Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

The prevalence of diabetes mellitus continues to be a worldwide health concern, which calls for the ongoing investigation of novel therapeutic options. This review aims to examine the developing field of herbal dipeptidyl peptidase-4 (DPP-4) inhibitors as a potentially useful approach to managing diabetes. Because of their ability to suppress the breakdown of incretin hormones, DPP-4 inhibitors have become increasingly popular due to their role in improving glycemic control. This review focuses on the rising evidence supporting the efficacy and safety of herbal alternatives, although synthetic DPP-4 inhibitors have been used extensively in the past. The pharmacological actions of several herbal substances with DPP-4 inhibitory characteristics are extensively examined in this review. These natural chemicals have anti-inflammatory, antioxidant, and anti-diabetic properties derived from traditional medicinal plants. This study also sheds light on the molecular processes which these herbal medicines inhibit DPP-4. In addition, the study assesses the efficacy of herbal DPP-4 inhibitors in both animal and human studies, providing a critical evaluation of both types of research. The research of natural alternatives to synthetic pharmaceuticals not only broadens the therapeutic landscape but also highlights the significance of merging traditional wisdom with modern scientific breakthroughs. This is because natural alternatives were not previously available. Herbal DPP-4 inhibitors may emerge as significant additions to the arsenal of anti-diabetic drugs as research in this field continues to advance. These inhibitors would provide a holistic and sustainable approach to the treatment of diabetes.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322250240924081053
2024-10-17
2025-10-14
Loading full text...

Full text loading...

References

  1. DhankharS. ChauhanS. MehtaD.K. Nitika; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  2. ForouhiN.G. WarehamN.J. Epidemiology of diabetes.Medicine (Abingdon)2019471222710.1016/j.mpmed.2018.10.004
    [Google Scholar]
  3. TatsumiY. OhkuboT. Hypertension with diabetes mellitus: Significance from an epidemiological perspective for Japanese.Hypertens. Res.201740979580610.1038/hr.2017.67 28701739
    [Google Scholar]
  4. AroraA. BehlT. SehgalA. SinghS. SharmaN. BhatiaS. Sobarzo-SanchezE. BungauS. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  5. Corb AronR.A. AbidA. VesaC.M. NechiforA.C. BehlT. GhiteaT.C. MunteanuM.A. FratilaO. Andronie-CioaraF.L. TomaM.M. BungauS. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of Akkermansia muciniphila as a key gut bacterium.Microorganisms20219361810.3390/microorganisms9030618 33802777
    [Google Scholar]
  6. KawahitoS. KitahataH. OshitaS. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress.World J. Gastroenterol.200915334137414210.3748/wjg.15.4137 19725147
    [Google Scholar]
  7. EganA.M. VellingaA. HarreiterJ. SimmonsD. DesoyeG. CorcoyR. AdelantadoJ.M. DevliegerR. Van AsscheA. GaljaardS. DammP. MathiesenE.R. JensenD.M. AndersenL. LapollaA. DalfràM.G. BertolottoA. MantajU. Wender-OzegowskaE. ZawiejskaA. HillD. JelsmaJ.G.M. SnoekF.J. WordaC. Bancher-TodescaD. van PoppelM.N.M. Kautzky-WillerA. DunneF.P. Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe.Diabetologia201760101913192110.1007/s00125‑017‑4353‑9 28702810
    [Google Scholar]
  8. Bello-ChavollaO.Y. Rojas-MartinezR. Aguilar-SalinasC.A. Hernández-AvilaM. Epidemiology of diabetes mellitus in Mexico.Nutr. Rev.201775Suppl. 141210.1093/nutrit/nuw030 28049745
    [Google Scholar]
