Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction and Background

The overuse of food additives and preservatives has become a source of concern globally due to the inherent risks associated with them. This study evaluated neurobehavioral performance, atherogenic risk, and oxido-inflammatory response in mice fed with normal and high-fat diets supplemented with combined sodium benzoate (SB) and monosodium glutamate (MSG).

Materials and Methods

Mice were divided into four groups (n=6) and fed with normal diet (ND), high-fat diet (HFD), ND+MSG+SB, and HFD+MSG+SB, respectively, for 28 days. Neurobehavioral performance in mice was carried out in an open field, and Y-maze tests were performed. Serum was obtained to determine lipid profile and atherogenic risk, while brain homogenate was used to determine oxidative stress, inflammatory markers, and neurotransmitter-related enzyme activities.

Results

This study reported that in mice fed with HFD, ND+MSG+SB, and HFD + MSG +SB, there was a significant ( < 0.05) decrease in explorative activity, an increase in anxiety-like behavior, as well as decreased memory performance. Malondialdehyde and nitrites levels increased, while levels of reduced glutathione and antioxidant enzyme activities, catalase and superoxide dismutase, were significantly reduced. Pro-inflammatory cytokines (TNF-α and IL-6) were significantly increased in the brains of mice fed with HFD, ND+MSG+SB, and HFD + MSG +SB when compared with control. Moreover, the activities of acetylcholinesterase increased while glutamic acid decarboxylase decreased significantly.

Conclusion

In conclusion, SB and MSG supplementation in diets caused neurobehavioral deficits in mice, increased atherogenic risk, and upregulated oxidative stress and inflammatory response in mice brains.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322724241107112313
2024-12-04
2025-08-17
Loading full text...

Full text loading...

