Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Oxazole and the compounds containing sulphonamides are utilized for various treatments of microbial disease as well as for diabetic patients. In the current study, the above moiety synthesizes the new molecule for the treatment of diabetes and microbial infection. The present work involved oxazole-based sulphonamide derivatives by the N-acylation and N-sulphonation. The synthesis was carried out by treating substituted anilines with chloroacetic chloride. The cycloaddition reaction was carried out using triethyl amine as a base catalyst. In the final steps, toluene sulphonyl chloride was used for sulphonation. The synthesized substance was confirmed , 1, ESI, Mass spectroscopy, and elemental investigation technique.

Materials and Methods

Every reagent and starting material used in the synthesis was pure enough to be used as a reagent. To provide an inert environment, the solvents were purified in accordance with conventional laboratory protocols under a nitrogen atmosphere. Melting points are expressed in degrees Celsius and are uncorrected. They were determined by the open capillary technique. KBr pellets and a Shimadzu 8201 PC FTIR spectrophotometer were used to obtain FTIR spectra. Using JEOL and Bruker 500 MHz NMR spectrometers, ~1H and ~13C NMR spectra were obtained in CDCl and DMSO-d6, with TMS serving as the internal reference. A Thermo-Finnigan mass spectrophotometer was used to determine the masses of the chemical using the ESI technique.

Results

The present work involved oxazole-based sulphonamides derivatives by the N-acylation and N-sulphonation. The synthesis was carried out by treating substituted anilines with chloroacetic chloride. The cycloaddition reaction was carried out using triethyl amine as a base catalyst. In the final steps, toluene sulphonyl chloride was used for sulphonation. IR, 1H NMR, ESI, Mass spectroscopy and elemental analysis technique confirmed the synthesized compound.

Discussion

Oxazoles are also related to compounds called 1,3-azoles[nitrogen and oxygen heteroatoms in a 5-membered ring]. Oxazole demonstrates aromaticity since Huckel's rule requires 6π electrons, which are provided by the delocalization of a single pair of electrons from the oxygen atom. It has a wide range of pharmacological aspects like anti-allergic, hypertension, inflammation, schizophrenia, and inflammation. Similarly, sulphonamides are also used as preventive and chemotherapeutic agents against various diseases such as antibacterial, antiprotozoal, antifungal, and translation initiation inhibitors.

Conclusion

The preliminary biological activity was performed on a preliminary level for the antimicrobial and antidiabetic profile. The disc diffusion approach was utilized to achieve the antibacterial activity; similarly diabetic activity was carried out by the induced method. Out of all the synthesized compounds N-[5-[2-[4-bromophenyl amino]acetyloxazole2yl]-4methylo benzene sulphonamide [4a], N-[5-2[2-FLoro-5nitrophenyl amino]acetyloxazole2yl]-4methylo benzene sulfonamide [4b] show significant effect compared to standard drugs.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072329263241009051355
2024-10-17
2025-10-14
Loading full text...

Full text loading...

