Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Heterocyclic compounds are fundamental in natural products and pharmaceuticals. The triazole nucleus, in particular, is a versatile structure present in numerous bioactive molecules. 7-chloroquinoline is historically significant for its antimalarial properties and exhibits a broad spectrum of biological activities, including antiviral, anticancer, antibacterial, and anti-inflammatory effects. This review aimed to compile and discuss 69 biologically active 1,2,3-triazole hybrids derived from 7-chloroquinoline, highlighting their enhanced bioactivity when combined with 4,7-dichloroquinoline. A comprehensive review of the literature was conducted to identify and analyze the synthesis and biological activities of triazole hybrids originating from 4,7-dichloroquinoline and 7-chloroquinoline. It was found that the 4,7-dichloroquinoline scaffold, when coupled with triazole derivatives, exhibited enhanced bioactivity, including antimicrobial, antimalarial, and anticancer effects. This synergy between the two structures underscores their potential therapeutic applications. The insights provided in this review will serve as a valuable resource for medicinal chemists exploring triazoles derived from 4,7-dichloroquinoline and 7-chloroquinoline. The enhanced bioactivity of these hybrids highlights their significance in the development of new therapeutic agents.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072316356240916093038
2024-09-25
2025-08-16
Loading full text...

Full text loading...

References

  1. GoniL.K.M.O. Jafar MazumderM.A. QuraishiM.A. Mizanur RahmanM. Bioinspired Heterocyclic compounds as corrosion inhibitors: A Comprehensive Review.Chem. Asian J.202116111324136410.1002/asia.202100201 33844882
    [Google Scholar]
  2. MahajanN.D. JainN. Heterocyclic compounds and their applications in the field of biology: A Detailed Study.Nat. Volatiles & Essent. Oils2021841322313229
    [Google Scholar]
  3. KumarS. GonenS. FriedmanA. ElbazL. NessimG.D. Doping and reduction of graphene oxide using chitosan-derived volatile N-heterocyclic compounds for metal-free oxygen reduction reaction.Carbon201712041942610.1016/j.carbon.2017.05.071
    [Google Scholar]
  4. ShuklaP.K. VermaA. MishraP. Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. New perspective in agricultural and human health Eds.Bharti Publication2017100126
    [Google Scholar]
  5. MarchesiE. PerroneD. NavacchiaM.L. Molecular hybridization as a strategy for developing artemisinin-derived anticancer candidates.Pharmaceutics20231592185218510.3390/pharmaceutics15092185 37765156
    [Google Scholar]
  6. GontijoV.S. ViegasF.P.D. OrtizC.J.C. de Freitas SilvaM. DamasioC.M. RosaM.C. CamposT.G. CoutoD.S. Tranches DiasK.S. ViegasC. Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases.Curr. Neuropharmacol.202018534840710.2174/1385272823666191021124443 31631821
    [Google Scholar]
  7. SchreiberC.L. SmithB.D. Molecular conjugation using non-covalent click chemistry.Nat. Rev. Chem.20193639340010.1038/s41570‑019‑0095‑1 33834115
    [Google Scholar]
  8. HopkinsA.L. Network pharmacology: the next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  9. RajR. LandK.M. KumarV. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents.RSC Advances20155101826768269810.1039/C5RA16361G
    [Google Scholar]
  10. ChouT.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.Pharmacol. Rev.200658362168110.1124/pr.58.3.10 16968952
    [Google Scholar]
  11. MeunierB. Hybrid molecules with a dual mode of action: dream or reality?Acc. Chem. Res.2008411697710.1021/ar7000843 17665872
    [Google Scholar]
  12. SunilR.J. PalS. JayashreeA. Molecular hybridization-an emanating tool in drug design.Med. Chem.2019969395
    [Google Scholar]
