Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

The aurone derivatives are a subfamily of flavonoids. Aurones can be easily broken down into two major parts, a benzofuranone and an exocyclic arylidene, often made from an aldehyde, despite having the normal 15-carbon structure. However, aurone derivatives have recently received considerable attention due to their diverse biological effects. These derivatives are synthesized by different chemical methods and exhibit different types of biological actions such as antibacterial, antiviral, antimalarial, anticancer, antiplasmodial, antiparasitic, anti-inflammatory, antioxidant, and other beneficial biological activities. Furoaurone (a semi-synthetic compound), also known as benzofuran-3(2H)-one, is made from naturally occurring furanochromones collected from Ammivisnaga fruits. In this review, we study the numerous synthetic techniques for aurone and furanone derivatives and various biological functions.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072316761241111020854
2024-10-17
2025-10-13
Loading full text...

Full text loading...

References

  1. LathwalE. KumarS. A review of the various synthetic approaches to access aurone derivatives and their biological activities.Curr. Org. Chem.202327430835110.2174/1385272827666230407110607
    [Google Scholar]
  2. KumarS. An improved one-pot and eco-friendly synthesis of aurones under solvent-free conditions.Green Chem. Lett. Rev.201471959910.1080/17518253.2014.895867
    [Google Scholar]
  3. DubeyR.K. DixitP. AryaS. Naturally occurring aurones and chromones- potential organic therapeutic agents improvising nutritional security.Int. J. Innov. Res. Sci. Eng. Technol.20143181418148
    [Google Scholar]
  4. IrinaI. MohamedG. Biological Activities and Effects of Food Processing on Flavonoids as Phenolic Antioxidants. PetreM. Intechopen2012102124
    [Google Scholar]
  5. ZhengX. WangH. LiuY.M. YaoX. TongM. WangY.H. LiaoD.F. Synthesis, characterization, and anticancer effect of trifluoromethylated aurone derivatives.J. Heterocycl. Chem.201552129630110.1002/jhet.1969
    [Google Scholar]
  6. ChenH. QiX.D. QiuP. A novel synthesis of aurones: Their in vitro anticancer activity against breast cancer cell lines and effect on cell cycle, apoptosis and mitochondrial membrane potential.Bangladesh J. Pharmacol.20149450151010.3329/bjp.v9i4.20455
    [Google Scholar]
  7. DetsiA. MajdalaniM. KontogiorgisC.A. Hadjipavlou-LitinaD. KefalasP. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity.Bioorg. Med. Chem.200917238073808510.1016/j.bmc.2009.10.002 19853459
    [Google Scholar]
  8. HassanG.S. GeorgeyH.H. GeorgeR.F. MohamedE.R. Aurones and furoaurones: Biological activities and synthesis.Bull. Fac. Pharm. Cairo Univ.201856212112710.1016/j.bfopcu.2018.06.002
    [Google Scholar]
  9. JagtapS.V. KhanA.A. Synthesis and biological activities of aurones: A Review.Int. J. Pure App. Biosci.20164213715510.18782/2320‑7051.2230
    [Google Scholar]
  10. MasesaneI.B. A comprehensive review of the oxidative cyclisation of 2′-hydroxychalcones to aurones and flavones.Int. J. Chem. Stud.2015335359
    [Google Scholar]
  11. BohmB.A. Methods in plant biochemistry.In: Plant Phenolics.Academic Press198923728210.1016/B978‑0‑12‑461011‑8.50013‑5
    [Google Scholar]
  12. MazziottiI. PetraroloG. La MottaC. Aurones: A golden resource for active compounds.Molecules2021271210.3390/molecules27010002 35011233