References

  1. NemrM.T.M. AboulMagdA.M. HassanH.M. HamedA.A. HamedM.I.A. ElsaadighM.T. Design, synthesis and mechanistic study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition.RSC Adv202111262412625710.1039/D1RA05277B
    [Google Scholar]
  2. AminN.H. El-SaadiM.T. IbrahimA.A. Abdel-RahmanH.M. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents.Bioorg. Chem.202111110484110.1016/j.bioorg.2021.104841 33798851
    [Google Scholar]
  3. El-ZoghbiM.S. BassA.K.A. A. Abuo-RahmaG.E.D. MohamedM.F.A. BadrM. AL-GhulikahH.A. AbdelhafezE.S.M.N. Design, synthesis and mechanistic study of new dual targeting HDAC/tubulin inhibitors.Future Med. Chem.202416760162210.4155/fmc‑2023‑0336 38436113
    [Google Scholar]
  4. ZhangH.Z. ZhaoZ.L. ZhouC.H. Recent advance in oxazole-based medicinal chemistry.Eur. J. Med. Chem.201814444449210.1016/j.ejmech.2017.12.044 29288945
    [Google Scholar]
  5. YangX. ShiQ. LiuY.N. ZhaoG. BastowK.F. LinJ.C. YangS.C. YangP.C. LeeK.H. Antitumor agents 268. Design, synthesis, and mechanistic studies of new 9-substituted phenanthrene-based tylophorine analogues as potent cytotoxic agents.J. Med. Chem.200952165262526810.1021/jm9009263 19645447
    [Google Scholar]
  6. KaurR. PaltaK. KumarM. BhargavaM. DahiyaL. Therapeutic potential of oxazole scaffold: A patent review (2006–2017).Expert Opin. Ther. Pat.2018281178381210.1080/13543776.2018.1526280 30239247
    [Google Scholar]
  7. WangX.L. WanK. ZhouC.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities.Eur. J. Med. Chem.201045104631463910.1016/j.ejmech.2010.07.031 20708826
    [Google Scholar]
  8. WangX.L. WanK. ZhouC.H. ChemInform abstract: Synthesis of novel sulfanilamide‐derived 1,2,3‐triazoles and their evaluation for antibacterial and antifungal activities.ChemInform201142310.1002/chin.201103141
    [Google Scholar]
  9. MukkuN. Madivalappa DavanagereP. ChandaK. MaitiB. A facile microwave-assisted synthesis of oxazoles and diastereoselective oxazolines using aryl-aldehydes, p-toluenesulfonylmethyl isocyanide under controlled basic conditions.ACS Omega2020543282392824810.1021/acsomega.0c04130 33163807
    [Google Scholar]
  10. CornforthJ.W. HuangH.T. 400. Synthesis of a 4-cyano-oxazole.J. Chem. Soc.1948196910.1039/jr9480001969
    [Google Scholar]
  11. DelgadoG.E. MoraA.J. SeijasL.E. AlmeidaR. ChacónC. Azotla-CruzL. CisternaJ. CárdenasA. BritoI. N-acetyl-5-isopropyl-2-tioxoimidazolidin-4-one: Synthesis, spectroscopic characterization, crystal structure, DFT calculations, Hirshfeld surface analysis and energy framework study.J. Mol. Struct.2020121912863010.1016/j.molstruc.2020.128630
    [Google Scholar]
  12. FantacuzziM. GalloriniM. GambacortaN. AmmazzalorsoA. AturkiZ. BalahaM. CarradoriS. GiampietroL. MaccalliniC. CataldiA. NicolottiO. AmorosoR. De FilippisB. Design, synthesis and biological evaluation of aromatase inhibitors based on sulfonates and sulfonamides of resveratrol.Pharmaceuticals (Basel)2021141098410.3390/ph14100984 34681208
    [Google Scholar]
  13. RanaA. ParekhN. DabhiH. BhoiD. KumariN. Synthesis, crystal structural characterization and biological properties of thiosemicarbazones of schiff bases derived from 4-Acyl-2-pyrazoline-5-one.J. Chem.20118410.1155/2011/826392
    [Google Scholar]
  14. WangD. MaoW.T. FanZ.J. LiJ.J. HuangY. SongH. KalininaT.A. GlukharevaT. Yur’evichM.Y. BelskayaN. Synthesis, crystal structure and biological activity of N-(tert-butyl)-N '-(2-(4-chlorophenyl)acetyl)-5-methyl-1,2,3-thiadiazole-4-carbohydrazide.Chinese J. Struc. Chem.201332673678
    [Google Scholar]
  15. TabtiC. BenmohammedA. BoukabchaN. DegeN. DjafriA. BoudjenaneF.Z. ChouaihA. DjafriA. Synthesis, structural characterization and theoretical NLO activity of N-(4-Acetyl-5-(4-(nitro) phenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl)-N-phenyl acetamide.Polycycl. Aromat. Compd.202343109153917410.1080/10406638.2022.2158882
