Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Diabetic neuropathy (DN) is one of the prominent complications of diabetes, which can result in pain, impaired movement, and even amputation. There are different types of DN, which can cause pain in fatal situations. In addition to altering insulin signaling, hyperglycemia and dyslipidemia cause a number of pathological changes in vascular cells, glia, as well as in neurons that can cause nerve damage and, in the end, neuropathy. Diabetic neuropathy has a poor prognosis since it doesn't show symptoms for years after diabetes starts. Despite the abundance of medications on the market, pharmacological ineffectiveness and a wide spectrum of adverse effects restrict adherence. As a result, there is a growing need to find novel compounds that show promising effects in the management of severe pain disorders. The most promising sources of novel chemical entities with potential use in medicine continue to be plant-derived products. Those products influenced the various signaling pathways, including PI3K/AKT pathway, MAPK pathway, Oxidative stress, TNF-α signaling, cyclo-oxygenase (COX 2) pathway and other molecular pathways to act as novel therapeutics for diabetic neuropathy. Basically, this mechanistic approach is implemented to improve neuroprotective activity, especially phytoconstituents derived from bioactive compounds. As neurodegenerative diseases have a complicated pathogenesis, the medications that are available on the market only treat the symptoms. Therefore, it would be highly desirable to design pharmacophores for the management of DN, with bioactive substances that have strong neuroprotective effects, using a multi-target strategy.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072321268240920064955
2024-09-30
2025-10-21
Loading full text...

Full text loading...

References

  1. KhanraR. DewanjeeS. K DuaT.; Sahu, R.; Gangopadhyay, M.; De Feo, V.; Zia-Ul-Haq, M. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response.J. Transl. Med.2015131610.1186/s12967‑014‑0364‑1 25591455
    [Google Scholar]
  2. JaraldE. JoshiS.B. JainD. Diabetes and Herbal Medicines.Iran. J. Pharmacol. Ther.2008797106
    [Google Scholar]
  3. TiwariR. SiddiquiM.H. MahmoodT. BaggaP. AhsanF. ShamimA. Herbal Remedies: A boon for diabetic neuropathy.J. Diet. Suppl.201916447049010.1080/19390211.2018.1441203 29580105
    [Google Scholar]
  4. SaidG. Diabetic neuropathy-a review.Nat. Clin. Pract. Neurol.20073633134010.1038/ncpneuro0504 17549059
    [Google Scholar]
  5. EdwardsJ.L. VincentA.M. ChengH.T. FeldmanE.L. Diabetic neuropathy: Mechanisms to management.Pharmacol. Ther.2008120113410.1016/j.pharmthera.2008.05.005 18616962
    [Google Scholar]
  6. WoolfC.J. MannionR.J. Neuropathic pain: aetiology, symptoms, mechanisms, and management.Lancet199935391681959196410.1016/S0140‑6736(99)01307‑0 10371588
    [Google Scholar]
  7. ZimmermannM. Pathobiology of neuropathic pain.Eur. J. Pharmacol.20014291-3233710.1016/S0014‑2999(01)01303‑6 11698024
    [Google Scholar]
  8. TölleT. XuX. SadoskyA.B. Painful diabetic neuropathy: a cross-sectional survey of health state impairment and treatment patterns.J. Diabetes Complications2006201263310.1016/j.jdiacomp.2005.09.007 16389164
    [Google Scholar]
  9. VincentA.M. McleanL.L. BackusC. FeldmanE.L. Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons.FASEB J.200519612410.1096/fj.04‑2513fje 15677696
    [Google Scholar]
  10. SorensenL. MolyneauxL. YueD.K. The relationship among pain, sensory loss, and small nerve fibers in diabetes.Diabetes Care200629488388710.2337/diacare.29.04.06.dc05‑2180 16567832
    [Google Scholar]
  11. TesfayeS. KemplerP. Painful diabetic neuropathy.Diabetologia200548580580710.1007/s00125‑005‑1721‑7 15834549
    [Google Scholar]
  12. SheetzM.J. KingG.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications.JAMA2002288202579258810.1001/jama.288.20.2579 12444865
    [Google Scholar]
  13. PierceG.F. Inflammation in nonhealing diabetic wounds: the space-time continuum does matter.Am. J. Pathol.2001159239940310.1016/S0002‑9440(10)61709‑9 11485896
    [Google Scholar]
  14. YueD.K. HanwellM.A. SatchellP.M. TurtleJ.R. The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats.Diabetes198231978979410.2337/diab.31.9.789 6819173
    [Google Scholar]
  15. CameronN.E. LeonardM.B. RossI.S. WhitingP.H. The effects of Sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat.Diabetologia198629316817410.1007/BF02427088 3084324
    [Google Scholar]
  16. GotoY. HottaN. ShigetaY. SakamotoN. KikkawaR. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study.Biomed. Pharmacother.199549626927710.1016/0753‑3322(96)82642‑4 7579007
    [Google Scholar]
  17. PadillaA. DescorbethM. AlmeydaA.L. PayneK. De LeonM. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity.Brain Res.20111370647910.1016/j.brainres.2010.11.013 21108938