    [Google Scholar]
  13. Atta-Ur-Rahman ChoudharyM.I. HayatS. KhanA.M. AhmedA. Two new aurones from marine brown alga Spatoglossum variabile.Chem. Pharm. Bull. (Tokyo)200149110510710.1248/cpb.49.105 11201212
    [Google Scholar]
  14. LawrenceN.J. RennisonD. McGownA.T. HadfieldJ.A. The total synthesis of an aurone isolated from Uvaria hamiltonii: aurones and flavones as anticancer agents.Bioorg. Med. Chem. Lett.200313213759376310.1016/j.bmcl.2003.07.003 14552774
    [Google Scholar]
  15. ChengH. ZhangL. LiuY. ChenS. ChengH. LuX. ZhengZ. ZhouG.C. Design, synthesis and discovery of 5-hydroxyaurone derivatives as growth inhibitors against HUVEC and some cancer cell lines.Eur. J. Med. Chem.201045125950595710.1016/j.ejmech.2010.09.061 20974505
    [Google Scholar]
  16. DemirayakS. YurttasL. Gundogdu-KaraburunN. KaraburunA.C. KayagilI. Synthesis and anti-cancer activity evaluation of new aurone derivatives.J. Enzyme Inhib. Med. Chem.201530581682510.3109/14756366.2014.976568 25716125
    [Google Scholar]
  17. OkombiS. RivalD. BonnetS. MariotteA.M. PerrierE. BoumendjelA. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes.J. Med. Chem.200649132933310.1021/jm050715i 16392817
    [Google Scholar]
  18. BoumendjelA. Aurones: a subclass of flavones with promising biological potential.Curr. Med. Chem.200310232621263010.2174/0929867033456468 14529476
    [Google Scholar]
  19. LeeC.Y. ChewE.H. GoM.L. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR.Eur. J. Med. Chem.20104572957297110.1016/j.ejmech.2010.03.023 20392544
    [Google Scholar]
  20. HuangW. LiuM.Z. LiY. TanY. YangG.F. Design, syntheses, and antitumor activity of novel chromone and aurone derivatives.Bioorg. Med. Chem.200715155191519710.1016/j.bmc.2007.05.022 17524655
    [Google Scholar]
  21. SimH.M. LeeC.Y. EeP.L.R. GoM.L. Dimethoxyaurones: Potent inhibitors of ABCG2 (breast cancer resistance protein).Eur. J. Pharm. Sci.200835429330610.1016/j.ejps.2008.07.008 18725288
    [Google Scholar]
  22. NordströmC.G. SwainT. The flavonoid glycosides of Dahlia variabilis. II. Glycosides of yellow varieties “Pius IX” and “Coton”.Arch. Biochem. Biophys.195660232934410.1016/0003‑9861(56)90435‑0 13292910
    [Google Scholar]
  23. HassanG.S. GeorgeyH.H. GeorgeR.F. MohammedE.R. Construction of some cytotoxic agents with aurone and furoaurone scaffolds.Future Med. Chem.2018101275210.4155/fmc‑2017‑0147 29235893
    [Google Scholar]
  24. NarsinghaniT. SharmaM.C. BhargavS. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives.Med. Chem. Res.20132294059406810.1007/s00044‑012‑0413‑3
    [Google Scholar]
  25. HuongT.T. CuongN.X. TramL.H. QuangT.T. DuongL.V. NamN.H. DatN.T. HuongP.T.T. DiepC.N. KiemP.V. MinhC.V. A new prenylated aurone from Artocarpus altilis.J. Asian Nat. Prod. Res.201214992392810.1080/10286020.2012.702758 22924601
    [Google Scholar]
  26. KayserO. KiderlenA.F. Leishmanicidal activity of aurones.Tokai J. Exp. Clin. Med.1998236423426 10622641
    [Google Scholar]
  27. RoussakiM. Costa LimaS. KypreouA.M. KefalasP. Cordeiro da SilvaA. DetsiA. Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents.Int. J. Med. Chem.201220121810.1155/2012/196921 25374683
    [Google Scholar]
  28. CarrascoM.P. NewtonA.S. GonçalvesL. GóisA. MachadoM. GutJ. NogueiraF. HänscheidT. GuedesR.C. dos SantosD.J.V.A. RosenthalP.J. MoreiraR. Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial activity.Eur. J. Med. Chem.20148052353410.1016/j.ejmech.2014.04.076 24813880