  13. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b 25255204
    [Google Scholar]
  14. MusiolR. SerdaM. Hensel-BielowkaS. PolanskiJ. Quinoline-based antifungals.Curr. Med. Chem.201017181960197310.2174/092986710791163966 20377510
    [Google Scholar]
  15. de SouzaM.V. PaisK.C. KaiserC.R. PeraltaM.A. de L FerreiraM. LourençoM.C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives.Bioorg. Med. Chem.20091741474148010.1016/j.bmc.2009.01.013 19188070
    [Google Scholar]
  16. Loza-MejíaM.A. Maldonado-HernándezK. Rodríguez-HernándezF. Rodríguez-SotresR. González-SánchezI. QuinteroA. SolanoJ.D. Lira-RochaA. Synthesis, cytotoxic evaluation, and DNA binding of novel thiazolo[5,4-b]quinoline derivatives.Bioorg. Med. Chem.20081631142114910.1016/j.bmc.2007.10.084 18035542
    [Google Scholar]
  17. Ramírez-PradaJ. RobledoS.M. VélezI.D. CrespoM.P. QuirogaJ. AboniaR. MontoyaA. SvetazL. ZacchinoS. InsuastyB. Synthesis of novel quinoline–based 4,5–dihydro–1 H –pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents.Eur. J. Med. Chem.201713123725410.1016/j.ejmech.2017.03.016 28329730
    [Google Scholar]
  18. SharmaS. SinghS. Synthetic routes to quinoline-based derivatives having potential anti-bacterial and anti-fungal properties.Curr. Org. Chem.202226151453146910.2174/1385272827666221021140934
    [Google Scholar]
  19. DorababuA. Quinoline: A promising scaffold in recent antiprotozoal drug discovery.ChemistrySelect2021692164217710.1002/slct.202100115
    [Google Scholar]
  20. RajR. BiotC. Carrère-KremerS. KremerL. GuérardelY. GutJ. RosenthalP.J. ForgeD. KumarV. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation.Chem. Biol. Drug Des.201483562262910.1111/cbdd.12273 24341638
    [Google Scholar]
  21. RanadeP.B. NavaleD.N. ZoteS.W. KulalD.K. WaghS.J. Blind docking of 4-amino-7-chloroquinoline analogs as potential dengue virus protease inhibitor using CB dock a web server.Indian J. Biochem. Biophys.20236015557
    [Google Scholar]
  22. NjariaP.M. OkomboJ. NjugunaN.M. ChibaleK. Chloroquine-containing compounds: a patent review (2010 – 2014).Expert Opin. Ther. Pat.20152591003102410.1517/13543776.2015.1050791 26013494
    [Google Scholar]
  23. KalariaP.N. KaradS.C. RavalD.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery.Eur. J. Med. Chem.201815891793610.1016/j.ejmech.2018.08.040 30261467
    [Google Scholar]
  24. HuY.Q. GaoC. ZhangS. XuL. XuZ. FengL.S. WuX. ZhaoF. Quinoline hybrids and their antiplasmodial and antimalarial activities.Eur. J. Med. Chem.2017139224710.1016/j.ejmech.2017.07.061 28800458
    [Google Scholar]
  25. MahajanA. YehS. NellM. van RensburgC.E.J. ChibaleK. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents.Bioorg. Med. Chem. Lett.200717205683568510.1016/j.bmcl.2007.07.049 17768052
    [Google Scholar]
  26. ShruthiT.G. EswaranS. ShivarudraiahP. NarayananS. SubramanianS. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety.Bioorg. Med. Chem. Lett.20192919710210.1016/j.bmcl.2018.11.002 30448235
    [Google Scholar]
  27. CoimbraE.S. AntinarelliL.M.R. SilvaN.P. SouzaI.O. MeinelR.S. RochaM.N. SoaresR.P.P. da SilvaA.D. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action.Chem. Biol. Interact.2016260505710.1016/j.cbi.2016.10.017 27789199
    [Google Scholar]
  28. KavithaN. ArunA. ShafiS.S. Synthesis, characterization and antimicrobial activity of some novel s-triazine derivatives incorporating quinoline moiety.Pharma Chem.2015710453458
    [Google Scholar]
  29. YadavV. ReangJ. SharmaV. MajeedJ. SharmaP.C. SharmaK. GiriN. KumarA. TonkR.K. Quinoline‐derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review.Chem. Biol. Drug Des.2022100338941810.1111/cbdd.14099 35712793
    [Google Scholar]