References

  1. RanasingheP. MathangasingheY. JayawardenaR. HillsA.P. MisraA. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review.BMC Publ. Heal.201717110110.1186/s12889‑017‑4041‑128109251
    [Google Scholar]
  2. FahedG. AounL. Bou ZerdanM. AllamS. Bou ZerdanM. BouferraaY. AssiH.I. Metabolic syndrome: Updates on pathophysiology and management in 2021.Int. J. Mol. Sci.202223278610.3390/ijms2302078635054972
    [Google Scholar]
  3. AlsuwaidiH.N. AhmedA.I. AlkorbiH.A. AliS.M. AltarawnehL.N. UddinS.I. RoueentanS.R. AlhitmiA.A. DjouhriL. ChiveseT. Association between metabolic syndrome and decline in cognitive function: A cross-sectional study.Diabetes Metab. Syndr. Obes.20231684985910.2147/DMSO.S39328236974329
    [Google Scholar]
  4. Al-KhatibY. AkhtarM.A. KanawatiM.A. MuchekeR. MahfouzM. Al-NufouryM. Depression and metabolic syndrome: A narrative review.Cureus2022142e2215310.7759/cureus.2215335308733
    [Google Scholar]
  5. WangP.X. DengX.R. ZhangC.H. YuanH.J. Gut microbiota and metabolic syndrome.Chin. Med. J. (Engl.)2020133780881610.1097/CM9.000000000000069632106124
    [Google Scholar]
  6. MarquesC. MeirelesM. NorbertoS. LeiteJ. FreitasJ. PestanaD. FariaA. CalhauC. High-fat diet-induced obesity Rat model: A comparison between wistar and sprague-dawley rat.Adipocyte201651112110.1080/21623945.2015.106172327144092
    [Google Scholar]
  7. XuH. LiX. AdamsH. KubenaK. GuoS. Etiology of metabolic syndrome and dietary intervention.Int. J. Mol. Sci.201820112810.3390/ijms2001012830602666
    [Google Scholar]
  8. Rodríguez-CorreaE. González-PérezI. Clavel-PérezP.I. Contreras-VargasY. CarvajalK. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice?Nutr. Diabetes20201012410.1038/s41387‑020‑0127‑432616730
    [Google Scholar]
  9. WarnerJ.O. Artificial food additives: Hazardous to long-term health.Arch Dis Child.202429archdischild-2023-32656510.1136/archdischild‑2023‑326565
    [Google Scholar]
  10. Al-AmeenS.A. JirjeesE.H. TawfeeqF.K. Effect of sodium benzoate on some biochemical, physiological and histopathological aspects in adult male rats.Iraqi J. Vet. Sci.202236226727210.33899/ijvs.2021.129935.1705
    [Google Scholar]
  11. AsejejeF.O. AjayiB.O. AbiolaM.A. SamuelO. AsejejeG.I. AjiboyeE.O. AjayiA.M. Sodium benzoate induces neurobehavioral deficits and brain oxido‐inflammatory stress in male Wistar rats: Ameliorative role of ascorbic acid.J. Biochem. Mol. Toxicol.2022365e2301010.1002/jbt.2301035187746
    [Google Scholar]
  12. KhasnavisS. PahanK. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons.J. Neuroimmune Pharmacol.20127242443510.1007/s11481‑011‑9286‑321701815
    [Google Scholar]
  13. RangasamyS.B. RahaS. DasarathyS. PahanK. Sodium Benzoate, a metabolite of cinnamon and a food additive, improves cognitive functions in mice after controlled cortical impact injury.Int. J. Mol. Sci.202123119210.3390/ijms2301019235008615
    [Google Scholar]
  14. ShahmihammadiM. JavadiM. Nassiri-AslnM. An overview on the effects of sodium benzoate as a preservative in food products.Biotech Health Sci.In presse3508410.17795/bhs‑35084
    [Google Scholar]
  15. ZeghibK. BoutlelisD.A. Food additive (sodium benzoate)-induced damage on renal function and glomerular cells in rats; modulating effect of aqueous extract of Atriplex halimus L.Iran. J. Pharm. Res.202120129630610.22037/ijpr.2020.111634.1327234400959
    [Google Scholar]
  16. PiperJ.D. PiperP.W. Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate.Compr. Rev. Food Sci. Food Saf.201716586888010.1111/1541‑4337.1228433371618
    [Google Scholar]
  17. Abdel MoneimW.M. YassaH.A. MakboulR.A. MohamedN.A. Monosodium glutamate affects cognitive functions in male albino rats.Egypt. J. Forensic Sci.201881910.1186/s41935‑018‑0038‑x
    [Google Scholar]
  18. Abo ZeidA.A. Rowida RaafatI. AhmedA.G. Berberine alleviates monosodium glutamate induced postnatal metabolic disorders associated vascular endotmetalloproteinase 1 in newborn rats: Possible role of matrix metalloproteinase-1.Arch. Physiol. Biochem.2022128381882910.1080/13813455.2020.172981532072839
    [Google Scholar]
  19. ElbassuoniE.A. RagyM.M. AhmedS.M. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats.Biomed. Pharmacother.201810879980810.1016/j.biopha.2018.09.09330253372
