. GuoN. QiM. DaiH. HongM. GuanL. HuanX. SongS. HeJ. WangY. XiY. YangX. ShenY. SuY. SunY. GaoY. ChenY. DingJ. TangY. RenG. MiaoZ. LiJ. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.Eur. J. Med. Chem.201713851453110.1016/j.ejmech.2017.06.053 28692916
    [Google Scholar]
  46. SherstyukY.V. ZakharenkoA.L. KutuzovM.M. ChalovaP.V. SukhanovaM.V. LavrikO.I. SilnikovV.N. AbramovaT.V. A versatile strategy for the design and synthesis of novel ADP conjugates and their evaluation as potential poly(ADP-ribose) polymerase 1 inhibitors.Mol. Divers.201721110111310.1007/s11030‑016‑9703‑x 27677737
    [Google Scholar]
  47. VelagapudiU.K. LangelierM.F. Delgado-MartinC. DiolaitiM.E. BakkerS. AshworthA. PatelB.A. ShaoX. PascalJ.M. TaleleT.T. Design and synthesis of Poly(ADP-ribose) polymerase inhibitors: Impact of adenosine pocket-binding motif appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on potency and selectivity.J. Med. Chem.201962115330535710.1021/acs.jmedchem.8b01709 31042381
    [Google Scholar]
  48. AlmahliH. HadchityE. JaballahM.Y. DaherR. GhabbourH.A. KabilM.M. Al-shakliahN.S. EldehnaW.M. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer.Bioorg. Chem.20187744345610.1016/j.bioorg.2018.01.034 29453076
    [Google Scholar]
  49. ShipilovskikhS.A. RubtsovA.E. One-Pot Synthesis of Thieno[3,2- e]pyrrolo[1,2- a]pyrimidine Derivative Scaffold: A Valuable Source of PARP-1 Inhibitors.J. Org. Chem.20198424157881579610.1021/acs.joc.9b00711 31769674
    [Google Scholar]
  50. ReillyS.W. PuentesL.N. SchmitzA. HsiehC.J. WengC.C. HouC. LiS. KuoY.M. PadakantiP. LeeH. RiadA.A. MakvandiM. MachR.H. Synthesis and evaluation of an AZD2461 [18F]PET probe in non-human primates reveals the PARP-1 inhibitor to be non-blood-brain barrier penetrant.Bioorg. Chem.20198324224910.1016/j.bioorg.2018.10.015 30390553
    [Google Scholar]
  51. WangJ. LiH. HeG. ChuZ. PengK. GeY. ZhuQ. XuY. Discovery of novel dual Poly(ADP-ribose)polymerase and phosphoinositide 3-kinase inhibitors as a promising strategy for cancer therapy.J. Med. Chem.202063112213910.1021/acs.jmedchem.9b00622 31846325
    [Google Scholar]
  52. KamC.M. TauberA.L. LevonisS.M. SchweikerS.S. Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14.Future Med. Chem.202012242179219010.4155/fmc‑2020‑0218 33225736
    [Google Scholar]
  53. RamadanS.K. ElrazazE.Z. AbouzidK.A.M. El-NaggarA.M. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors.RSC Advances20201049294752949210.1039/D0RA05943A 35521104
    [Google Scholar]
  54. SherstyukY.V. IvanisenkoN.V. ZakharenkoA.L. SukhanovaM.V. PeshkovR.Y. EltsovI.V. KutuzovM.M. KurginaT.A. BelousovaE.A. IvanisenkoV.A. LavrikO.I. SilnikovV.N. AbramovaT.V. Design, synthesis and molecular modeling study of conjugates of ADP and morpholino nucleosides as a novel class of inhibitors of PARP-1, PARP-2 and PARP-3.Int. J. Mol. Sci.201921121410.3390/ijms21010214 31892271
    [Google Scholar]
  55. LiS. LiX. ZhangT. KamaraM.O. LiangJ. ZhuJ. MengF. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs.Bioorg. Chem.20209410338510.1016/j.bioorg.2019.103385 31669094
    [Google Scholar]
  56. LiS. LiX. ZhangT. ZhuJ. XueW. QianX. MengF. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors.Bioorg. Chem.20209610357510.1016/j.bioorg.2020.103575 31962202
    [Google Scholar]
  57. SrourA.M. AhmedN.S. Abd El-KarimS.S. AnwarM.M. El-HalloutyS.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors.Bioorg. Med. Chem.2020281811565710.1016/j.bmc.2020.115657 32828424
    [Google Scholar]
  58. PavlovićM. TadićA. GligorijevićN. PoljarevićJ. PetrovićT. DojčinovićB. SavićA. RadulovićS. Grgurić-ŠipkaS. AranđelovićS. Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells.J. Inorg. Biochem.202021011115510.1016/j.jinorgbio.2020.111155 32768729
    [Google Scholar]
  59. KrishnaS. GowrammaB. MohammedM. KalirajanR. KaviarasanL. PraveenT.K. Synthesis, in silico and In vivo evaluation of novel 1,3,4-thiadiazole analogues as novel anticancer agents.Lett. Drug Des. Discov.202017443444410.2174/1570180816666190710145939
    [Google Scholar]