    [Google Scholar]
  18. VincentA.M. HayesJ.M. McLeanL.L. Vivekanandan-GiriA. PennathurS. FeldmanE.L. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1.Diabetes200958102376238510.2337/db09‑0047 19592619
    [Google Scholar]
  19. VincentA.M. PerroneL. SullivanK.A. BackusC. SastryA.M. LastoskieC. FeldmanE.L. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress.Endocrinology2007148254855810.1210/en.2006‑0073 17095586
    [Google Scholar]
  20. LamK.S.L. ChengI.K.P. JanusE.D. PangR.W.C. Cholesterol-lowering therapy may retard the progression of diabetic nephropathy.Diabetologia199538560460910.1007/BF00400731 7489845
    [Google Scholar]
  21. CorraoG. Lipid lowering drugs prescription and the risk of peripheral neuropathy: an exploratory case-control study using automated databases.Heart2005914560560
    [Google Scholar]
  22. TothC. BrusseeV. MartinezJ.A. McDonaldD. CunninghamF.A. ZochodneD.W. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin.Neuroscience2006139242944910.1016/j.neuroscience.2005.11.065 16529870
    [Google Scholar]
  23. SimaA.A. ZhangW. GrunbergerG. Type 1 diabetic neuropathy and C-peptide.Exp. Diabesity Res.2004516577 15198372
    [Google Scholar]
  24. PittengerG. VinikA. Nerve growth factor and diabetic neuropathy.Exp. Diabesity Res.200344271285 14668049
    [Google Scholar]
  25. OhY. Bioactive compounds and their neuroprotective effects in diabetic complications.Nutrients20168847210.3390/nu8080472 27483315
    [Google Scholar]
  26. LairdJ.M. BennettG.J. An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy.J. Neurophysiol.19936962072208510.1152/jn.1993.69.6.2072 8394412
    [Google Scholar]
  27. WallP.D. DevorM. The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord.Brain Res.198120919511110.1016/0006‑8993(81)91174‑4 6260309
    [Google Scholar]
  28. WoolfC.J. WallP.D. Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones.Brain Res.19822421778510.1016/0006‑8993(82)90497‑8 7104735
    [Google Scholar]
  29. Castro-LopesJ. TavaresI. CoimbraA. GABA decreases in the spinal cord dorsal horn after peripheral neurectomy.Brain Res.1993620228729110.1016/0006‑8993(93)90167‑L 8369960
    [Google Scholar]
  30. IbukiT. HamaA.T. WangX-T. PappasG.D. SagenJ. Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts.Neuroscience199676384585810.1016/S0306‑4522(96)00341‑7 9135056
    [Google Scholar]
  31. StillerC.O. CuiJ.G. O’ConnorW.T. BrodinE. MeyersonB.A. LinderothB. Release of γ-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats.Neurosurgery199639236737510.1097/00006123‑199608000‑00026 8832675
    [Google Scholar]
  32. FukuokaT. TokunagaA. KondoE. MikiK. TachibanaT. NoguchiK. Change in mRNAs for neuropeptides and the GABAA receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model.Pain1998781132610.1016/S0304‑3959(98)00111‑0 9822208
    [Google Scholar]
  33. WoolfC.J. ShortlandP. CoggeshallR.E. Peripheral nerve injury triggers central sprouting of myelinated afferents.Nature19923556355757810.1038/355075a0 1370574
    [Google Scholar]
  34. ShortlandP. WoolfC.J. Chronic peripheral nerve section results in a rearrangement of the central axonal arborizations of axotomized A beta primary afferent neurons in the rat spinal cord.J. Comp. Neurol.19933301658210.1002/cne.903300106 8468404
    [Google Scholar]
  35. KoerberH.R. MirnicsK. BrownP.B. MendellL.M. Central sprouting and functional plasticity of regenerated primary afferents.J. Neurosci.19941463655367110.1523/JNEUROSCI.14‑06‑03655.1994 8207480
    [Google Scholar]
  36. WoolfC.J. ShortlandP. ReynoldsM. RidingsJ. DoubellT. CoggeshallR.E. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy.J. Comp. Neurol.1995360112113410.1002/cne.903600109 7499558
    [Google Scholar]
  37. AttalN. BouhassiraD. Mechanisms of pain in peripheral neuropathy.Acta Neurol. Scand.1999100122410.1111/j.1600‑0404.1999.tb07386.x 10819088
    [Google Scholar]
  38. LombardM.C. LarabiY. Albe-FessardD. Electrophysiological study of cervical dorsal horn cells in partially deafferented rats.Pain198111S12910.1016/0304‑3959(81)90362‑6
    [Google Scholar]
  39. LoeserJ.D. WardA.A. Jr. Some effects of deafferentation on neurons of the cat spinal cord.Arch. Neurol.196717662963610.1001/archneur.1967.00470300071012 5234014
    [Google Scholar]
  40. PalecekJ. PaleckováV. DoughertyP.M. CarltonS.M. WillisW.D. Responses of spinothalamic tract cells to mechanical and thermal stimulation of skin in rats with experimental peripheral neuropathy.J. Neurophysiol.19926761562157310.1152/jn.1992.67.6.1562 1321241
    [Google Scholar]
  41. PalecekJ. DoughertyP.M. KimS.H. PaleckováV. LekanH. ChungJ.M. CarltonS.M. WillisW.D. Responses of spinothalamic tract neurons to mechanical and thermal stimuli in an experimental model of peripheral neuropathy in primates.J. Neurophysiol.19926861951196610.1152/jn.1992.68.6.1951 1337100