    [Google Scholar]
  29. SouardF. OkombiS. BeneyC. ChevalleyS. ValentinA. BoumendjelA. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs.Bioorg. Med. Chem.201018155724573110.1016/j.bmc.2010.06.008 20630767
    [Google Scholar]
  30. BhaskerN. ReddyM.K. Synthesis and characterization of new series of prenyloxy chalcones, prenyloxyaurones and screening for anti-bacterial activity.Int. J. Pharm. Biol. Sci.2011212661272
    [Google Scholar]
  31. JardoshH.H. PatelM.P. Antimicrobial and antioxidant evaluation of new quinolone based aurone analogs.Arab. J. Chem.201710S3781S379110.1016/j.arabjc.2014.05.014
    [Google Scholar]
  32. MeguellatiA. Ahmed-BelkacemA. YiW. HaudecoeurR. CrouillèreM. BrilletR. PawlotskyJ.M. BoumendjelA. PeuchmaurM. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase.Eur. J. Med. Chem.20148057959210.1016/j.ejmech.2014.04.005 24835816
    [Google Scholar]
  33. HaudecoeurR. Ahmed-BelkacemA. YiW. FortunéA. BrilletR. BelleC. NicolleE. PallierC. PawlotskyJ.M. BoumendjelA. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase.J. Med. Chem.201154155395540210.1021/jm200242p 21699179
    [Google Scholar]
  34. RagabF.A. SafwatH.M. HusseinM.M. Abd-El GawadN.M. HassanG.S. Synthesis and anticonvulsantactivity of thiazolidine-4-onederivativescarrying a furochromone or benzofuran moiety.Bull. Fac. Pharm. Cairo Univ.2006447182
    [Google Scholar]
  35. RagabF.A. EidN.M. HassanG.S. NissanY.M. Synthesis and anticonvulsant activity of new 4-thiazolidinones and 2-thioxo-4-imidazolidinones attached to 4-oxo and thioxobenzopyranes.Bull. Fac. Pharm. Cairo Univ.2006448393
    [Google Scholar]
  36. MuzychkaO.V. KobzarO.L. PopovaA.V. FrasinyukM.S. VovkA.I. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase.Bioorg. Med. Chem.201725143606361310.1016/j.bmc.2017.04.048 28545814
    [Google Scholar]
  37. ShengR. XuY. HuC. ZhangJ. LinX. LiJ. YangB. HeQ. HuY. Design, synthesis and AChE inhibitory activity of indanone and aurone derivatives.Eur. J. Med. Chem.200944171710.1016/j.ejmech.2008.03.003 18436348
    [Google Scholar]
  38. NenadisN. SigalasM.P. A DFT study on the radical scavenging activity of maritimetin and related aurones.J. Phys. Chem. A200811247121961220210.1021/jp8058905 18983134
    [Google Scholar]
  39. ShresthaS. NatarajanS. ParkJ.H. LeeD.Y. ChoJ.G. KimG.S. JeonY.J. YeonS.W. YangD.C. BaekN.I. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora.Bioorg. Med. Chem. Lett.201323185150515410.1016/j.bmcl.2013.07.020 23927974
    [Google Scholar]
  40. RagabF.A. YahyaT.A.A. El-NaaM.M. ArafaR.K. Design, synthesis and structure–activity relationship of novel semi-synthetic flavonoids as antiproliferative agents.Eur. J. Med. Chem.20148250652010.1016/j.ejmech.2014.06.007 24937184
    [Google Scholar]
  41. VarmaR.S. VarmaM. Alumina-mediated condensation. A simple synthesis of aurones.Tetrahedron Lett.199233405937594010.1016/S0040‑4039(00)61093‑6
    [Google Scholar]
  42. MayaY. OnoM. WatanabeH. HaratakeM. SajiH. NakayamaM. Novel radioiodinated aurones as probes for SPECT imaging of β-amyloid plaques in the brain.Bioconjug. Chem.20092019510110.1021/bc8003292 19072219
    [Google Scholar]
  43. MorimotoM. FukumotoH. NozoeT. HagiwaraA. KomaiK. Synthesis and insect antifeedant activity of aurones against Spodoptera litura larvae.J. Agric. Food Chem.200755370070510.1021/jf062562t 17263463
    [Google Scholar]