    [Google Scholar]
  16. FischerE. New formation of oxazoles.Berlin, HeidelbergStudies From Various AreasSpringer192429230010.1007/978‑3‑642‑51364‑0_53
    [Google Scholar]
  17. YogeshwaranV. DhayanithiS. Vinoth KumarP. Mohana RoopanS. 6-endo-dig cyclization: Flexible enforce to develop synthetic route in organic syntheses.Results Chem.2023610113110.1016/j.rechem.2023.101131
    [Google Scholar]
  18. PalmerD.C. VenkatramanS. Synthesis and reactions of oxazoles.In: Oxazoles: Synthesis, Reactions, and Spectroscopy,; Palmer, D.C., Ed.; Wiley, 2003 60.10.1002/0471428035.ch1
    [Google Scholar]
  19. MondinoM.G. da Silva GomesR. Imidazole, hydantoins, thiazole, and oxazole: A journey on synthetic and biological relevance.In: N-Heterocycles. AmetaK.L. KantR. PenoniA. MasperoA. ScapinelloL. SingaporeSpringer2022519510.1007/978‑981‑19‑0832‑3_2
    [Google Scholar]
  20. ChiurchiùE. GabrielliS. BalliniR. PalmieriA. A new valuable synthesis of polyfunctionalized furans starting from β-nitroenones and active methylene compounds.Molecules20192424457510.3390/molecules24244575 31847286
    [Google Scholar]
  21. ZyabrevV. PilyoS. DemydchukB. KachaevaM. SemenyutaI. ZhirnovV. VelihinaY. BrovaretsV. Synthesis, characterization and in vitro anticancer evaluation of 5‐sulfinyl(sulfonyl)‐4‐arylsulfonyl‐substituted 1,3‐oxazoles.ChemMedChem20231814e20230016110.1002/cmdc.202300161 37169720
    [Google Scholar]
  22. YimJ.C.H. NamboM. CruddenC.M. Pd-catalyzed desulfonative cross-coupling of benzylic sulfone derivatives with 1,3-oxazoles.Org. Lett.201719143715371810.1021/acs.orglett.7b01510 28665623
    [Google Scholar]
  23. ShatsauskasA.L. KeynE.S. StasyukA.J. KirnosovS.A. ShuvalovV.Y. KostyuchenkoA.S. FisyukA.S. A rearrangement of 4-phenylbenzo[d]oxazoles to phenanthridin-4-ols.Synth.202456350751710.1055/a‑2193‑5593
    [Google Scholar]
  24. WilliamsD. FuL. Methodology for the synthesis of substituted 1,3-oxazoles.Synlett20102010459159410.1055/s‑0029‑1219374 20640045
    [Google Scholar]
  25. ApostolT.V. SoceaL.I. DrăghiciC. OlaruO.T. ȘarametG. Enache-PreoteasaC. Design, synthesis, characterization, and cytotoxicity evaluation of new 4-benzyl-1,3-oxazole derivatives bearing 4-(4-chlorophenylsulfonyl)phenyl moiety.Farmacia202169231432410.31925/farmacia.2021.2.17
    [Google Scholar]
  26. SongZ.L. ZhuY. LiuJ.R. GuoS.K. GuY.C. HanX. DongH.Q. SunQ. ZhangW.H. ZhangM.Z. Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety.Mol. Divers.202125120522110.1007/s11030‑020‑10048‑8 32056130
    [Google Scholar]
  27. MussoniL. PoggiA. De GaetanoG. DonatiM.B. Effect of ditazole, an inhibitor of platelet aggregation, on a metastasizing tumour in mice.Br. J. Cancer197837112612910.1038/bjc.1978.18 23140
    [Google Scholar]
  28. JohnsonM. The organic chemistry of drug synthesis.J. Am. Chem. Soc.2008
    [Google Scholar]
  29. KakkarS. NarasimhanB. A comprehensive review on biological activities of oxazole derivatives.BMC Chem.20191311610.1186/s13065‑019‑0531‑9 31384765
    [Google Scholar]
  30. TabriziM.A. BaraldiP.G. BaraldiS. GessiS. MerighiS. BoreaP.A. Medicinal chemistry, pharmacology, and clinical implications of TRPV1 receptor antagonists.Med. Res. Rev.201737493698310.1002/med.21427
    [Google Scholar]
  31. SwellmeenL. 1,3-Oxazole derivatives: A review of biological activities as antipathogenic.Der Pharma Chem.2016813269286
    [Google Scholar]
  32. ChenJ. LvS. LiuJ. YuY. WangH. ZhangH. An overview of bioactive 1,3-oxazole-containing alkaloids from marine organisms.Pharmaceuticals (Basel)20211412127410.3390/ph14121274 34959674
    [Google Scholar]
  33. KeS. ZhangZ. ShiL. LiuM. FangW. ZhangY. WuZ. WanZ. LongT. WangK. An efficient synthesis and bioactivity evaluation of oxazole-containing natural hinduchelins A–D and their derivatives.Org. Biomol. Chem.201917143635363910.1039/C9OB00352E 30916700
    [Google Scholar]