    [Google Scholar]
  42. TakaishiK. EiseleJ.H.Jr CarstensE. Behavioral and electrophysiological assessment of hyperalgesia and changes in dorsal horn responses following partial sciatic nerve ligation in rats.Pain199666229730610.1016/0304‑3959(96)03023‑0 8880853
    [Google Scholar]
  43. BehbehaniM.M. Dollberg-StolikO. Partial sciatic nerve ligation results in an enlargement of the receptive field and enhancement of the response of dorsal horn neurons to noxious stimulation by an adenosine agonist.Pain199458342142810.1016/0304‑3959(94)90137‑6 7838592
    [Google Scholar]
  44. DevorM. WallP.D. Reorganisation of spinal cord sensory map after peripheral nerve injury.Nature19782765683757610.1038/276075a0 570248
    [Google Scholar]
  45. DevorM. WallP.D. Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord.J. Comp. Neurol.1981199227729110.1002/cne.901990209 7251942
    [Google Scholar]
  46. DevorM. WallP.D. Plasticity in the spinal cord sensory map following peripheral nerve injury in rats.J. Neurosci.19811767968410.1523/JNEUROSCI.01‑07‑00679.1981 7346576
    [Google Scholar]
  47. MarkusH. PomeranzB. KrushelnyckyD. Spread of saphenous somatotopic projection map in spinal cord and hypersensitivity of the foot after chronic sciatic denervation in adult rat.Brain Res.19842961273910.1016/0006‑8993(84)90508‑0 6713208
    [Google Scholar]
  48. MaoJ. PriceD.D. MayerD.J. LuJ. HayesR.L. Intrathecal MK-801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy.Brain Res.1992576225426210.1016/0006‑8993(92)90688‑6 1325239
    [Google Scholar]
  49. GuilbaudG. BenoistJ.M. JazatF. GautronM. Neuronal responsiveness in the ventrobasal thalamic complex of rats with an experimental peripheral mononeuropathy.J. Neurophysiol.19906451537155410.1152/jn.1990.64.5.1537 2283540
    [Google Scholar]
  50. GuilbaudG. BenoistJ.M. LevanteA. GautronM. WillerJ.C. Primary somatosensory cortex in rats with pain-related behaviours due to a peripheral mononeuropathy after moderate ligation of one sciatic nerve: neuronal responsivity to somatic stimulation.Exp. Brain Res.199292222724510.1007/BF00227967 1337325
    [Google Scholar]
  51. MaoJ. MayerD.J. PriceD.D. Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy.J. Neurosci.19931362689270210.1523/JNEUROSCI.13‑06‑02689.1993 8388924
    [Google Scholar]
  52. HoweJ.F. LoeserJ.D. CalvinW.H. Mechanosensitivity of dorsal root ganglia and chronically injured axons: A physiological basis for the radicular pain of nerve root compression.Pain197731254110.1016/0304‑3959(77)90033‑1 195255
    [Google Scholar]
  53. MichaelisM. BlenkK.H. JänigW. VogelC. Development of spontaneous activity and mechanosensitivity in axotomized afferent nerve fibers during the first hours after nerve transection in rats.J. Neurophysiol.19957431020102710.1152/jn.1995.74.3.1020 7500128
    [Google Scholar]
  54. ScaddingJ.W. Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons.Exp. Neurol.198173234536410.1016/0014‑4886(81)90271‑5 7262242
    [Google Scholar]
  55. WallP.D. GutnickM. Ongoing activity in peripheral nerves: The physiology and pharmacology of impulses originating from a neuroma.Exp. Neurol.197443358059310.1016/0014‑4886(74)90197‑6 4827166
    [Google Scholar]
  56. WallP.D. GutnickM. Properties of afferent nerve impulses originating from a neuroma.Nature1974248545174074310.1038/248740a0 4365049
    [Google Scholar]
  57. BurchielK.J. RussellL.C. LeeR.P. SimaA.A.F. Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. A possible mechanism of chronic diabetic neuropathic pain.Diabetes198534111210121310.2337/diab.34.11.1210 4043559
    [Google Scholar]
  58. KajanderK.C. BennettG.J. Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons.J. Neurophysiol.199268373474410.1152/jn.1992.68.3.734 1331353
    [Google Scholar]
  59. EnglandJ.D. HappelL.T. KlineD.G. GamboniF. ThouronC.L. LiuZ.P. LevinsonS.R. Sodium channel accumulation in humans with painful neuromas.Neurology199647127227610.1212/WNL.47.1.272 8710095
    [Google Scholar]
  60. LisneyS.J.W. PoverC.M. Coupling between fibres involved in sensory nerve neuromata in cats.J. Neurol. Sci.198359225526410.1016/0022‑510X(83)90043‑6 6304258
    [Google Scholar]
  61. SeltzerZ. DevorM. Ephaptic transmission in chronically damaged peripheral nerves.Neurology19792971061106410.1212/WNL.29.7.1061 224343
    [Google Scholar]
  62. RasminskyM. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice.J. Physiol.1980305115116910.1113/jphysiol.1980.sp013356 6255143
    [Google Scholar]
  63. BessonJ.M. ChaouchA. Peripheral and spinal mechanisms of nociception.Physiol. Rev.19876716718610.1152/physrev.1987.67.1.67 3543978
    [Google Scholar]