  9. ZimmetP. AlbertiK.G. MaglianoD.J. BennettP.H. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies.Nat. Rev. Endocrinol.2016121061662210.1038/nrendo.2016.105 27388988
    [Google Scholar]
  10. BehlT. KaurG. SehgalA. BhardwajS. SinghS. BuhasC. Judea-PustaC. UivarosanD. MunteanuM.A. BungauS. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.Int. J. Mol. Sci.2021223141310.3390/ijms22031413 33573368
    [Google Scholar]
  11. CaoZ. Characteristics of plantar pressure distribution in diabetes with or without diabetic peripheral neuropathy and peripheral arterial disease.J. Healthc. Eng.202210.1155/2022/2437831
    [Google Scholar]
  12. MirzaeiM. RahmaninanM. MirzaeiM. NadjarzadehA. Dehghani tafti, A.A. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: Results from Yazd health study.BMC Public Health202020116610.1186/s12889‑020‑8267‑y 32013917
    [Google Scholar]
  13. ThomasM.C. CooperM.E. ZimmetP. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease.Nat. Rev. Nephrol.2016122738110.1038/nrneph.2015.173 26553517
    [Google Scholar]
  14. NickersonH.D. DuttaS. Diabetic complications: Current challenges and opportunities.J. Cardiovasc. Transl. Res.20125437537910.1007/s12265‑012‑9388‑1 22752737
    [Google Scholar]
  15. GuillausseauP.J. MeasT. VirallyM. Laloi-MichelinM. MédeauV. KevorkianJ.P. Abnormalities in insulin secretion in type 2 diabetes mellitus.Diabetes Metab.200834Suppl. 2S43S4810.1016/S1262‑3636(08)73394‑9 18640585
    [Google Scholar]
  16. EsserN. UtzschneiderK.M. KahnS.E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia.Diabetologia202063102007202110.1007/s00125‑020‑05245‑x 32894311
    [Google Scholar]
  17. Prasanna KumarH.R. GowdappaH.B. HosmaniT. UrsT. Exocrine dysfunction correlates with endocrinal impairment of pancreas in Type 2 diabetes mellitus.Indian J. Endocrinol. Metab.201822112112510.4103/ijem.IJEM_139_17 29535950
    [Google Scholar]
  18. GuptaS. BurmanS. NairA.B. ChauhanS. SircarD. RoyP. DhanwatM. LahiriD. MehtaD. DasR. KhalilH.E. Brassica oleracea extracts prevent hyperglycemia in type 2 diabetes mellitus.Prev. Nutr. Food Sci.2022271506210.3746/pnf.2022.27.1.50 35465108
    [Google Scholar]
  19. GermanosM. GaoA. TaperM. YauB. KebedeM.A. Inside the insulin secretory granule.Metabolites202111851510.3390/metabo11080515 34436456
    [Google Scholar]
  20. GuayC. RegazziR. New emerging tasks for microRNAs in the control of β-cell activities.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20161861122121212910.1016/j.bbalip.2016.05.003 27178175
    [Google Scholar]
  21. JavedK. FairweatherS.J. Amino acid transporters in the regulation of insulin secretion and signalling.Biochem. Soc. Trans.201947257159010.1042/BST20180250 30936244
    [Google Scholar]
  22. YoonM.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism.Nutrients20168740510.3390/nu8070405 27376324
    [Google Scholar]
  23. PawarS. ThakurP. RadheB.K. JadhavH. BehereV. PagarV. The accuracy of polyuria, polydipsia, polyphagia, and Indian diabetes risk score in adults screened for diabetes mellitus type-II. Medical Journal of Dr. D.Y.Patil University201710326326710.4103/0975‑2870.206569
    [Google Scholar]
  24. DhatariyaK. Diabetic ketoacidosis and hyperosmolar crisis in adults.Medicine2019471465110.1016/j.mpmed.2018.10.001
    [Google Scholar]
  25. NusinoviciS. SabanayagamC. TeoB.W. TanG.S.W. WongT.Y. Vision impairment in CKD patients: Epidemiology, mechanisms, differential diagnoses, and prevention.Am. J. Kidney Dis.201973684685710.1053/j.ajkd.2018.12.047 30929852
    [Google Scholar]
  26. Rohilla, M.; Rishabh,; Bansal, S.; Garg, A.; Dhiman, S.; Dhankhar, S.; Saini, M.; Chauhan, S.; Alsubaie, N.; Batiha, G.E.S.; Albezrah, N.K.A.; Singh, T.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  27. HicksC.W. SelvinE. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes.Curr. Diab. Rep.201919108610.1007/s11892‑019‑1212‑8 31456118