  44. VenkateswarluS. PanchagnulaG.K. SubbarajuG.V. Synthesis and antioxidative activity of 3′,4′,6,7-tetrahydroxyaurone, a metabolite of Bidens frondosa.Biosci. Biotechnol. Biochem.200468102183218510.1271/bbb.68.2183 15502366
    [Google Scholar]
  45. GuoQ.N. LvL. ZhouY. YuP. TengY. Design, synthesis and biological evaluation of the novel antitumor agent aurone derivatives.Adv. Mat. Res.2013781-7841235123910.4028/www.scientific.net/AMR.781‑784.1235
    [Google Scholar]
  46. HawkinsI. HandyS.T. Synthesis of aurones under neutral conditions using a deep eutectic solvent.Tetrahedron201369449200920410.1016/j.tet.2013.08.060
    [Google Scholar]
  47. Morales-CamiloN. SalasC.O. SanhuezaC. Espinosa-BustosC. Sepúlveda-BozaS. Reyes-ParadaM. Gonzalez-NiloF. Caroli-RezendeM. FierroA. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO ‐ B inhibitors.Chem. Biol. Drug Des.201585668569510.1111/cbdd.12458 25346162
    [Google Scholar]
  48. SekizakiH. Synthesis of 2-benzylidene-3(2 h)-benzofuran-3-ones (aurones) by oxidation of 2′-hydroxychalcones with mercury(ii) acetate.Bull. Chem. Soc. Jpn.19886141407140910.1246/bcsj.61.1407
    [Google Scholar]
  49. RuiF. ShurongB.F. Synthesis and anti-VSMC vegetation activities of new aurone derivatives.Chem. Res. Chin. Univ.201228438442
    [Google Scholar]
  50. AgrawalN.N. SoniP.A. A new process for the synthesis of aurones by using mercury (ii) acetate in pyridine and cupric bromide in dimethyl sulphoxide.Indian J. Chem.200645b13011303
    [Google Scholar]
  51. ThanigaimalaiP. YangH.M. SharmaV.K. KimY. JungS.H. The scope of thallium nitrate oxidative cyclization of chalcones; synthesis and evaluation of isoflavone and aurone analogs for their inhibitory activity against interleukin-5.Bioorg. Med. Chem.201018124441444510.1016/j.bmc.2010.04.075 20472438
    [Google Scholar]
  52. MoussouniS. DetsiA. MajdalaniM. MakrisD.P. KefalasP. Crude peroxidase from onion solid waste as a tool for organic synthesis. Part I: Cyclization of 2′,3,4,4′,6′-pentahydroxy-chalcone into aureusidin.Tetrahedron Lett.201051314076407810.1016/j.tetlet.2010.05.125
    [Google Scholar]
  53. SchönbergA. BadranN. StarkowskyN.A. Furo-chromones] and coumarins. vii. Degradation of visnagin, khellin and related substances; experiments with chromic acid and hydrogen peroxide; and a synthesis of eugenitin.J. Am. Chem. Soc.195375204992499510.1021/ja01116a032
    [Google Scholar]
  54. HishmatO.H. El-EbrashiN.M.A. Oxidation of styryl derivatives of khellinone and visnaginone.Indian J. Chem.19741210521055
    [Google Scholar]
  55. HassanG.S. Abou-SeriS.M. KamelG. AliM.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents.Eur. J. Med. Chem.20147648249310.1016/j.ejmech.2014.02.033 24607877
    [Google Scholar]
  56. AgrawalN. SoniP.A. A new process for synthesis of aurones by usingmercury (ii) acetate in pyridine and cupric bromide in dimethyl sulfoxide.Indian J. Chem.200645b26012603
    [Google Scholar]
  57. AgrawalN. SoniP.A. Reaction of 2′-hydroxy 5-acetomidochalcones with dimethyl sulfoxide–iodine pyridinemercuric (ii) acetate triethanolamine.Indian J. Chem.200544b13011303
    [Google Scholar]
  58. SudershanK. Microwave assisted synthesis of chalcones and their novel biodynamic heterocyclic compounds.Tetrahedron2010126133085
    [Google Scholar]
  59. AmetaK.L. RathoreN.S. KumarB. MalagaM. Synthesis] and trypanocidal evaluation of some novel 2-(substituted benzylidene)-5, 7-dibromo-6-hydroxy-1-benzofuran-3(2<i>h</i&] gt;)-ones.Int. J. Org. Chem. (Irvine)201202329530110.4236/ijoc.2012.223040