  64. AhlgrenS.C. WhiteD.M. LevineJ.D. Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat.J. Neurophysiol.19926862077208510.1152/jn.1992.68.6.2077 1491258
    [Google Scholar]
  65. HavsteenB.H. The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.2002962-36720210.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  66. TestaR. BonfigliA. GenoveseS. De NigrisV. CerielloA. The possible role of flavonoids in the prevention of diabetic complications.Nutrients20168531010.3390/nu8050310 27213445
    [Google Scholar]
  67. LebeauA. EsclaireF. RostèneW. PélapratD. Baicalein protects cortical neurons from β-amyloid (25-35) induced toxicity.Neuroreport200112102199220210.1097/00001756‑200107200‑00031 11447334
    [Google Scholar]
  68. GaoZ. HuangK. XuH. Protective effects of flavonoids in the roots of Scutellaria baicalensis georgi against hydrogen peroxide-induced oxidative stress in hs-sy5y cells.Pharmacol. Res.200143217317810.1006/phrs.2000.0761 11243719
    [Google Scholar]
  69. LiF.Q. WangT. PeiZ. LiuB. HongJ.S. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons.J. Neural Transm. (Vienna)2005112333134710.1007/s00702‑004‑0213‑0 15503194
    [Google Scholar]
  70. StavniichukR. DrelV.R. ShevalyeH. MaksimchykY. KuchmerovskaT.M. NadlerJ.L. ObrosovaI.G. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation.Exp. Neurol.2011230110611310.1016/j.expneurol.2011.04.002 21515260
    [Google Scholar]
  71. LapidotT. WalkerM.D. KannerJ. Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro .J. Agric. Food Chem.200250257220722510.1021/jf020615a 12452635
    [Google Scholar]
  72. IzutaH. ShimazawaM. TazawaS. ArakiY. MishimaS. HaraH. Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells.J. Agric. Food Chem.200856198944895310.1021/jf8014206 18788711
    [Google Scholar]
  73. HaS.K. MoonE. KimS.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells.Neurosci. Lett.2010485314314710.1016/j.neulet.2010.08.064 20813161
    [Google Scholar]
  74. Gresa-ArribasN. SerratosaJ. SauraJ. SolàC. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti‐inflammatory and neuroprotective effects.J. Neurochem.2010115252653610.1111/j.1471‑4159.2010.06952.x 20722966
    [Google Scholar]
  75. LiR. ZangA. ZhangL. ZhangH. ZhaoL. QiZ. WangH. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats.Neurol. Sci.201435101527153210.1007/s10072‑014‑1784‑7 24737349
    [Google Scholar]
  76. AkaishiT. MorimotoT. ShibaoM. WatanabeS. Sakai-KatoK. Utsunomiya-TateN. AbeK. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein.Neurosci. Lett.2008444328028510.1016/j.neulet.2008.08.052 18761054
    [Google Scholar]
  77. Benavente-GarcíaO. CastilloJ. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.J. Agric. Food Chem.200856156185620510.1021/jf8006568 18593176
    [Google Scholar]
  78. DholakiyaS.L. BenzeroualK.E. Protective effect of diosmin on LPS-induced apoptosis in PC12 cells and inhibition of TNF-α expression.Toxicol. In Vitro 20112551039104410.1016/j.tiv.2011.04.003 21477647
    [Google Scholar]
  79. JainD. BansalM.K. DalviR. UpganlawarA. SomaniR. Protective effect of diosmin against diabetic neuropathy in experimental rats.J. Integr. Med.2014121354110.1016/S2095‑4964(14)60001‑7 24461593
    [Google Scholar]
  80. QuattriniC. HarrisN.D. MalikR.A. TesfayeS. Impaired skin microvascular reactivity in painful diabetic neuropathy.Diabetes Care200730365565910.2337/dc06‑2154 17327336
    [Google Scholar]
  81. Manuel y KeenoyB. VertommenJ. De LeeuwI. The effect of flavonoid treatment on the glycation and antioxidant status in Type 1 diabetic patients.Diabetes Nutr. Metab.1999124256263 10782751
    [Google Scholar]
  82. KangK.S. WenY. YamabeN. FukuiM. BishopS.C. ZhuB.T. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies.PLoS One201058e1195110.1371/journal.pone.0011951 20700524
    [Google Scholar]
  83. ChoiY.T. JungC.H. LeeS.R. BaeJ.H. BaekW.K. SuhM.H. ParkJ. ParkC.W. SuhS.I. The green tea polyphenol (−)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons.Life Sci.200170560361410.1016/S0024‑3205(01)01438‑2 11811904
    [Google Scholar]
  84. BaluchnejadmojaradT. RoghaniM. Chronic Oral Epigallocatechin-gallate Alleviates Streptozotocin-induced Diabetic Neuropathic Hyperalgesia in Rat: Involvement of Oxidative Stress.Iran. J. Pharm. Res.201211412431253 24250559
    [Google Scholar]
  85. RaposoD. MorgadoC. Pereira-TerraP. TavaresI. Nociceptive spinal cord neurons of laminae I–III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG).Brain Res. Bull.2015110687510.1016/j.brainresbull.2014.12.004 25522867
    [Google Scholar]
  86. LiuR. ZhangJ. LiangM. ZhangW. YanS. LinM. Simultaneous analysis of eight bioactive compounds in Danning tablet by HPLC-ESI-MS and HPLC-UV.J. Pharm. Biomed. Anal.20074331007101210.1016/j.jpba.2006.09.031 17079108
    [Google Scholar]