    [Google Scholar]
  28. EdmondsM. ManuC. VasP. The current burden of diabetic foot disease.J. Clin. Orthop. Trauma202117889310.1016/j.jcot.2021.01.017 33680841
    [Google Scholar]
  29. BoykoE.J. Monteiro-SoaresM. WheelerS.G. Peripheral arterial disease, foot ulcers, lower extremity amputations, and diabetes.3rd edDiabetes in America2018
    [Google Scholar]
  30. MegallaaM.H. IsmailA.A. ZeitounM.H. KhalifaM.S. Association of diabetic foot ulcers with chronic vascular diabetic complications in patients with type 2 diabetes.Diabetes Metab. Syndr.20191321287129210.1016/j.dsx.2019.01.048 31336479
    [Google Scholar]
  31. KciukM. GargN. DhankharS. SainiM. MujwarS. DeviS. ChauhanS. SinghT.G. SinghR. MarciniakB. GielecińskaA. KontekR. Exploring the comprehensive neuroprotective and anticancer potential of afzelin.Pharmaceuticals202417670110.3390/ph17060701 38931368
    [Google Scholar]
  32. YamazakiD. HitomiH. NishiyamaA. Hypertension with diabetes mellitus complications.Hypertens. Res.201841314715610.1038/s41440‑017‑0008‑y 29353881
    [Google Scholar]
  33. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. BeniwalS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.202412428929910.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  34. JörnsA. WedekindD. JähneJ. LenzenS. Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared with type 1 diabetes.Diabetes202069462463310.2337/db19‑0865 31974139
    [Google Scholar]
  35. UnnikrishnanR. PradeepaR. JoshiS.R. MohanV. Type 2 diabetes: Demystifying the global epidemic.Diabetes20176661432144210.2337/db16‑0766 28533294
    [Google Scholar]
  36. GiriB. DeyS. DasT. SarkarM. BanerjeeJ. DashS.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity.Biomed. Pharmacother.201810730632810.1016/j.biopha.2018.07.157 30098549
    [Google Scholar]
  37. DhankharS. GargN. ChauhanS. SainiM. Role of artificial intelligence in diabetic wound screening and early detection.Curr. Biotechnol.20241311410.2174/0122115501303253240408072559
    [Google Scholar]
  38. DhankharS. GargN. ChauhanS. SainiM. SinghT.G. SinghR. Unravelling the microbiome’s role in healing diabetic wounds.Curr. Pharm. Biotechnol.202425113 38920078
    [Google Scholar]
  39. CoelhoA.R. MoreiraF.A. SantosA.C. Silva-PintoA. SarmentoA. CarvalhoD. FreitasP. Diabetes mellitus in HIV-infected patients: Fasting glucose, A1c, or oral glucose tolerance test - Which method to choose for the diagnosis?BMC Infect. Dis.201818130910.1186/s12879‑018‑3221‑7 29980190
    [Google Scholar]
  40. GenuthS.M. PalmerJ.P. NathanD.M. Classification and diagnosis of diabetes.In: Diabetes in America, 3rd ed; National institute of diabetes and digestive and kidney diseases (US): Bethesda (MD)2021
    [Google Scholar]
  41. PuchuluF.M. Definition, diagnosis and classification of diabetes mellitus.In: Dermatology and Diabetes.ChamSpringer2018718
    [Google Scholar]
  42. ChenY. WangQ. XieZ. HuangG. FanL. LiX. ZhouZ. The impact of family history of type 2 diabetes on clinical heterogeneity in idiopathic type 1 diabetes.Diabetes Obes. Metab.202325241742510.1111/dom.14884 36200314
    [Google Scholar]
  43. DonathM.Y. DinarelloC.A. Mandrup-PoulsenT. Targeting innate immune mediators in type 1 and type 2 diabetes.Nat. Rev. Immunol.2019191273474610.1038/s41577‑019‑0213‑9 31501536
    [Google Scholar]
  44. RazzakR.A. AlshaijiA.F. QareeballaA.A. MohamedM.W. BagustJ. DochertyS. High-normal blood glucose levels may be associated with decreased spatial perception in young healthy adults.PLoS One2018136e019905110.1371/journal.pone.0199051 29902276