    [Google Scholar]
  60. KakadeK.P. KakadeS.P. DeshmukhS.Y. Synthesis and characterization of some bromo substituted chalcone by the green synthesis way (grinding method) and aurones 2-benzylidine-1-benzofuran-3-one by cyclization method, world.J. Pharm. Sci.201440115911597
    [Google Scholar]
  61. ElhadiA.A. OsmanH. IqbalM.A. RajeswariS.K. AhamedM.B.K. Abdul MajidA.M.S. RosliM.M. RazakI.A. MajidA.S.A. Synthesis and structural elucidation of two new series of aurone derivatives as potent inhibitors against the proliferation of human cancer cells.Med. Chem. Res.20152493504351510.1007/s00044‑015‑1400‑2
    [Google Scholar]
  62. NaqviA. ShahnawaazM. RaoA. SethD. Synthesis and antimicrobial screening of 3-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-5- methylphenyl)prop-2-en-one and its heterocyclic analogs. The 13th International Electronic Conference on Synthetic Organic Chemistry session Bioorganic Chemistry and Natural Products, 1–30 Nov, 2009, Basel, Switzerland111
    [Google Scholar]
  63. HarkatH. BlancA. WeibelJ.M. PaleP. Versatile and expeditious synthesis of aurones via Au I-catalyzed cyclization.J. Org. Chem.20087341620162310.1021/jo702197b 18193886
    [Google Scholar]
  64. AlcaideB. AlmendrosP. AlonsoJ.M. Gold-catalyzed cyclizations of alkynol-based compounds: Synthesis of natural products and derivatives.Molecules20111697815784310.3390/molecules16097815 22143545
    [Google Scholar]
  65. NakayamaT. Enzymology of aurone biosynthesis.J. Biosci. Bioeng.200294648749110.1016/S1389‑1723(02)80184‑0 16233339
    [Google Scholar]
  66. KaraleB.K. NirmalP.R. AkolkarH.N. Synthesis &biological screening of some novel fluorinated chromones & aurones.Indian J. Chem.201554b434438
    [Google Scholar]
  67. TiwariK.N. MonserratJ.P. HequetA. Ganem-ElbazC. CresteilT. JaouenG. VessièresA. HillardE.A. JolivaltC. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures.Dalton Trans.201241216451645710.1039/c2dt12180h 22240736
    [Google Scholar]
  68. XieZ. LiY. ZhaoX. LiuJ. A one-pot synthesis of aurones from substituted acetophenones and benz¬aldehydes: A concise synthesis of aureusidin.Synthesis201244142217222410.1055/s‑0031‑1291153
    [Google Scholar]
  69. LajisN.H. KhanM.N. KiewR. BremneJ.B. The Flavonoids of Orophea polycarpa A. DC. (Annonaceae).Pertanika J. Sci. Technol.199312195198
    [Google Scholar]
  70. NgameniB. NgadjuiB.T. FolefocG.N. WatchuengJ. AbegazB.M. Diprenylated chalcones and other constituents from the twigs of Dorstenia barteri var. subtriangularis.Phytochemistry200465442743210.1016/j.phytochem.2003.10.021 14759536
    [Google Scholar]
  71. ReddyR.V.N. ReddyN.P. KhalivullaS.I. ReddyM.V.B. GunasekarD. BlondA. BodoB. O-Prenylated flavonoids from Dalbergia sissoo.Phytochem. Lett.200811232610.1016/j.phytol.2007.11.001
    [Google Scholar]
  72. TanakaT. AsaiF. IinumaM. Phenolic compounds from peperomia obtusifolia.Phytochemistry199849122923210.1016/S0031‑9422(97)01050‑9
    [Google Scholar]
  73. AbegazB.M. NgadjuiB.T. DongoE. NgameniB. NindiM.N. BezabihM. Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri.Phytochemistry200259887788310.1016/S0031‑9422(01)00483‑6 11937170
    [Google Scholar]
  74. ShibataK. TatsukawaA. UmeokaK. Hua Seng Lee HS, Ochi M. CrinatusinsBioact. Diels Alder Adducts Cyathocaly x Crinatus Tetrahedron.2000564588218824
    [Google Scholar]