  87. WangD.M. LiS.Q. ZhuX.Y. WangY. WuW.L. ZhangX.J. Protective effects of hesperidin against amyloid-β (Aβ) induced neurotoxicity through the voltage dependent anion channel 1 (VDAC1)-mediated mitochondrial apoptotic pathway in PC12 cells.Neurochem. Res.20133851034104410.1007/s11064‑013‑1013‑4 23475456
    [Google Scholar]
  88. NonesJ. e SpohrT.C.L.S. GomesF.C.A. Hesperidin, a flavone glycoside, as mediator of neuronal survival.Neurochem. Res.201136101776178410.1007/s11064‑011‑0493‑3 21553255
    [Google Scholar]
  89. VisnagriA. KandhareA.D. ChakravartyS. GhoshP. BodhankarS.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions.Pharm. Biol.201452781482810.3109/13880209.2013.870584 24559476
    [Google Scholar]
  90. WangC.N. ChiC.W. LinY.L. ChenC.F. ShiaoY.J. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons.J. Biol. Chem.200127675287529510.1074/jbc.M006406200 11083861
    [Google Scholar]
  91. Al-NumairK.S. ChandramohanG. VeeramaniC. AlsaifM.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.Redox Rep.201520519820910.1179/1351000214Y.0000000117 25494817
    [Google Scholar]
  92. ZhangL. GaoH. BabaM. OkadaY. OkuyamaT. WuL. ZhanL. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut).BMC Complement. Altern. Med.201414142210.1186/1472‑6882‑14‑422 25351676
    [Google Scholar]
  93. ArtsI.C.W. HollmanP.C.H. Polyphenols and disease risk in epidemiologic studies.Am. J. Clin. Nutr.2005811Suppl.317S325S10.1093/ajcn/81.1.317S 15640497
    [Google Scholar]
  94. NazariQ.A. KumeT. Takada-TakatoriY. IzumiY. AkaikeA. Protective effect of luteolin on an oxidative-stress model induced by microinjection of sodium nitroprusside in mice.J. Pharmacol. Sci.2013122210911710.1254/jphs.13019FP 23707972
    [Google Scholar]
  95. XuY. ZhangJ. LiuJ. LiS. LiC. WangW. MaR. LiuY. Luteolin attenuate the D -galactose-induced renal damage by attenuation of oxidative stress and inflammation.Nat. Prod. Res.201529111078108210.1080/14786419.2014.981181 25587925
    [Google Scholar]
  96. KangS.S. LeeJ.Y. ChoiY.K. KimG.S. HanB.H. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells.Bioorg. Med. Chem. Lett.20041492261226410.1016/j.bmcl.2004.02.003 15081021
    [Google Scholar]
  97. ChengH.Y. HsiehM.T. TsaiF.S. WuC.R. ChiuC.S. LeeM.M. XuH.X. ZhaoZ.Z. PengW.H. Neuroprotective effect of luteolin on amyloid β protein (25–35)‐induced toxicity in cultured rat cortical neurons.Phytother. Res.201024S1Suppl. 1S102S10810.1002/ptr.2940 19610032
    [Google Scholar]
  98. LinC.W. WuM.J. LiuI.Y.C. SuJ.D. YenJ.H. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression.J. Agric. Food Chem.20105874477448610.1021/jf904061x 20302373
    [Google Scholar]
  99. LiM. LiQ. ZhaoQ. ZhangJ. LinJ. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences.Int. J. Clin. Exp. Pathol.2015891011210120 26617718
    [Google Scholar]
  100. HarnlyJ.M. DohertyR.F. BeecherG.R. HoldenJ.M. HaytowitzD.B. BhagwatS. GebhardtS. Flavonoid content of U.S. fruits, vegetables, and nuts.J. Agric. Food Chem.200654269966997710.1021/jf061478a 17177529
    [Google Scholar]
  101. MiraL. Tereza FernandezM. SantosM. RochaR. Helena FlorêncioM. JenningsK.R. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.Free Radic. Res.200236111199120810.1080/1071576021000016463 12592672
    [Google Scholar]
  102. GrayA.M. FlattP.R. Nature’s own pharmacy: The diabetes perspective.Proc. Nutr. Soc.1997561B50751710.1079/PNS19970051 9168558
    [Google Scholar]
  103. KawanishiK. UedaH. MoriyasuM. Aldose reductase inhibitors from the nature.Curr. Med. Chem.200310151353137410.2174/0929867033457304 12871134
    [Google Scholar]
  104. ShimmyoY. KiharaT. AkaikeA. NiidomeT. SugimotoH. Three distinct neuroprotective functions of myricetin against glutamate‐induced neuronal cell death: Involvement of direct inhibition of caspase‐3.J. Neurosci. Res.20088681836184510.1002/jnr.21629 18265412
    [Google Scholar]
  105. UriosP. Grigorova-BorsosA.M. SternbergM. Flavonoids inhibit the formation of the cross-linking AGE pentosidine in collagen incubated with glucose, according to their structure.Eur. J. Nutr.200746313914610.1007/s00394‑007‑0644‑0 17356796
    [Google Scholar]
  106. ChoiH.N. KangM.J. LeeS.J. KimJ.I. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet.Nutr. Res. Pract.20148554454910.4162/nrp.2014.8.5.544 25324935
    [Google Scholar]
  107. LiuI.M. LiouS.S. LanT.W. HsuF.L. ChengJ.T. Myricetin as the active principle of Abelmoschus moschatus to lower plasma glucose in streptozotocin-induced diabetic rats.Planta Med.200571761762110.1055/s‑2005‑871266 16041646
    [Google Scholar]
  108. TjølsenA. BergeO.G. HunskaarS. RoslandJ.H. HoleK. The formalin test: an evaluation of the method.Pain199251151710.1016/0304‑3959(92)90003‑T 1454405
    [Google Scholar]