  30. RohrbachS. SmithA.J. PangJ.H. PooleD.L. TuttleT. ChibaS. MurphyJ.A. Concerted nucleophilic aromatic substitution reactions.Angew. Chem. Int. Ed.20195846163681638810.1002/anie.201902216 30990931
    [Google Scholar]
  31. TiwariV.K. SarmaD. Thematic issue: Emerging aspects of click chemistry.Curr. Org. Synth.202421435735810.2174/157017942104240218204834 38804326
    [Google Scholar]
  32. MatinM.M. MatinP. RahmanM.R. Ben HaddaT. AlmalkiF.A. MahmudS. GhoneimM.M. AlruwailyM. AlshehriS. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications.Front. Mol. Biosci.2022986428610.3389/fmolb.2022.864286 35547394
    [Google Scholar]
  33. XuM. PengY. ZhuL. WangS. JiJ. RakeshK.P. Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships.Eur. J. Med. Chem.201918065667210.1016/j.ejmech.2019.07.059 31352246
    [Google Scholar]
  34. Abdul RahmanS.M. BhattiJ.S. TharejaS. MongaV. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds.Eur. J. Med. Chem.202325911569911569910.1016/j.ejmech.2023.115699 37542987
    [Google Scholar]
  35. NqoroX. TobekaN. AderibigbeB. Quinoline-based hybrid compounds with antimalarial activity.Molecules20172212226810.3390/molecules22122268 29257067
    [Google Scholar]
  36. KucharskiD.J. JaszczakM.K. BoratyńskiP.J. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy) chloroquine.Molecules2022273100310.3390/molecules27031003 35164267
    [Google Scholar]
  37. IlakiyalakshmiM. NapoleonA.A. A mini-review on the current scenario of quinoline scaffolds for antimalarial activity.ECS Trans.20221071175231753310.1149/10701.17523ecst
    [Google Scholar]
  38. PibiriI. BuscemiS. A recent portrait of bioactivetriazoles.Curr. Bioact. Compd.20106420824210.2174/157340710793237281
    [Google Scholar]
  39. TornøeC.W. ChristensenC. MeldalM. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.J. Org. Chem.20026793057306410.1021/jo011148j 11975567
    [Google Scholar]
  40. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  41. BiagiG. GiorgiI. LiviO. ScartoniV. BettiL. GiannacciniG. TrincavelliM.L. New 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. II.Eur. J. Med. Chem.200237756557110.1016/S0223‑5234(02)01376‑4 12126775
    [Google Scholar]
  42. ZhangL. ChenX. XueP. SunH.H.Y. WilliamsI.D. SharplessK.B. FokinV.V. JiaG. Ruthenium-catalyzed cycloaddition of alkynes and organic azides.J. Am. Chem. Soc.200512746159981599910.1021/ja054114s 16287266
    [Google Scholar]
  43. KamalrajV.R. SenthilS. KannanP. One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers.J. Mol. Struct.20088921-321021510.1016/j.molstruc.2008.05.028
    [Google Scholar]
  44. McNultyJ. KeskarK. VemulaR. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature.Chemistry20111752147271473010.1002/chem.201103244 22125272
    [Google Scholar]
  45. DingS. JiaG. SunJ. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions.Angew. Chem. Int. Ed.20145371877188010.1002/anie.201309855 24474668
    [Google Scholar]
  46. WanJ.P. CaoS. LiuY. A metal- and azide-free multicomponent assembly toward regioselective construction of 1,5-disubstituted 1,2,3-triazoles.J. Org. Chem.201580189028903310.1021/acs.joc.5b01121 26292022
    [Google Scholar]
  47. KimW.G. KangM.E. LeeJ.B. JeonM.H. LeeS. LeeJ. ChoiB. CalP.M.S.D. KangS. KeeJ.M. BernardesG.J.L. RohdeJ.U. ChoeW. HongS.Y. Nickel-Catalyzed azide–alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles in air and water.J. Am. Chem. Soc.201713935121211212410.1021/jacs.7b06338 28814075
    [Google Scholar]
  48. MorozovaM.A. YusubovM.S. KratochvilB. EignerV. BondarevA.A. YoshimuraA. SaitoA. ZhdankinV.V. TrusovaM.E. PostnikovP.S. Regioselective Zn(OAc)2-catalyzed azide–alkyne cycloaddition in water: The green click-chemistry.Org. Chem. Front.20174697898510.1039/C6QO00787B
    [Google Scholar]