  60. KaviarasanL. EldhoseE. KrishnamurthyP.T. RajagopalK. MohammedM. PrudvirajP. ByranG. 1,3,4-Thiadiazolo (3,2-A) Pyrimidine-6-Carbonitrile Scaffold as PARP1 Inhibitors.Anticancer. Agents Med. Chem.202121152050206510.2174/1871520621666201216095018 33327923
    [Google Scholar]
  61. DallavalleS. MussoL. ArtaliR. AviñóA. ScaglioniL. EritjaR. GargalloR. MazziniS. G-quadruplex binding properties of a potent PARP-1 inhibitor derived from 7-azaindole-1-carboxamide.Sci. Rep.2021111386910.1038/s41598‑021‑83474‑9 33594142
    [Google Scholar]
  62. LongH. HuX. WangB. WangQ. WangR. LiuS. XiongF. JiangZ. ZhangX.Q. YeW.C. WangH. Discovery of novel apigenin-piperazine hybrids as potent and selective poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for the treatment of cancer.J. Med. Chem.20216416120891210810.1021/acs.jmedchem.1c00735 34404206
    [Google Scholar]
  63. JohannesJ.W. BalazsA. BarrattD. BistaM. ChubaM.D. CosulichS. CritchlowS.E. DegorceS.L. Di FrusciaP. EdmondsonS.D. EmbreyK. FawellS. GhoshA. GillS.J. GunnarssonA. HandeS.M. HeightmanT.D. HemsleyP. IlluzziG. LaneJ. LarnerC. LeoE. LiuL. MadinA. MartinS. McWilliamsL. O’ConnorM.J. OrmeJ.P. PachlF. PackerM.J. PeiX. PikeA. SchimplM. SheH. StaniszewskaA.D. TalbotV. UnderwoodE. VarnesJ.G. XueL. YaoT. ZhangK. ZhangA.X. ZhengX. Discovery of 5-{4-[(7-Ethyl-6-Oxo-5,6-Dihydro-1,5-Naphthyridin-3-Yl)Methyl]Piperazin-1-Yl}-N-Methylpyridine-2-Carboxamide (AZD5305): A PARP1–DNA Trapper with High Selectivity for PARP1 over PARP2 and Other PARPs.J. Med. Chem.20216419144981451210.1021/acs.jmedchem.1c01012 34570508
    [Google Scholar]
  64. ThabetF.M. DawoodK.M. RagabE.A. NafieM.S. AbbasA.A. Design and synthesis of new bis(1,2,4-triazolo[3,4- b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition.RSC Advances20221236236442366010.1039/D2RA03549A 36090415
    [Google Scholar]
  65. ChenM. HuangH. WuK. LiuY. JiangL. LiY. TangG. PengJ. CaoX. Synthesis and evaluation of 2‐(4‐[4‐acetylpiperazine‐1‐carbonyl] phenyl)‐ 1H ‐benzo[d]imidazole‐4‐carboxamide derivatives as potential PARP ‐1 inhibitors and preliminary study on structure‐activity relationship.Drug Dev. Res.2022831556310.1002/ddr.21843 34151456
    [Google Scholar]
  66. SyamY.M. AnwarM.M. Abd El-KarimS.S. ElokelyK.M. AbdelwahedS.H. New quinoxaline-based derivatives as PARP-1 inhibitors: design, synthesis, antiproliferative, and computational studies.Molecules20222715492410.3390/molecules27154924 35956876
    [Google Scholar]
  67. KayumovM. JiaL. PardaevA. SongS.S. MirzaakhmedovS. DingC. ChengY.J. ZhangR.I. BaoX. MiaoZ.H. HeJ.X. ZhangA. Design, synthesis and pharmacological evaluation of new PARP1 inhibitors by merging pharmacophores of olaparib and the natural product alantolactone.Eur. J. Med. Chem.202224011457410.1016/j.ejmech.2022.114574 35785724
    [Google Scholar]
  68. LakshmananK. HemanthK. KrishnamurthyP.T. RajagopalK. ByranG. Design, synthesis, and in-vitro biological evaluation of PARP-1 inhibitors based on a 4-(Benzylideneamino)-N-(Quinolin-8-yl)benzamide scaffold.Polycycl. Aromat. Compd.20234321706172110.1080/10406638.2022.2033802
    [Google Scholar]
  69. WangP. ZhuW.T. WangY. SongS.S. XiY. YangX.Y. ShenY.Y. SuY. SunY.M. GaoY.L. ChenY. DingJ. MiaoZ.H. ZhangA. HeJ.X. Identification of [1,2,4]Triazolo[4,3-a]pyrazine PARP1 inhibitors with overcome acquired resistance activities.Eur. J. Med. Chem.202325911570910.1016/j.ejmech.2023.115709 37567056
    [Google Scholar]
  70. WuY. WuM. ZhengX. YuH. MaoX. JinY. WangY. PangA. ZhangJ. ZengS. XuT. ChenY. ZhangB. LinN. DaiH. WangY. YaoX. DongX. HuangW. CheJ. Discovery of a potent and selective PARP1 degrader promoting cell cycle arrest via intercepting CDC25C-CDK1 axis for treating triple-negative breast cancer.Bioorg. Chem.202414210695210.1016/j.bioorg.2023.106952 37952486
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072325763241119063140
Loading

  • Article Type:
    Review Article
Keyword(s): anti-cancer; biological activities; DNA damage; FDA; Heterocyclic moieties; PARP1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test