    [Google Scholar]
  45. GabbayM.A.L. RodackiM. CalliariL.E. ViannaA.G.D. KrakauerM. PintoM.S. ReisJ.S. PuñalesM. MirandaL.G. RamalhoA.C. FrancoD.R. PedrosaH.P.C. Time in range: A new parameter to evaluate blood glucose control in patients with diabetes.Diabetol. Metab. Syndr.20201212210.1186/s13098‑020‑00529‑z 32190124
    [Google Scholar]
  46. OseiE. FonvilleS. ZandbergenA.A.M. KoudstaalP.J. DippelD.W.J. den HertogH.M. Glucose in prediabetic and diabetic range and outcome after stroke.Acta Neurol. Scand.2017135217017510.1111/ane.12577 26918555
    [Google Scholar]
  47. YipW. SequeiraI. PlankL. PoppittS. Prevalence of pre-diabetes across ethnicities: A review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycaemia.Nutrients2017911127310.3390/nu9111273 29165385
    [Google Scholar]
  48. LuJ. MaX. ZhouJ. ZhangL. MoY. YingL. LuW. ZhuW. BaoY. VigerskyR.A. JiaW. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes.Diabetes Care201841112370237610.2337/dc18‑1131 30201847
    [Google Scholar]
  49. Le FlochJ.P. KesslerL. Glucose variability.J. Diabetes Sci. Technol.201610488589110.1177/1932296816632003 26880391
    [Google Scholar]
  50. HirschI.B. GaudianiL.M. A new look at brittle diabetes.J. Diabetes Complications202135110764610.1016/j.jdiacomp.2020.107646 32620472
    [Google Scholar]
  51. SmulyanH. LieberA. SafarM.E. Hypertension, diabetes type II, and their association: role of arterial stiffness.Am. J. Hypertens.201629151310.1093/ajh/hpv107 26156872
    [Google Scholar]
  52. EsmaeilinasabM. EbrahimiM. MokarrarM.H. RahmatiL. MahjouriM.Y. ArzaghiS.M. Type II diabetes and personality; a study to explore other psychosomatic aspects of diabetes.J. Diabetes Metab. Disord.20161515410.1186/s40200‑016‑0281‑3 27981040
    [Google Scholar]
  53. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  54. AkhtarS. KhanZ. RafiqM. KhanA. Prevalence of type ii diabetes in district dir lower in Pakistan.Pak. J. Med. Sci.201632362262510.12669/pjms.323.9795 27375702
    [Google Scholar]
  55. McIntyreH.D. CatalanoP. ZhangC. DesoyeG. MathiesenE.R. DammP. Gestational diabetes mellitus.Nat. Rev. Dis. Primers2019514710.1038/s41572‑019‑0098‑8 31296866
    [Google Scholar]
  56. ChiefariE. ArcidiaconoB. FotiD. BrunettiA. Gestational diabetes mellitus: An updated overview.J. Endocrinol. Invest.201740989990910.1007/s40618‑016‑0607‑5 28283913
    [Google Scholar]
  57. Samrat ChauhanL.K. Potential Anti-Arthritic Agents From Indian Medicinal Plants.Res. Rev. J. Pharm. Pharm. Sci.2015431022
    [Google Scholar]
  58. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  59. TufailT. Pathophysiology of obesity and diabetes.In: Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer and Diabetes.Springer2021294210.1007/978‑3‑030‑72999‑8_2
    [Google Scholar]
  60. ValaiyapathiB. GowerB. AshrafA.P. Pathophysiology of type 2 diabetes in children and adolescents.Curr. Diabetes Rev.202016322022910.2174/18756417OTA50ODUuTcVY 29879890
    [Google Scholar]
  61. KesavadevJ. Pathophysiology of type 2 diabetes.The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues.Springer202312714210.1007/978‑3‑031‑25519‑9_9
    [Google Scholar]
  62. NauckM.A. QuastD.R. WefersJ. PfeifferA.F.H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update.Diabetes Obes. Metab.202123S3Suppl. 352910.1111/dom.14496 34310013
    [Google Scholar]
  63. ChristensenM.B. GasbjergL.S. HeimbürgerS.M. StensenS. VilsbøllT. KnopF.K. GIP’s involvement in the pathophysiology of type 2 diabetes.Peptides202012517017810.1016/j.peptides.2019.170178 31682875
    [Google Scholar]