    [Google Scholar]
  20. KayodeO.T. BelloJ.A. OguntolaJ.A. KayodeA.A.A. OlukoyaD.K. The interplay between monosodium glutamate (MSG) consumption and metabolic disorders.Heliyon202399e1967510.1016/j.heliyon.2023.e1967537809920
    [Google Scholar]
  21. AkintoyeO.O. AjibareA.J. FolawiyoM.A. Jimoh-AbdulghaffaarH.O. AsukuA. OwolabiG.A. BabalolaK.T. Zinc supplement reverses short-term memory deficit in sodium benzoate-induced neurotoxicity in male Wistar rats by enhancing anti-oxidative capacity via Nrf 2 up-regulation.Behav. Brain Res.202343711416310.1016/j.bbr.2022.11416336265761
    [Google Scholar]
  22. Walczak-NowickaŁ.J. HerbetM. Sodium benzoate—harmfulness and potential use in therapies for disorders related to the nervous system: A review.Nutrients2022147149710.3390/nu14071497
    [Google Scholar]
  23. AjayiA.M. JohnK.A. EmmanuelI.B. ChidebeE.O. AdedapoA.D.A. High-fat diet-induced memory impairment and anxiety-like behavior in rats attenuated by peel extract of Ananas comosus fruit via atheroprotective, antioxidant and anti-inflammatory actions.Metabolism Open2021910007710.1016/j.metop.2021.10007733490944
    [Google Scholar]
  24. FujitaniT. Short-term effect of sodium benzoate in F344 rats and B6C3F1 mice.Toxicol. Lett.199369217117910.1016/0378‑4274(93)90102‑48212059
    [Google Scholar]
  25. KraeuterA.K. GuestP.C. SarnyaiZ. The Y-maze for assessment of spatial working and reference memory in mice.Methods Mol. Biol.2019191610511110.1007/978‑1‑4939‑8994‑2_1030535688
    [Google Scholar]
  26. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  27. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-Transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  28. MisraH.P. FridovichI. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem.1972247103170317510.1016/S0021‑9258(19)45228‑94623845
    [Google Scholar]
  29. GóthL. A simple method for determination of serum catalase activity and revision of reference range.Clin. Chim. Acta19911962-314315110.1016/0009‑8981(91)90067‑M2029780
    [Google Scholar]
  30. GreenL.C. WagnerD.A. GlogowskiJ. SkipperP.L. WishnokJ.S. TannenbaumS.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.Anal. Biochem.1982126113113810.1016/0003‑2697(82)90118‑X7181105
    [Google Scholar]
  31. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑913726518
    [Google Scholar]
  32. YuK. HuS. HuangJ. MeiL.H. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.Enzyme Microb. Technol.201149327227610.1016/j.enzmictec.2011.06.00722112511
    [Google Scholar]
  33. KrishnaS. LinZ. de La SerreC.B. WagnerJ.J. HarnD.H. PepplesL.M. DjaniD.M. WeberM.T. SrivastavaL. FilipovN.M. Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake.Physiol. Behav.201615719620810.1016/j.physbeh.2016.02.00726852949
    [Google Scholar]
  34. WuH. ZhangW. HuangM. LinX. ChiouJ. Prolonged high-fat diet consumption throughout adulthood in mice induced neurobehavioral deterioration via gut-brain axis.Nutrients202315239210.3390/nu1502039236678262
    [Google Scholar]
  35. ReicheltA.C. WestbrookR.F. MorrisM.J. Editorial: Impact of diet on learning, memory and cognition.Front. Behav. Neurosci.2017119610.3389/fnbeh.2017.0009628579950
    [Google Scholar]
  36. TordoffM.G. AlemanT.R. MurphyM.C. No effects of monosodium glutamate consumption on the body weight or composition of adult rats and mice.Physiol. Behav.2012107333834510.1016/j.physbeh.2012.07.00622868067
    [Google Scholar]
  37. GboreF.A. OluseyifunmiI.W. JinaduD.T. JimohF.J. OmojuyigbeA.E. Growth and reproductive performance of female mice administered varied concentrations of monosodium glutamate.Nig J Animal Sci.20192116371
    [Google Scholar]
  38. DasD. BanerjeeA. BhattacharjeeA. MukherjeeS. MajiB.K. Dietary food additive monosodium glutamate with or without high-lipid diet induces spleen anomaly: A mechanistic approach on rat model.Open Life Sci.2022171223110.1515/biol‑2022‑000435128066
    [Google Scholar]
  39. OnaolapoA.Y. OdetundeI. AkintolaA.S. OgundejiM.O. AjaoA. ObelawoA.Y. OnaolapoO.J. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice.Biomed. Pharmacother.201910941742810.1016/j.biopha.2018.10.17230399577
    [Google Scholar]