  49. LiT. DiefE.M. KalužnáZ. MacGregorM. Foroutan-NejadC. DarwishN. On-surface azide–alkyne cycloaddition reaction: Does it click with ruthenium catalysts?Langmuir202238185532554110.1021/acs.langmuir.2c00100 35470670
    [Google Scholar]
  50. BurrowsJ.N. BurlotE. CampoB. CherbuinS. JeanneretS. LeroyD. SpangenbergT. WatersonD. WellsT.N. WillisP. Antimalarial drug discovery – the path towards eradication.Parasitology2014141112813910.1017/S0031182013000826 23863111
    [Google Scholar]
  51. NostenF. WhiteN.J. Artemisinin-based combination treatment of falciparum malaria.Am. J. Trop. Med. Hyg.2007776_Suppl)(Suppl.18119210.4269/ajtmh.2007.77.18118165491
    [Google Scholar]
  52. KumarS. BhardwajT.R. PrasadD.N. SinghR.K. Drug targets for resistant malaria: Historic to future perspectives.Biomed. Pharmacother.201810482710.1016/j.biopha.2018.05.009 29758416
    [Google Scholar]
  53. GolenserJ. WaknineJ.H. KrugliakM. HuntN.H. GrauG.E. Current perspectives on the mechanism of action of artemisinins.Int. J. Parasitol.200636141427144110.1016/j.ijpara.2006.07.011 17005183
    [Google Scholar]
  54. GuantaiE.M. NcokaziK. EganT.J. GutJ. RosenthalP.J. SmithP.J. ChibaleK. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.Bioorg. Med. Chem.201018238243825610.1016/j.bmc.2010.10.009 21044845
    [Google Scholar]
  55. ManoharS. KhanS.I. RawatD.S. Synthesis of 4‐aminoquinoline‐1,2,3‐triazole and 4‐aminoquinoline‐1,2,3‐triazole‐1,3,5‐triazine Hybrids as Potential Antimalarial Agents.Chem. Biol. Drug Des.201178112413610.1111/j.1747‑0285.2011.01115.x 21457474
    [Google Scholar]
  56. SinghP. SinghP. KumarM. GutJ. RosenthalP.J. KumarK. KumarV. MahajanM.P. BisettyK. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry.Bioorg. Med. Chem. Lett.2012221576110.1016/j.bmcl.2011.11.082 22172698
    [Google Scholar]
  57. RajR. SinghP. SinghP. GutJ. RosenthalP.J. KumarV. Azide-alkyne cycloaddition en route to 1 H -1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation.Eur. J. Med. Chem.20136259059610.1016/j.ejmech.2013.01.032 23434528
    [Google Scholar]
  58. JoshiM.C. WichtK.J. TaylorD. HunterR. SmithP.J. EganT.J. In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles.Eur. J. Med. Chem.20136933834710.1016/j.ejmech.2013.08.046 24077524
    [Google Scholar]
  59. NjoguP.M. GutJ. RosenthalP.J. ChibaleK. Design, synthesis, and antiplasmodial activity of hybrid compounds based on (2R,3S)-N-benzoyl-3-phenylisoserine.ACS Med. Chem. Lett.20134763764110.1021/ml400164t 24900723
    [Google Scholar]
  60. BoechatN. FerreiraM.L.G. PinheiroL.C.S. JesusA.M.L. LeiteM.M.M. JúniorC.C.S. AguiarA.C.C. de AndradeI.M. KrettliA.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum.Chem. Biol. Drug Des.201484332533210.1111/cbdd.12321 24803084
    [Google Scholar]
  61. FisherG.M. TanpureR.P. DouchezA. AndrewsK.T. PoulsenS.A. Synthesis and evaluation of antimalarial properties of novel 4-aminoquinoline hybrid compounds.Chem. Biol. Drug Des.201484446247210.1111/cbdd.12335 24720445
    [Google Scholar]
  62. RajR. GutJ. RosenthalP.J. KumarV. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation.Bioorg. Med. Chem. Lett.201424375675910.1016/j.bmcl.2013.12.109 24424135
    [Google Scholar]
  63. PereiraG.R. BrandãoG.C. ArantesL.M. de OliveiraH.A.Jr de PaulaR.C. do NascimentoM.F.A. dos SantosF.M. da RochaR.K. LopesJ.C.D. de OliveiraA.B. 7-Chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.Eur. J. Med. Chem.20147329530910.1016/j.ejmech.2013.11.022 24469080
    [Google Scholar]
  64. TaleliL. de KockC. SmithP.J. PellyS.C. BlackieM.A.L. van OtterloW.A.L. In vitro antiplasmodial activity of triazole-linked chloroquinoline derivatives synthesized from 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine.Bioorg. Med. Chem.201523154163417110.1016/j.bmc.2015.06.044 26174655
    [Google Scholar]