  64. JonikS. MarchelM. GrabowskiM. OpolskiG. MazurekT. Gastrointestinal incretins-glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) beyond pleiotropic physiological effects are involved in pathophysiology of atherosclerosis and coronary artery disease—state of the art.Biology202211228810.3390/biology11020288 35205155
    [Google Scholar]
  65. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals202316790810.3390/ph16070908 37513820
    [Google Scholar]
  66. KhanM.S. SolomonN. DeVoreA.D. SharmaA. FelkerG.M. HernandezA.F. HeidenreichP.A. MatsouakaR.A. GreenJ.B. ButlerJ. YancyC.W. PetersonP.N. FonarowG.C. GreeneS.J. Clinical outcomes with metformin and sulfonylurea therapies among patients with heart failure and diabetes.JACC Heart Fail.202210319821010.1016/j.jchf.2021.11.001 34895861
    [Google Scholar]
  67. McBrayerD.N. Tal-GanY. Recent advances in GLP‐1 receptor agonists for use in diabetes mellitus.Drug Dev. Res.201778629229910.1002/ddr.21404 28786125
    [Google Scholar]
  68. CheangJ.Y. MoyleP.M. Glucagon‐like peptide‐1 (GLP‐1)‐based therapeutics: Current status and future opportunities beyond type 2 diabetes.ChemMedChem201813766267110.1002/cmdc.201700781 29430842
    [Google Scholar]
  69. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  70. ChiyanikaC. ChanD.F.Y. HuiS.C.N. SoH. DengM. YeungD.K.W. NelsonE.A.S. ChuW.C.W. The relationship between pancreas steatosis and the risk of metabolic syndrome and insulin resistance in Chinese adolescents with concurrent obesity and NON‐ALCOHOLIC fatty liver disease.Pediatr. Obes.2020159e1265310.1111/ijpo.12653 32351030
    [Google Scholar]
  71. PatilS.R. ChavanA.B. PatelA.M. ChavanP.D. BhopaleJ.V. A review on diabetes mellitus its types, pathophysiology, epidermiology and its global burden.J. Res. Appl. Sci. Biotechnol.202324737910.55544/jrasb.2.4.9
    [Google Scholar]
  72. PfeifferA.F. Oral hypoglycemic agents: Sulfonylureas and meglitinides.In: Type 2 Diabetes.CRC Press2016111120
    [Google Scholar]
  73. LegaI.C. LipscombeL.L. Diabetes, obesity, and cancer—pathophysiology and clinical implications.Endocr. Rev.2020411335210.1210/endrev/bnz014 31722374
    [Google Scholar]
  74. Shafiei-IrannejadV. SamadiN. SalehiR. YousefiB. ZarghamiN. New insights into antidiabetic drugs: Possible applications in cancer treatment.Chem. Biol. Drug Des.20179061056106610.1111/cbdd.13013 28456998
    [Google Scholar]
  75. HossainM.A. PervinR. Current antidiabetic drugs: Review of their efficacy and safety.In: Nutritional and therapeutic interventions for diabetes and metabolic syndrome.Academic Press2018455473
    [Google Scholar]
  76. WangG.S. HoyteC. Review of biguanide (metformin) toxicity.J. Intensive Care Med.20193411-1286387610.1177/0885066618793385 30126348
    [Google Scholar]
  77. HottaN. A new perspective on the biguanide, metformin therapy in type 2 diabetes and lactic acidosis.J. Diabetes Investig.201910490690810.1111/jdi.13090 31152685
    [Google Scholar]
  78. NarwalS. Current therapeutic strategies for chagas disease.Antiinfect. Agents202321111
    [Google Scholar]
  79. PanchalM. RanaP. GargN. DhankharS. ChauhanS. SharmaH. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.202351810.2174/0102506882282929231212074538
    [Google Scholar]
  80. LebovitzH.E. Thiazolidinediones: The forgotten diabetes medications.Curr. Diab. Rep.2019191215110.1007/s11892‑019‑1270‑y 31776781
    [Google Scholar]
  81. RizosC.V. KeiA. ElisafM.S. The current role of thiazolidinediones in diabetes management.Arch. Toxicol.20169081861188110.1007/s00204‑016‑1737‑4 27165418
    [Google Scholar]
  82. HedringtonM.S. DavisS.N. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes.Expert Opin. Pharmacother.201920182229223510.1080/14656566.2019.1672660 31593486
    [Google Scholar]
  83. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑1 34421444