  40. Ureña-GuerreroM.E. López-PérezS.J. Beas-ZárateC. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development.Neurochem. Int.200342426927610.1016/S0197‑0186(02)00131‑612470699
    [Google Scholar]
  41. Valladolid-AcebesI. MerinoB. PrincipatoA. FoleA. BarbasC. LorenzoM.P. GarcíaA. Del OlmoN. Ruiz-GayoM. CanoV. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission.Am. J. Physiol. Endocrinol. Metab.20123024E396E40210.1152/ajpendo.00343.2011
    [Google Scholar]
  42. Sandoval-SalazarC. Ramírez-EmilianoJ. Trejo-BahenaA. Oviedo-SolísC.I. Solís-OrtizM.S. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.Biol. Res.2016291510.1186/s40659‑016‑0075‑6
    [Google Scholar]
  43. LiangH. JiangF. ChengR. LuoY. WangJ. LuoZ. LiM. ShenX. HeF. A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice.Exp Anim.2021701738310.1538/expanim.20‑0094
    [Google Scholar]
  44. HelalE.G.E. BarayanA.W. AbdelazizM.A. EL-ShenaweN.S.A. Adverse effects of mono sodium glutamate, sodium benzoate and chlorophyllins on some physiological parameters in male albino rats.Egypt. J. Hosp. Med.20197481857186410.21608/ejhm.2019.28865
    [Google Scholar]
  45. WaerH.F. EdressS. The effect of monosodium glutamate (MSG) on rat liver and the ameliorating effect of “guanidino ethane sulfonic acid (GES)”(Histological, histochemical and electron microscopy studies).Egypt. J. Hosp. Med.200624152453810.21608/ejhm.2006.17916
    [Google Scholar]
  46. BanerjeeA. MukherjeeS. MajiB.K. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview.Toxicol. Rep.2021893896110.1016/j.toxrep.2021.04.00934026558
    [Google Scholar]
  47. JiangS. LiuH. LiC. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases.Foods2021108185410.3390/foods1008185434441631
    [Google Scholar]
  48. RogersG.B. KeatingD.J. YoungR.L. WongM-L. LicinioJ. WesselinghS. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways.Mol. Psychiatry201621673874810.1038/mp.2016.5027090305
    [Google Scholar]
  49. SreejeshP.G. SreekumaranE. Effect of monosodium glutamate on striato-hippocampal acetylcholinesterase level in the brain of male Wistar albino rats and its implications on learning and memory during aging.Biosci. Biotechnol. Res. Commun.2018111768210.21786/bbrc/11.1/11
    [Google Scholar]
  50. OmogbiyaA.I. Ben-AzuB. EduviereA.T. EneniA.E.O. NwokoyeP.O. AjayiA.M. UmukoroS. Monosodium glutamate induces memory and hepatic dysfunctions in mice: Ameliorative role of Jobelyn® through the augmentation of cellular antioxidant defense machineries.Toxicol. Res.202137332333510.1007/s43188‑020‑00068‑934295796
    [Google Scholar]
  51. KhanI.S. DarK.B. GanieS.A. AliM.N. Toxicological impact of sodium benzoate on inflammatory cytokines, oxidative stress and biochemical markers in male Wistar rats.Drug Chem. Toxicol.20224531345135410.1080/01480545.2020.182547233003957
    [Google Scholar]
  52. Abd-ElhakimY.M. BehairyA. HashemM.M.M. Abo-EL-SooudK. El-MetwallyA.E. HassanB.A. AliH.A. Toll-like receptors and nuclear factor kappa B signaling pathway involvement in hepatorenal oxidative damage induced by some food preservatives in rats.Sci. Rep.2023131593810.1038/s41598‑023‑32887‑937045926
    [Google Scholar]
  53. Abiega-FranyuttiP. Freyre-FonsecaV. Chronic consumption of food-additives lead to changes via microbiota gut-brain axis.Toxicology202146415300110.1016/j.tox.2021.15300134710536
    [Google Scholar]
  54. PongkingT. HaononO. DangtakotR. OnsurathumS. JusakulA. IntuyodK. SangkaA. AnutrakulchaiS. Cha'onU. PinlaorS. PinlaorP. A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism.PLoS One2020154e023123710.1371/journal.pone.0231237
    [Google Scholar]
  55. CarlessiA.S. BorbaL.A. ZugnoA.I. QuevedoJ. RéusG.Z. Gut microbiota–brain axis in depression: The role of neuroinflammation.Eur. J. Neurosci.202153122223510.1111/ejn.1463131785168
    [Google Scholar]
  56. KandpalM. IndariO. BaralB. JakhmolaS. TiwariD. BhandariV. PandeyR.K. BalaK. SonawaneA. JhaH.C. Dysbiosis of gut microbiota from the perspective of the gut–brain axis: Role in the provocation of neurological disorders.Metabolites20221211106410.3390/metabo1211106436355147
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322724241107112313
Loading
/content/journals/cbc/10.2174/0115734072322724241107112313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test