  109. FreshwaterJ.D. SvenssonC.I. MalmbergA.B. CalcuttN.A. Elevated spinal cyclooxygenase and prostaglandin release during hyperalgesia in diabetic rats.Diabetes20025172249225510.2337/diabetes.51.7.2249 12086957
    [Google Scholar]
  110. O’ConnorA.B. DworkinR.H. Treatment of neuropathic pain: an overview of recent guidelines.Am. J. Med.200912210Suppl.S22S3210.1016/j.amjmed.2009.04.007 19801049
    [Google Scholar]
  111. RahigudeA. BhutadaP. KaulaskarS. AswarM. OtariK. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats.Neuroscience2012226627210.1016/j.neuroscience.2012.09.026 22999973
    [Google Scholar]
  112. VafeiadouK. VauzourD. LeeH.Y. Rodriguez-MateosA. WilliamsR.J. SpencerJ.P.E. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury.Arch. Biochem. Biophys.2009484110010910.1016/j.abb.2009.01.016 19467635
    [Google Scholar]
  113. WuL.H. LinC. LinH.Y. LiuY.S. WuC.Y.J. TsaiC.F. ChangP.C. YehW.L. LuD.Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression.Mol. Neurobiol.20165321080109110.1007/s12035‑014‑9042‑9 25579382
    [Google Scholar]
  114. HasaneinP. FazeliF. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats.J. Physiol. Biochem.2014704997100610.1007/s13105‑014‑0369‑5 25407136
    [Google Scholar]
  115. Al-RejaieS.S. AleisaA.M. AbuohashishH.M. ParmarM.Y. OlaM.S. Al-HosainiA.A. AhmedM.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy.Neurol. Res.2015371092493310.1179/1743132815Y.0000000079 26187552
    [Google Scholar]
  116. CosP. BruyneT. HermansN. ApersS. BergheD. VlietinckA. Proanthocyanidins in health care: current and new trends.Curr. Med. Chem.200411101345135910.2174/0929867043365288 15134524
    [Google Scholar]
  117. RoychowdhuryS. WolfG. KeilhoffG. BagchiD. HornT. Protection of primary glial cells by grape seed proanthocyanidin extract against nitrosative/oxidative stress.Nitric Oxide20015213714910.1006/niox.2001.0335 11292363
    [Google Scholar]
  118. BagchiD. GargA. KrohnR.L. BagchiM. BagchiD.J. BalmooriJ. StohsS.J. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice.Gen. Pharmacol.199830577177610.1016/S0306‑3623(97)00332‑7 9559333
    [Google Scholar]
  119. CuiX. LiB. GaoH. WeiN. WangW. LuM. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats.J. Nutr. Sci. Vitaminol. (Tokyo)200854432132810.3177/jnsv.54.321 18797155
    [Google Scholar]
  120. NatellaF. BelelliF. GentiliV. UrsiniF. ScacciniC. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans.J. Agric. Food Chem.200250267720772510.1021/jf020346o 12475295
    [Google Scholar]
  121. PrasainJ.K. JonesK. BrissieN. MooreR. WyssJ.M. BarnesS. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry.J. Agric. Food Chem.200452123708371210.1021/jf040037t 15186086
    [Google Scholar]
  122. XingG. DongM. LiX. ZouY. FanL. WangX. CaiD. LiC. ZhouL. LiuJ. NiuY. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway.Brain Res. Bull.2011853-421221810.1016/j.brainresbull.2011.03.024 21473901
    [Google Scholar]
  123. ChengY. LengW. ZhangJ. Protective effect of puerarin against oxidative stress injury of neural cells and related mechanisms.Med. Sci. Monit.2016221244124910.12659/MSM.896058 27074962
    [Google Scholar]
  124. JiangB. LiuJ.H. BaoY.M. AnL.J. Hydrogen peroxide‐induced apoptosis in pc12 cells and the protective effect of puerarin.Cell Biol. Int.200327121025103110.1016/j.cellbi.2003.09.007 14642535
    [Google Scholar]
  125. ZhangH.Y. LiuY.H. WangH.Q. XuJ.H. HuH.T. Puerarin protects PC12 cells against β‐amyloid‐induced cell injury.Cell Biol. Int.200832101230123710.1016/j.cellbi.2008.07.006 18675923
    [Google Scholar]
  126. ZouY. HongB. FanL. ZhouL. LiuY. WuQ. ZhangX. DongM. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3β/Nrf2 signaling pathway.Free Radic. Res.2013471556310.3109/10715762.2012.742518 23088308
    [Google Scholar]
  127. LiuM. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord.Mediators Inflamm.2014201448592710.1155/2014/485927
    [Google Scholar]
  128. WuJ. ZhangX. ZhangB. Efficacy and safety of puerarin injection in treatment of diabetic peripheral neuropathy: a systematic review and Meta-analysis of randomized controlled trials.J. Tradit. Chin. Med.201434440141010.1016/S0254‑6272(15)30039‑X 25185357
    [Google Scholar]
  129. FormicaJ.V. RegelsonW. Review of the biology of quercetin and related bioflavonoids.Food Chem. Toxicol.199533121061108010.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  130. ShiY. LiangX. ZhangH. WuQ. QuL. SunQ. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition.Acta Pharmacol. Sin.20133491140114810.1038/aps.2013.59 23770986
    [Google Scholar]
  131. AnjaneyuluM. ChopraK. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain.Prog. Neuropsychopharmacol. Biol. Psychiatry20032761001100510.1016/S0278‑5846(03)00160‑X 14499317
    [Google Scholar]