  34. JoshiS. MehraM. SinghR. KakarS. Review on chemistry of oxazole derivatives: Current to future therapeutic prospective. Egypt.J. Basic Appl. Sci.202310121823910.1080/2314808X.2023.2171578
    [Google Scholar]
  35. StokesN.R. BakerN. BennettJ.M. ChauhanP.K. CollinsI. DaviesD.T. GavadeM. KumarD. LancettP. MacdonaldR. MacLeodL. Design, synthesis and structure–activity relationships of substituted oxazole–benzamide antibacterial inhibitors of FtsZ.Bioorganic. Med. Chem. Lett.201424135335910.1016/j.bmcl.2013.11.002
    [Google Scholar]
  36. NaredlaR.R. KlumppD.A. Preparation of sulfonamides from N-silylamines.Tetrahedron Lett.201354455945594710.1016/j.tetlet.2013.08.034 28260818
    [Google Scholar]
  37. MondalS. MalakarS. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances.Tetrahedron2020764813166210.1016/j.tet.2020.131662
    [Google Scholar]
  38. EngelhartC.A. AldrichC.C. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.J. Org. Chem.201378157470748110.1021/jo400976f 23805993
    [Google Scholar]
  39. EnnaS.J. Goodman & Gilman's the pharmacological basis of therapeutics edited by Joel G. Hardman, Lee E. Limbird, Perry B. Molinoff, and Raymond W. Ruddon. McGraw-Hill, New York. 1996. xxi + 1905 pp. 21 × 26 cm. ISBN 0-07-026266-7. $89.00.J. Med. Chem.199740162657265810.1021/jm9703146
    [Google Scholar]
  40. DaviesT.Q. TilbyM.J. SkolcD. HallA. WillisM.C. Primary sulfonamide synthesis using the sulfinylamine reagent N-sulfinyl-O-(tert-butyl)hydroxylamine, t -BuONSO.Org. Lett.202022249495949910.1021/acs.orglett.0c03505 33237777
    [Google Scholar]
  41. MulinaO.M. IlovaiskyA.I. Terent’evA.O. Oxidative coupling with S–N bond formation.Eur. J. Org. Chem.20182018344648467210.1002/ejoc.201800838
    [Google Scholar]
  42. GençY. ÖzkancaR. BekdemirY. Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococus aureus.Ann. Clin. Microbiol. Antimicrob.2008711710.1186/1476‑0711‑7‑17 18715512
    [Google Scholar]
  43. OvungA. BhattacharyyaJ. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions.Biophys. Rev.202113225927210.1007/s12551‑021‑00795‑9 33936318
    [Google Scholar]
  44. JayachitraR. PadmavathyM. KanagavalliA. ThilagavathiG. ElangovanN. SowrirajanS. Synthesis, computational, experimental antimicrobial activities and theoretical molecular docking studies of (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino)-N-(thiazole-2-yl) benzenesulfonamide.J. Indian Chem. Soc.202310.1016/j.jics.2022.100824
    [Google Scholar]
  45. MincioneF. MenabuoniL. BrigantiF. MincioneG. ScozzafavaA. SupuranC.T. Carbonic anhydrase inhibitors: Inhibition of isozymes I, II and IV with N-hydroxysulfonamides - A novel class of intraocular pressure lowering agents.J. Enzyme Inhib.199813426728410.3109/14756369809021475 9795865
    [Google Scholar]
  46. SwainS.S. PaidesettyS.K. PadhyR.N. Antibacterial activity, computational analysis and host toxicity study of thymol-sulfonamide conjugates.Biomed. Pharmacother.20178818119310.1016/j.biopha.2017.01.036 28107695
    [Google Scholar]
  47. SupuranC.T. ScozzafavaA. Carbonic anhydrase inhibitors and their therapeutic potential.Expert Opin. Ther. Pat.200010557560010.1517/13543776.10.5.575 30217119
    [Google Scholar]
  48. MarapakaA.K. NocentiniA. YouseM.S. AnW. HollyK.J. DasC. YadavR. SeleemM.N. SupuranC.T. FlahertyD.P. Structural characterization of thiadiazolesulfonamide inhibitors bound to Neisseria gonorrhoeae α-carbonic anhydrase.ACS Med. Chem. Lett.202314110310910.1021/acsmedchemlett.2c00471 36655133
    [Google Scholar]
  49. Mohamed-EzzatR.A. KariukiB.M. AzzamR.A. Synthesis and crystal structure of N-(5-acetyl-4-methylpyrimidin-2-yl)benzene] sulfonamide.Acta Crystallogr. E Crystallogr. Commun.202379Pt 433133410.1107/S2056989023001871 37057009
    [Google Scholar]
  50. GautamP. GautamD. ChaudharyR.P. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide.Crystallogr. Rep.20135871079108310.1134/S1063774513080038