    [Google Scholar]
  84. TomlinsonB. PatilN.G. FokM. ChanP. LamC.W.K. The role of sulfonylureas in the treatment of type 2 diabetes.Expert Opin. Pharmacother.202223338740310.1080/14656566.2021.1999413 34758676
    [Google Scholar]
  85. LvW. WangX. XuQ. LuW. Mechanisms and characteristics of sulfonylureas and glinides.Curr. Top. Med. Chem.2020201375610.2174/1568026620666191224141617 31884929
    [Google Scholar]
  86. DhankharS. MujwarS. GargN. ChauhanS. SainiM. SharmaP. KumarS. Kumar SharmaS. KamalM.A. RaniN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  87. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745
    [Google Scholar]
  88. BaeE.J. DPP-4 inhibitors in diabetic complications: Role of DPP-4 beyond glucose control.Arch. Pharm. Res.20163981114112810.1007/s12272‑016‑0813‑x 27502601
    [Google Scholar]
  89. GallwitzB. Clinical use of DPP-4 inhibitors.Front. Endocrinol.20191038910.3389/fendo.2019.00389 31275246
    [Google Scholar]
  90. MakrilakisK. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: When to select, what to expect.Int. J. Environ. Res. Public Health20191615272010.3390/ijerph16152720 31366085
    [Google Scholar]
  91. CahnA. CerneaS. RazI. An update on DPP-4 inhibitors in the management of type 2 diabetes.Expert Opin. Emerg. Drugs201621440941910.1080/14728214.2016.1257608 27809608
    [Google Scholar]
  92. MunirK.M. LamosE.M. Diabetes type 2 management: What are the differences between DPP-4 inhibitors and how do you choose?Expert Opin. Pharmacother.201718983984110.1080/14656566.2017.1323878 28449622
    [Google Scholar]
  93. LingJ. GeL. ZhangD. WangY. XieZ. TianJ. XiaoX. YangK. DPP-4 inhibitors for the treatment of type 2 diabetes: A methodology overview of systematic reviews.Acta Diabetol.201956172710.1007/s00592‑018‑1164‑5 29858660
    [Google Scholar]
  94. KaragiannisT. BouraP. TsapasA. Safety of dipeptidyl peptidase 4 inhibitors: A perspective review.Ther. Adv. Drug Saf.20145313814610.1177/2042098614523031 25083269
    [Google Scholar]
  95. TurduG. GaoH. JiangY. KabasM. Plant dipeptidyl peptidase-IV inhibitors as antidiabetic agents: A brief review.Future Med. Chem.201810101229123910.4155/fmc‑2017‑0235 29749760
    [Google Scholar]
  96. Marya., Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents.Life Sci.201819315315810.1016/j.lfs.2017.10.025 29055800
    [Google Scholar]
  97. PurnomoY. W SoeatmadjiD. B SumitroS. WidodoM.A . Dipeptidyl peptidase-4 inhibitory activity of indonesian anti-diabetic herbs: Carica papaya, Tithonia diversifolia, Urena lobata.Res. J. Pharm. Technol.202316127327710.52711/0974‑360X.2023.00050
    [Google Scholar]
  98. PurnomoY. SoeatmadjiD.W. SumitroS.B. WidodoM.A. Incretin effect of Urena lobata leaves extract on structure and function of rats islet β-cells.J. Tradit. Complement. Med.20177330130610.1016/j.jtcme.2016.10.001 28725624
    [Google Scholar]
  99. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  100. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  101. ZhaoB.T. LeD.D. NguyenP.H. AliM.Y. ChoiJ.S. MinB.S. ShinH.M. RheeH.I. WooM.H. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.Chem. Biol. Interact.2016253273710.1016/j.cbi.2016.04.012 27060210
    [Google Scholar]
  102. KciukM. GargA. RohillaM. ChaudharyR. DhankharS. DhimanS. BansalS. SainiM. SinghT.G. ChauhanS. MujwarS. GielecińskaA. KontekR. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis—comprehensive review.Antioxidants202413777510.3390/antiox13070775 39061843
    [Google Scholar]
  103. ShaikhS. LeeE.J. AhmadK. AhmadS.S. LimJ.H. ChoiI. A comprehensive review and perspective on natural sources as dipeptidyl peptidase-4 inhibitors for management of diabetes.Pharmaceuticals202114659110.3390/ph14060591 34203048