  132. ValensiP. Le DevehatC. RichardJ.L. FarezC. KhodabandehlouT. RosenbloomR.A. LeFanteC. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy.J. Diabetes Complications200519524725310.1016/j.jdiacomp.2005.05.011 16112498
    [Google Scholar]
  133. HosseinzadehH. Nassiri-AslM. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid.J. Endocrinol. Invest.201437978378810.1007/s40618‑014‑0096‑3 24879037
    [Google Scholar]
  134. KamalakkannanN. PrinceP.S.M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats.Basic Clin. Pharmacol. Toxicol.20069819710310.1111/j.1742‑7843.2006.pto_241.x 16433898
    [Google Scholar]
  135. Al-EnaziM.M. Protective effects of combined therapy of rutin with silymarin on experimentally-induced diabetic neuropathy in rats.Pharmacology & Pharmacy20145910.4236/pp.2014.59098
    [Google Scholar]
  136. MarrazzoG. BoscoP. La DeliaF. ScapagniniG. Di GiacomoC. MalaguarneraM. GalvanoF. NicolosiA. Li VoltiG. Neuroprotective effect of silibinin in diabetic mice.Neurosci. Lett.2011504325225610.1016/j.neulet.2011.09.041 21970972
    [Google Scholar]
  137. ZataliaS.R. SanusiH. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus.Acta Med. Indones.2013452141147 23770795
    [Google Scholar]
  138. NardiniM. PisuP. GentiliV. NatellaF. DiM. PiccolellaF. ScacciniC. Effect of caffeic acid on tert-butyl hydroperoxide-induced oxidative stress in U937.Free Radic. Biol. Med.19982591098110510.1016/S0891‑5849(98)00180‑4 9870564
    [Google Scholar]
  139. HuangS.M. ChuangH.C. WuC.H. YenG.C. Cytoprotective effects of phenolic acids on methylglyoxal‐induced apoptosis in Neuro‐2A cells.Mol. Nutr. Food Res.200852894094910.1002/mnfr.200700360 18481334
    [Google Scholar]
  140. Auñon-CallesD. GiordanoE. BohnenbergerS. VisioliF. Hydroxytyrosol is not genotoxic in vitro .Pharmacol. Res.201374879310.1016/j.phrs.2013.06.002 23769711
    [Google Scholar]
  141. RistagnoG. FumagalliF. Porretta-SerapigliaC. OrrùA. CassinaC. PesaresiM. MassonS. VillanovaL. MerendinoA. VillanovaA. CervoL. LauriaG. LatiniR. BianchiR. Hydroxytyrosol attenuates peripheral neuropathy in streptozotocin-induced diabetes in rats.J. Agric. Food Chem.201260235859586510.1021/jf2049323 22594308
    [Google Scholar]
  142. BarotJ. SaxenaB. Therapeutic effects of eugenol in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study.J. Tradit. Complement. Med.202111431832710.1016/j.jtcme.2021.01.003 34195026
    [Google Scholar]
  143. SunX. WangD. ZhangT. LuX. DuanF. JuL. ZhuangX. JiangX. Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway.Front. Pharmacol.2020118410.3389/fphar.2020.00084 32153404
    [Google Scholar]
  144. KimJ. KunduM. ViolletB. GuanK.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat. Cell Biol.201113213214110.1038/ncb2152 21258367
    [Google Scholar]
  145. SunJ. MuY. JiangY. SongR. YiJ. ZhouJ. SunJ. JiaoX. PrinzR.A. LiY. XuX. Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates.Cell Death Dis.20189340710.1038/s41419‑018‑0441‑0 29540819
    [Google Scholar]
  146. IrieY. ItokazuN. AnjikiN. IshigeA. WatanabeK. KeungW.M. Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus.Brain Res.20041011224324610.1016/j.brainres.2004.03.040 15157811
    [Google Scholar]
  147. AtesO. CayliS.R. YucelN. AltinozE. KocakA. DurakM.A. TurkozY. YologluS. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats.J. Clin. Neurosci.200714325626010.1016/j.jocn.2005.12.010 17258134
    [Google Scholar]
  148. ZhaoW.C. ZhangB. LiaoM.J. ZhangW.X. HeW.Y. WangH.B. YangC.X. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.Neurosci. Lett.2014560818510.1016/j.neulet.2013.12.019 24370596
    [Google Scholar]
  149. KumarA. KaundalR.K. IyerS. SharmaS.S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy.Life Sci.200780131236124410.1016/j.lfs.2006.12.036 17289084
    [Google Scholar]
  150. MostafaN.M. β-Amyrin rich Bombax ceiba leaf extract with potential neuroprotective activity against scopolamine-induced memory impairment in rats.Rec. Nat. Prod.201812548049210.25135/rnp.47.17.10.062
    [Google Scholar]
  151. ParkS.J. AhnY.J. OhS.R. LeeY. KwonG. WooH. LeeH.E. JangD.S. JungJ.W. RyuJ.H. Amyrin attenuates scopolamine-induced cognitive impairment in mice.Biol. Pharm. Bull.20143771207121310.1248/bpb.b14‑00113 24989012
    [Google Scholar]
  152. KunX. ZuhuaG. Amyrin exerts potent anxiolytic and antidepressant effects via mechanisms involving monoamine oxidase and γ-aminobutyric acid in mouse hippocampus.Trop. J. Pharm. Res.201918816731681
    [Google Scholar]
  153. RiedererP. LauxG. MAO-inhibitors in Parkinson’s Disease.Exp. Neurobiol.201120111710.5607/en.2011.20.1.1 22110357
    [Google Scholar]
  154. HuL.D. WangJ. ChenX.J. YanY.B. Lanosterol modulates proteostasis via dissolving cytosolic sequestosomes/aggresome-like induced structures.Biochim. Biophys. Acta Mol. Cell Res.20201867211861710.1016/j.bbamcr.2019.118617 31785334
    [Google Scholar]