    [Google Scholar]
  51. MphahleleM. GildenhuysS. ZamisaS. Synthesis, structure and evaluation of the N-(2-Acetyl-4-(styryl)phenyl)-4-benzenesul] fonamide derivatives for anticholinesterase and antioxidant activities.Crystals (Basel)202111434110.3390/cryst11040341
    [Google Scholar]
  52. IngramD.L. Antimicrobial agents for pediatric bacterial infections.In: Problems in Critical Care1992
    [Google Scholar]
  53. BahramiK. KhodaeiM.M. AbbasiJ. ChemInform abstract: Synthesis of sulfonamides and sulfonic esters via reaction of amines and phenols with thiols using H2O2-POCl3 system. Chem Inform20134412chin.20131207110.1002/chin.201312071
    [Google Scholar]
  54. EzeF.U. OkoroU.C. UgwuD.I. OkaforS.N. Biological activity evaluation of some new benzenesulphonamide derivatives.Front Chem.2019763410.3389/fchem.2019.00634 31620427
    [Google Scholar]
  55. KumarS. RulhaniaS. JaswalS. MongaV. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors.Eur. J. Med. Chem.202120911292310.1016/j.ejmech.2020.112923 33121862
    [Google Scholar]
  56. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  57. HoudkovaM. KokoskaL. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review.Planta Med.2020861282285710.1055/a‑1158‑4529
    [Google Scholar]
  58. BalouiriM. SadikiM. IbnsoudaS.K. Antimicrobial activity methods.J. Pharm. Anal.201610.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  59. SupuranC.T. Emerging role of carbonic anhydrase inhibitors.Clin. Sci. (Lond.)2021135101233124910.1042/CS20210040 34013961
    [Google Scholar]
  60. PeterM. PanonnummalR. A review on newer ocular drug delivery systems with an emphasis on glaucoma.Adv. Pharm. Bull.202011339941310.34172/apb.2021.048 34513615
    [Google Scholar]
  61. SaiedS. ShaldamM. ElbadawiM.M. GiovannuzziS. NocentiniA. AlmahliH. SalemR. IbrahimT.M. SupuranC.T. EldehnaW.M. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties.Eur. J. Med. Chem.202325911570710.1016/j.ejmech.2023.115707 37556946
    [Google Scholar]
  62. SperlingD. KarembeH. ZouharovaM. NedbalcovaK. Examination of the minimum inhibitory concentration of amoxicillin and marbofloxacin against Streptococcus suis using standardised methods.Vet. Med. (Praha)202065937738610.17221/111/2020‑VETMED
    [Google Scholar]
  63. BakerC.N. StockerS.A. CulverD.H. ThornsberryC. Comparison of the E Test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria.J. Clin. Microbiol.199129353353810.1128/jcm.29.3.533‑538.1991 2037671
    [Google Scholar]
  64. ChandrasekharM. PrasadG.S. VenkataramaiahC. Naga RajuC. SeshaiahK. RajendraW. Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate.Mol. Divers.201923372373810.1007/s11030‑018‑9906‑4 30560342
    [Google Scholar]
  65. ShaoH. ShiS. HuangS. HoleA.J. AbbasA.Y. BaumliS. LiuX. LamF. FoleyD.W. FischerP.M. NobleM. EndicottJ.A. PepperC. WangS. Substituted 4-(thiazol-5-yl)-2-(pheny] lamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities.J. Med. Chem.201356364065910.1021/jm301475f 23301767
    [Google Scholar]
  66. BhardwajG. KumarS. TonkR.K. Anticancer and antimicrobial screening of novel pyrazolo[2,3-c]pyridopyridazine analogues: Synthesis, spectral characterization, molecular docking and dynamics studies.Asian J. Chem.202335112837284410.14233/ajchem.2023.30477
    [Google Scholar]
  67. García-GalánM.J. Silvia Díaz-CruzM. BarcelóD. Identification and determination of metabolites and degradation products of sulfonamide antibiotics.Trends Analyt. Chem.200827111008102210.1016/j.trac.2008.10.001
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072329263241009051355
Loading
/content/journals/cbc/10.2174/0115734072329263241009051355
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antibacterial; nitrogen atmosphere; Oxazole; spectroscopy; STZ; sulphonamides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test