  65. SantosJ.D.O. PereiraG.R. BrandaoG.C. BorgatiT.F. ArantesL.M. PaulaR.C.D. SoaresL.F. do NascimentoM.F. FerreiraM.R. TarantoA.G. VarottiF.P. Synthesis, in vitro Antimalarial Activity and in silico Studies of Hybrid Kauranoid 1,2,3-Triazoles Derived from Naturally Occurring Diterpenes.J. Braz. Chem. Soc.2016273551565
    [Google Scholar]
  66. SinghA. GutJ. RosenthalP.J. KumarV. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation.Eur. J. Med. Chem.201712526927710.1016/j.ejmech.2016.09.044 27688182
    [Google Scholar]
  67. KumarS. SainiA. GutJ. RosenthalP.J. RajR. KumarV. 4-Aminoquinoline-chalcone/- N -acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation.Eur. J. Med. Chem.2017138993100110.1016/j.ejmech.2017.07.041 28756265
    [Google Scholar]
  68. ChopraR. ChibaleK. SinghK. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity.Eur. J. Med. Chem.2018148395310.1016/j.ejmech.2018.02.021 29454189
    [Google Scholar]
  69. WadiI. PrasadD. BatraN. SrivastavaK. AnvikarA.R. ValechaN. NathM. Targeting Asexual and Sexual Blood Stages of the Human Malaria Parasite P. falciparum with 7‐Chloroquinoline‐Based 1,2,3‐Triazoles.ChemMedChem201914448449310.1002/cmdc.201800728 30609264
    [Google Scholar]
  70. SinghA. KalamuddinM. MohmmedA. MalhotraP. HodaN. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage.RSC Advances2019967394103942110.1039/C9RA06571G 35540629
    [Google Scholar]
  71. SharmaB. KaurS. LegacJ. RosenthalP.J. KumarV. Synthesis, anti-plasmodial and cytotoxic evaluation of 1H-1,2,3-triazole/acyl hydrazide integrated tetrahydro-β-carboline-4-aminoquinoline conjugates.Bioorg. Med. Chem. Lett.202030212681010.1016/j.bmcl.2019.126810 31740250
    [Google Scholar]
  72. MelisD.R. BarnettC.B. WiesnerL. NordlanderE. SmithG.S. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies.Dalton Trans.20204933115431155510.1039/D0DT01935F 32697227
    [Google Scholar]
  73. KumarS. SainiA. LegacJ. RosenthalP.J. RajR. KumarV. Amalgamating Isatin/Indole/Nitroimidazole with 7‐chloroquinolines via azide‐alkyne cycloaddition: Synthesis, anti‐plasmodial, and cytotoxic evaluation.Chem. Biol. Drug Des.20209661355136110.1111/cbdd.13738 32515142
    [Google Scholar]
  74. SainiA. KumarS. RajR. ChowdharyS. GendrotM. MosnierJ. FontaI. PradinesB. KumarV. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues.Bioorg. Chem.202110910473310.1016/j.bioorg.2021.104733 33618251
    [Google Scholar]
  75. PereiraG.R. FerreiraA.C.G. NevesP.H.A.S. GomesE.B.S. NascimentoM.F.A. SousaJ.A.C. SantosJ.O. BrandãoG.C. OliveiraA.B. Quinolinotriazole antiplasmodials via click chemistry: synthesis and in vitro studies of 7-Chloroquinoline-based compounds.Braz. J. Pharm. Sci.202157e18108610.1590/s2175‑979020200004181086
    [Google Scholar]
  76. BatraN. AgarwalD. WadiI. TekuriC.S. GuptaR.D. NathM. Synthesis and antimalarial activity of 7-chloroquinoline-tethered sulfonamides and their [1,2,3]-triazole hybrids.Future Med. Chem.202214231725173910.4155/fmc‑2022‑0187 36453182
    [Google Scholar]
  77. IrfanI. UddinA. JainR. GuptaA. GuptaS. NapoleonJ.V. HussainA. AlajmiM.F. JoshiM.C. HasanP. AbidM. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors.bioRxiv2022, 202249898110.1101/2022.07.07.498981
    [Google Scholar]
  78. AndhareN.H. AnasM. RastogiS.K. ManhasA. ThopateY. SrivastavaK. KumarN. SinhaA.K. Synthesis and in vitro SAR evaluation of natural vanillin-based chalcones tethered quinolines as antiplasmodial agents.Med. Chem. Res.202231122182219410.1007/s00044‑022‑02975‑y
    [Google Scholar]
  79. AdigunR.A. MalanF.P. BalogunM.O. OctoberN. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids.Struct. Chem.20233462065208210.1007/s11224‑023‑02142‑y
    [Google Scholar]