  75. BabuK.R. KumarK.V. VijayaM. MadhavaraoV. A novel solid supported synthesis of flavones.Int. J. Pharm. Technol.20124139433950
    [Google Scholar]
  76. CheeC.F. LeeY.K. BuckleM.J.C. RahmanN.A. Synthesis of (±)-kuwanon V and (±)-dorsterone methyl ethers via Diels–Alder reaction.Tetrahedron Lett.201152151797179910.1016/j.tetlet.2011.02.023
    [Google Scholar]
  77. ChimentiF. FioravantiR. BolascoA. ChimentiP. SecciD. RossiF. YáñezM. OralloF. OrtusoF. AlcaroS. CirilliR. FerrettiR. SannaM.L. A new series of flavones, thioflavones, and flavanones as selective monoamine oxidase-B inhibitors.Bioorg. Med. Chem.20101831273127910.1016/j.bmc.2009.12.029 20045650
    [Google Scholar]
  78. SusantiE.V.H. MatsjehS. WahyuningsihT.D. MustofaR.T. Synthesis, characterization and antioxidant activity of 7-hydroxy-3′,4′-dimethoxyflavone. indo-.J. Chem.2012122146151
    [Google Scholar]
  79. StoyanovE.V. ChampavierY. SimonA. BaslyJ.P. Efficient liquid-Phase synthesis of 2′-Hydroxychalcones.Bioorg. Med. Chem. Lett.200212192685268710.1016/S0960‑894X(02)00553‑X 12217354
    [Google Scholar]
  80. SatoT. NakayamaT. KikuchiS. FukuiY. Yonekura-SakakibaraK. UedaT. NishinoT. TanakaY. KusumiT. Enzymatic formation of aurones in the extracts of yellow snapdragon flowers.Plant Sci.2001160222923610.1016/S0168‑9452(00)00385‑X 11164594
    [Google Scholar]
  81. KhanM.K. Zill-E-Huma, D.O.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols.J. Food Compos. Anal.20143318510410.1016/j.jfca.2013.11.004
    [Google Scholar]
  82. HuangH.Q. LiH.L. TangJ. LvY.F. ZhangW.D. A new aurone and other phenolic constituents from Veratrum schindleri Loes. f.Biochem. Syst. Ecol.200836759059210.1016/j.bse.2008.03.008
    [Google Scholar]
  83. AgrawalN.N. SoniP.A. A new process for the synthesis of aurones by using mercury (ii) acetate in pyridine and cupric bromide in dimethyl sulfoxide.Indian J. Chem.200645b513011303
    [Google Scholar]
  84. SousaC.M. BerthetJ. DelbaereS. CoelhoP.J. One pot synthesis of aryl substituted aurones.Dyes Pigments201292153754110.1016/j.dyepig.2011.05.026
    [Google Scholar]
  85. TorresD.S. de OliveiraB.A. Synthetic Aurones: New Features for Schistosoma mansoni.Therapy20211811e210043910.1002/cbdv.202100439
    [Google Scholar]
  86. KhanM.S.Y. MueedM.A. Scope of mercuric acetate oxidation of chalcones and the antibacterial activity of resulting aurones.Indian J. Chem.200443b817941797
    [Google Scholar]
  87. AmetaK.L. RathoreN.S. KumarB. MalagaM. E.S.; P, M.V.; Gilman, R.H.; Verma, B.L. Synthesis and trypanocidal evaluation of some novel 2-(substituted benzylidene)-5, 7-dibromo-6-hydroxy-1-benzofuran-3(2H)-.Ones. Int. J. Org. Chem.20122329530110.4236/ijoc.2012.223040
    [Google Scholar]
  88. HuangZ. LiY. ZhouJ. ZhangY. WuJ. WuY. ZhangF. FangZ. LiY. Palladium‐catalyzed carbonylation for general synthesis of aurones using CO2.ChemSusChem20231610e20220236510.1002/cssc.202202365 36737418
    [Google Scholar]
  89. McKillopA. Applications of thallium(III) nitrate (TTN) to organic synthesis.Pure Appl. Chem.1975433-446347910.1351/pac197543030463
    [Google Scholar]
  90. ThakkarK. CushmanM. A novel oxidative cyclization of 2′-hydroxychalcones to 4,5-dialkoxyaurones by thallium(iii) nitrate.J. Org. Chem.199560206499651010.1021/jo00125a041
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072316761241111020854
Loading
/content/journals/cbc/10.2174/0115734072316761241111020854
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test