    [Google Scholar]
  104. AbbasG. Al HarrasiA. HussainH. HamaedA. SupuranC.T. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2).Bioorg. Chem.20198630531510.1016/j.bioorg.2019.02.009 30738330
    [Google Scholar]
  105. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma15030804 35160749
    [Google Scholar]
  106. SharmaD. DPP-IV inhibitors from natural sources: An alternative approach for treatment and management of diabetes.Indian J. Nat. Prod. Resour.2020104227237
    [Google Scholar]
  107. PatarakijavanichP. A review of the antidiabetic potential of Mangifera indica leaf extract.Songklanakarin J. Sci. Technol.2019414942950
    [Google Scholar]
  108. YaribeygiH. AtkinS.L. SahebkarA. Natural compounds with DPP‐4 inhibitory effects: Implications for the treatment of diabetes.J. Cell. Biochem.20191207109091091310.1002/jcb.28467 30775811
    [Google Scholar]
  109. ChauhanS. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  110. DasS.K. SamantarayD. BeheraS. Mangrove plants in therapeutic management of diabetes: An update. In: Bioresource Utilization and Management: Applications in Therapeutics, Biofuels, Agriculture, and Environmental Science, 1st ed; Academic Press202110.1201/9781003057826‑8
    [Google Scholar]
  111. NathiyaR. MahalingamG. Role of mangrove endophytic fungi in diabetes mellitus.In: Biotechnological Utilization of Mangrove Resources.Elsevier202043546010.1016/B978‑0‑12‑819532‑1.00021‑4
    [Google Scholar]
  112. RasouliH. YaraniR. PociotF. Popović-DjordjevićJ. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives.Pharmacol. Res.202015510472310.1016/j.phrs.2020.104723 32105756
    [Google Scholar]
  113. ZhouY. XuB. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins.Crit. Rev. Food Sci. Nutr.20236333123721239710.1080/10408398.2022.2101425 35866515
    [Google Scholar]
  114. HamdenK. BengaraA. AmriZ. ElfekiA. Experimental diabetes treated with trigonelline: Effect on key enzymes related to diabetes and hypertension, β-cell and liver function.Mol. Cell. Biochem.20133811-2859410.1007/s11010‑013‑1690‑y 23754616
    [Google Scholar]
  115. SaliB. SaidG. NoureddineM. HocineA. Molecular modeling interaction between enzyme diabetes type 2 dipeptidyl-peptidase (DPP-4) and main compound of cinnamon.Curr. Enzym. Inhib.2018141616610.2174/1573408013666170613103142
    [Google Scholar]
  116. JiangS. WuX. WangY. ZouJ. ZhaoX. The potential DPP-4 inhibitors from Xiao-Ke-An improve the glucolipid metabolism via the activation of AKT/GSK-3β pathway.Eur. J. Pharmacol.202088217327210.1016/j.ejphar.2020.173272 32535096
    [Google Scholar]
  117. LacroixI.M.E. Li-ChanE.C.Y. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations.Trends Food Sci. Technol.20165411610.1016/j.tifs.2016.05.008
    [Google Scholar]
  118. LuY. LuP. WangY. FangX. WuJ. WangX. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in streptozotocin-induced diabetic mice.Int. J. Mol. Sci.201920232210.3390/ijms20020322 30646613
    [Google Scholar]
  119. KalhotraP. ChittepuV.C.S.R. Osorio-RevillaG. Gallardo-VelazquezT. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus.Biomolecules202010230510.3390/biom10020305 32075130
    [Google Scholar]
  120. ZollapiN.N.H. Identification of dipeptidyl-peptidase 4 (DPP-4) inhibitors from miracle berry fruit (synsepalum dulcificum) extract. Journal of Biochemistry. Microb. Biotechnol.20231114247
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322250240924081053
Loading
/content/journals/cbc/10.2174/0115734072322250240924081053
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; Herbal DPP-4; hyperglycemia; inhibitors; insulin; phytochemicals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test