  80. YadavK. SharmaA. ShahamS.H. ChandrasekharanS.P. KumarS. DhamiA. NasreenH. MohananK. TripathiR. Incorporation of trifluoromethyltriazoline in the side chain of 4‐aminoquinolines: Synthesis and evaluation as antiplasmodial agents.ChemMedChem20231811e20220065310.1002/cmdc.202200653 36882935
    [Google Scholar]
  81. UddinA. GuptaS. ShoaibR. AnejaB. IrfanI. GuptaK. RawatN. CombrinckJ. KumarB. AleemM. HasanP. JoshiM.C. ChhonkerY.S. ZahidM. HussainA. PandeyK. AlajmiM.F. MurryD.J. EganT.J. SinghS. AbidM. Blood-stage antimalarial activity, favourable metabolic stability and in vivo toxicity of novel piperazine linked 7-chloroquinoline-triazole conjugates.Eur. J. Med. Chem.202426411596910.1016/j.ejmech.2023.115969 38039787
    [Google Scholar]
  82. AlemayehuB. AlemayehuM. Leishmaniasis: A review on parasite, vector and reservoir host.Health Sci. J.20171110.21767/1791‑809X.1000519
    [Google Scholar]
  83. RajasekaranR. ChenY.P.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs.Drug Discov. Today201520895896810.1016/j.drudis.2015.04.006 25936844
    [Google Scholar]
  84. HerwaldtB.L. Leishmaniasis.Lancet199935491851191119910.1016/S0140‑6736(98)10178‑2 10513726
    [Google Scholar]
  85. MurrayH.W. PépinJ. NutmanT.B. HoffmanS.L. MahmoudA.A.F. Recent advances: Tropical medicine.BMJ2000320723349049410.1136/bmj.320.7233.490 10678866
    [Google Scholar]
  86. DorloT.P.C. BalasegaramM. BeijnenJ.H. de VriesP.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis.J. Antimicrob. Chemother.201267112576259710.1093/jac/dks275 22833634
    [Google Scholar]
  87. SeifertK. Pérez-VictoriaF.J. StettlerM. Sánchez-CañeteM.P. CastanysS. GamarroF. CroftS.L. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo.Int. J. Antimicrob. Agents200730322923510.1016/j.ijantimicag.2007.05.007 17628445
    [Google Scholar]
  88. Freitas-JuniorL.H. ChatelainE. KimH.A. Siqueira-NetoJ.L. Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it?Int. J. Parasitol. Drugs Drug Resist.20122111910.1016/j.ijpddr.2012.01.003 24533267
    [Google Scholar]
  89. AntinarelliL.M.R. CarmoA.M.L. PavanF.R. LeiteC.Q.F. Da SilvaA.D. CoimbraE.S. SalunkeD.B. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline.Org. Med. Chem. Lett.2012211610.1186/2191‑2858‑2‑16 22551300
    [Google Scholar]
  90. YousufM. MukherjeeD. PalA. DeyS. MandalS. PalC. AdhikariS. Synthesis and biological evaluation of ferrocenylquinoline as a potential antileishmanial agent.ChemMedChem201510354655410.1002/cmdc.201402537 25619822
    [Google Scholar]
  91. YousufM. MukherjeeD. DeyS. PalC. AdhikariS. Antileishmanial ferrocenylquinoline derivatives: Synthesis and biological evaluation against Leishmania donovani.Eur. J. Med. Chem.201612446847910.1016/j.ejmech.2016.08.049 27598235
    [Google Scholar]
  92. MukherjeeD. YousufM. DeyS. ChakrabortyS. ChaudhuriA. KumarV. SarkarB. NathS. HussainA. DuttaA. MishraT. RoyB.G. SinghS. ChakrabortyS. AdhikariS. PalC. Targeting the trypanothione reductase of tissue-residing Leishmania in Hosts’ reticuloendothelial system: A flexible water-soluble ferrocenylquinoline-based preclinical drug candidate.J. Med. Chem.20206324156211563810.1021/acs.jmedchem.0c00690 33296601
    [Google Scholar]
  93. GlanzmannN. AntinarelliL.M.R. da Costa NunesI.K. PereiraH.M.G. CoelhoE.A.F. CoimbraE.S. da SilvaA.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.Biomed. Pharmacother.202114111185710.1016/j.biopha.2021.111857 34323702
    [Google Scholar]
  94. BazinH. Vaccination: a history.MontrougeJohn Libbey Eurotext2011
    [Google Scholar]
  95. BagcchiS. WHO’s Global Tuberculosis Report 2022.Lancet Microbe202341e2010.1016/S2666‑5247(22)00359‑7 36521512
    [Google Scholar]
  96. BarberisI. BragazziN.L. GalluzzoL. MartiniM. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus.J. Prev. Med. Hyg.2017581E9E12 28515626
    [Google Scholar]
  97. LucaS. MihaescuT. History of BCG Vaccine.Maedica (Buchar.)2013815358 24023600
    [Google Scholar]
  98. MahajanR. Bedaquiline: First FDA-approved tuberculosis drug in 40 years.Int. J. Appl. Basic Med. Res.2013311210.4103/2229‑516X.112228 23776831
    [Google Scholar]
  99. MirsaeidiM. After 40years, new medicine for combating TB.Int. J. Mycobacteriol.2013211210.1016/j.ijmyco.2013.01.004 25045621
    [Google Scholar]
  100. YazisizH. Hircin CengerD. UçarmanN. AltinS. The molecular patterns of resistance to anti-tuberculosis drugs: an analysis from Istanbul, Turkey.J. Chemother.2020322667410.1080/1120009X.2020.1716477 31986985
    [Google Scholar]
  101. RodeH.B. LadeD.M. GréeR. MainkarP.S. ChandrasekharS. Strategies towards the synthesis of anti-tuberculosis drugs.Org. Biomol. Chem.201917225428545910.1039/C9OB00817A 31111850
    [Google Scholar]
  102. SinghA. ViljoenA. KremerL. KumarV. Azide-alkyne cycloaddition en route to 4-aminoquinoline-ferrocenylchalcone conjugates: synthesis and anti-TB evaluation.Future Med. Chem.20179151701170810.4155/fmc‑2017‑0098 28869400
    [Google Scholar]
  103. AlcarazM. SharmaB. Roquet-BanèresF. CondeC. CochardT. BietF. KumarV. KremerL. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis.Eur. J. Med. Chem.202223911453110.1016/j.ejmech.2022.114531 35759907
    [Google Scholar]
  104. KumarS. SainiA. KumarA. RajR. KumarV. 7‐chloroquinoline‐chalcone/-pyrazoline conjugates: synthesis, antimycobacterial and cytotoxic activities.J. Heterocycl. Chem.20225991513151810.1002/jhet.4486
    [Google Scholar]
  105. NyoniN.T.P. NcubeN.B. KubhekaM.X. MkhwanaziN.P. SenzaniS. SinghT. TukululaM. Synthesis, characterization, in vitro antimycobacterial and cytotoxicity evaluation, DFT calculations, molecular docking and ADME studies of new isomeric benzimidazole-1,2,3-triazole-quinoline hybrid mixtures.Bioorg. Chem.202314110690410690410.1016/j.bioorg.2023.106904 37832224
    [Google Scholar]
  106. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: an overview.Cancers (Basel)2014631769179210.3390/cancers6031769 25198391
    [Google Scholar]
  107. SarkarS. HornG. MoultonK. OzaA. BylerS. KokolusS. LongacreM. Cancer development, progression, and therapy: an epigenetic overview.Int. J. Mol. Sci.20131410210872111310.3390/ijms141021087 24152442
    [Google Scholar]
  108. BylerS. GoldgarS. HeerbothS. LearyM. HousmanG. MoultonK. SarkarS. Genetic and epigenetic aspects of breast cancer progression and therapy.Anticancer Res.201434310711077 24596345
    [Google Scholar]
  109. BylerS. SarkarS. Do epigenetic drug treatments hold the key to killing cancer progenitor cells?Epigenomics20146216116510.2217/epi.14.4 24811783
    [Google Scholar]
  110. SarkarS. GoldgarS. BylerS. RosenthalS. HeerbothS. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy.Epigenomics201351879410.2217/epi.12.68 23414323
    [Google Scholar]
  111. SarkarS. LongacreM. Histone deacetylases (HDACs): Function, mechanism, & inhibition. Encyclopedia of Analytical Chemistry. MeyersR.A. Chichester, UKJohn Wiley201419
    [Google Scholar]
  112. HeerbothS. LapinskaK. SnyderN. LearyM. RollinsonS. SarkarS. Use of epigenetic drugs in disease: an overview.Genet. Epigenet.20146GEG.S1227010.4137/GEG.S1227025512710
    [Google Scholar]
  113. ZadaS. HwangJ.S. AhmedM. LaiT.H. PhamT.M. ElashkarO. KimD.R. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy.Biochim. Biophys. Acta Rev. Cancer20211876118856510.1016/j.bbcan.2021.188565 33992723
    [Google Scholar]
  114. KandiS.K. ManoharS. Vélez GerenaC.E. ZayasB. MalhotraS.V. RawatD.S. C5-curcuminoid-4-aminoquinoline based molecular hybrids: design, synthesis and mechanistic investigation of anticancer activity.New J. Chem.201539122423410.1039/C4NJ00936C
    [Google Scholar]
  115. BinhL.H. VanN.T.T. KienV.T. MyN.T.T. Van ChinhL. NgaN.T. TienH.X. ThaoD.T. VuT.K. Synthesis and in vitro cytotoxic evaluation of new triazole derivatives based on artemisinin via click chemistry.Med. Chem. Res.201625473875010.1007/s00044‑016‑1524‑z
    [Google Scholar]
  116. YuF. WangY. HangY. TangW. ZhaoZ. OupickýD. Synthesis and biological characterization of clicked chloroquine copolymers as macromolecular inhibitors of cancer cell migration.J. Polym. Sci. A Polym. Chem.201957222235224210.1002/pola.29512
    [Google Scholar]
  117. CoghiP. NgJ.P.L. NasimA.A. WongV.K.W. N-[7-Chloro-4-[4-(phenoxymethyl)-1H-1,2,3-triazol-1-yl]quinoline]-acetamide.Molbank202120212M121310.3390/M1213
    [Google Scholar]
  118. YunX. XieY. NgJ.P.L. LawB.Y.K. WongV.K.W. CoghiP. 2-Bromo-3-((1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl)-methoxy)-benzaldehyde.Molbank202220221M135110.3390/M1351
    [Google Scholar]
  119. BegniniK.R. DuarteW.R. da SilvaL.P. BussJ.H. GoldaniB.S. FronzaM. SegattoN.V. AlvesD. SavegnagoL. SeixasF.K. CollaresT. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells.Biomed. Pharmacother.20179151051610.1016/j.biopha.2017.04.098 28482288
    [Google Scholar]
  120. SinghH. NandB. SindhuJ. KhuranaJ.M. SharmaC. AnejaK.R. Efficient one pot synthesis of xanthene-triazole-quinoline/phenyl conjugates and evaluation of their antimicrobial activity.J. Braz. Chem. Soc.20142571178119310.5935/0103‑5053.20140095
    [Google Scholar]
  121. WuG. GaoY. KangD. HuangB. HuoZ. LiuH. PoongavanamV. ZhanP. LiuX. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors.MedChemComm20189114915910.1039/C7MD00457E 30108908
    [Google Scholar]
  122. LeiteD.I. FontesF.V. BastosM.M. HoelzL.V.B. BiancoM.C.A.D. de OliveiraA.P. da SilvaP.B. da SilvaC.F. BatistaD.G.J. da GamaA.N.S. PeresR.B. VillarJ.D.F. SoeiroM.N.C. BoechatN. New 1,2,3‐triazole‐based analogues of benznidazole for use against Trypanosoma cruzi infection: In vitro and in vivo evaluations.Chem. Biol. Drug Des.20189231670168210.1111/cbdd.13333 29745048
    [Google Scholar]
  123. Rosado-SolanoD.N. Barón-RodríguezM.A. Sanabria FlorezP.L. Luna-ParadaL.K. Puerto-GalvisC.E. Zorro-GonzálezA.F. KouznetsovV.V. Vargas-MéndezL.Y. Synthesis, biological evaluation and in silico computational studies of 7-Chloro-4-(1 H -1,2,3-triazol-1-yl)quinoline Derivatives: Search for New Controlling Agents against Spodoptera frugiperda (Lepidoptera: Noctuidae).Larvae. J. Agric. Food Chem.201967339210921910.1021/acs.jafc.9b01067 31390203
    [Google Scholar]
  124. JamshidiH. Naimi‐JamalM.R. SafaviM. Synthesis and biological activity profile of novel triazole/quinoline hybrids.Chem. Biol. Drug Des.2022100693594610.1111/cbdd.14031
    [Google Scholar]
  125. FaiL.K. AnyanwuM. AiJ. XieY. GianoncelliA. RibaudoG. CoghiP. 4-(4-(((1H-Benzo[d][1,2,3]triazol-1-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)-7-chloroquinoline.Molbank202220223M140410.3390/M1404
    [Google Scholar]
  126. KuanH. XieY. GuoY. GianoncelliA. RibaudoG. CoghiP. (2R, 4S, 5S) 1-(4-(4-(((7-Chloroquinolin-4-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione.Molbank202320233M168110.3390/M1681
    [Google Scholar]
  127. NgJ.P.L. Xiao YunY. Adnan NasimA. GianoncelliA. Yuan Kwan LawB. RibaudoG. Kam Wai WongV. CoghiP. Synthesis, docking studies and biological evaluation of 1H-1,2,3-triazole-7-chloroquinoline derivatives against SARS-CoV-2.Bioorg. Chem.202314110688210.1016/j.bioorg.2023.106882 37839144
    [Google Scholar]
  128. QinY. LiG. WangL. YinG. ZhangX. WangH. ZhengP. HuaW. ChengY. ZhaoY. ZhangJ. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors.Bioorg. Chem.202414610729110.1016/j.bioorg.2024.107291 38521011
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072316356240916093038
Loading
/content/journals/cbc/10.2174/0115734072316356240916093038
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test