  155. ZhouH. YangZ. TianX. ChenL. LeeS. HuynhT. GeC. ZhouR. Lanosterol disrupts the aggregation of amyloid-β peptides.ACS Chem. Neurosci.20191094051406010.1021/acschemneuro.9b00285 31369236
    [Google Scholar]
  156. LimL. Jackson-LewisV. WongL.C. ShuiG.H. GohA.X.H. KesavapanyS. JennerA.M. FivazM. PrzedborskiS. WenkM.R. Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease.Cell Death Differ.201219341642710.1038/cdd.2011.105 21818119
    [Google Scholar]
  157. BadshahH. AliT. RehmanS. AminF. UllahF. KimT.H. KimM.O. Protective Effect of Lupeol Against Lipopolysaccharide-Induced Neuroinflammation via the p38/c-Jun N-Terminal Kinase Pathway in the Adult Mouse Brain.J. Neuroimmune Pharmacol.2016111486010.1007/s11481‑015‑9623‑z 26139594
    [Google Scholar]
  158. AhmadR. KhanA. LeeH.J. Ur RehmanI. KhanI. AlamS.I. KimM.O. Lupeol, a plant-derived triterpenoid, protects mice brains against Aβ-induced oxidative stress and neurodegeneration.Biomedicines202081038010.3390/biomedicines8100380 32993092
    [Google Scholar]
  159. MalikA. JamilU. ButtT.T. WaquarS. GanS.H. ShafiqueH. JafarT.H. In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model.Drug Des. Devel. Ther.2019131501151310.2147/DDDT.S176698 31123393
    [Google Scholar]
  160. VanmierloT. BogieJ.F.J. MailleuxJ. VanmolJ. LütjohannD. MulderM. HendriksJ.J.A. Plant sterols: Friend or foe in CNS disorders?Prog. Lipid Res.201558263910.1016/j.plipres.2015.01.003 25623279
    [Google Scholar]
  161. JieF. YangX. WuL. WangM. LuB. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms.Crit. Rev. Food Sci. Nutr.202262133613363010.1080/10408398.2020.1867819 33397124
    [Google Scholar]
  162. SultanaN. KhalidA. Phytochemical and enzyme inhibitory studies on indigenous medicinal plant Rhazya stricta.Nat. Prod. Res.201024430531410.1080/14786410802417040 20221936
    [Google Scholar]
  163. LeeJ. WeonJ.B. MaC.J. Neuroprotective activity of phytosterols isolated from Artemisia apiacea.Korean J. Pharmacogn.2014453214219
    [Google Scholar]
  164. BurgV.K. GrimmH.S. RothhaarT.L. GrösgenS. HundsdörferB. HaupenthalV.J. ZimmerV.C. MettJ. WeingärtnerO. LaufsU. BroersenL.M. TanilaH. VanmierloT. LütjohannD. HartmannT. GrimmM.O.W. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study.J. Neurosci.20133341160721608710.1523/JNEUROSCI.1506‑13.2013 24107941
    [Google Scholar]
  165. ParkS.J. KimD.H. JungJ.M. KimJ.M. CaiM. LiuX. HongJ.G. LeeC.H. LeeK.R. RyuJ.H. The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice.Eur. J. Pharmacol.20126761-3647010.1016/j.ejphar.2011.11.050 22173129
    [Google Scholar]
  166. NakanishiS. Molecular diversity of glutamate receptors and implications for brain function.Science1992258508259760310.1126/science.1329206 1329206
    [Google Scholar]
  167. Al RahimM. NakajimaA. SaigusaD. TetsuN. MaruyamaY. ShibuyaM. YamakoshiH. TomiokaY. IwabuchiY. OhizumiY. YamakuniT. 4′-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade.Biochemistry200948327713772110.1021/bi901088w 19601643
    [Google Scholar]
  168. AyazM. JunaidM. UllahF. SubhanF. SadiqA. AliG. OvaisM. ShahidM. AhmadA. WadoodA. El-ShazlyM. AhmadN. AhmadS. Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L.Front. Pharmacol.2017869710.3389/fphar.2017.00697 29056913
    [Google Scholar]
  169. BariW.U. ZahoorM. ZebA. KhanI. NazirY. KhanA. RehmanN.U. UllahR. ShahatA.A. MahmoodH.M. Anticholinesterase, antioxidant potentials, and molecular docking studies of isolated bioactive compounds from Grewia optiva.Int. J. Food Prop.20192211386139610.1080/10942912.2019.1650763
    [Google Scholar]
  170. ShiC. WuF. ZhuX. XuJ. Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling.Biochim. Biophys. Acta, Gen. Subj.2013183032538254410.1016/j.bbagen.2012.12.012 23266618
    [Google Scholar]
  171. SchmitzG. GrandlM. Update on lipid membrane microdomains.Curr. Opin. Clin. Nutr. Metab. Care200811210611210.1097/MCO.0b013e3282f44c2c 18301084
    [Google Scholar]
  172. HossenM.A. Ali RezaA.S.M. AminM.B. NasrinM.S. KhanT.A. RajibM.H.R. TareqA.M. HaqueM.A. RahmanM.A. HaqueM.A. Bioactive metabolites of Blumea lacera attenuate anxiety and depression in rodents and computer‐aided model.Food Sci. Nutr.2021973836385110.1002/fsn3.2362 34262741
    [Google Scholar]
  173. GuleriaR.S. PanJ. DiPetteD. SinghU.S. Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy.Diabetes200655123326333410.2337/db06‑0169 17130476
    [Google Scholar]
  174. de Bittencourt PasqualiM.A. de RamosV.M. AlbanusR.D.O. KunzlerA. de SouzaL.H.T. DalmolinR.J.S. GelainD.P. RibeiroL. CarroL. MoreiraJ.C.F. Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid.Mol. Neurobiol.201653142343510.1007/s12035‑014‑8998‑9 25465239
    [Google Scholar]
  175. Hernández-PedroN. OrdóñezG. Ortiz-PlataA. Palencia-HernándezG. García-UlloaA.C. Flores-EstradaD. SoteloJ. ArrietaO. All-trans retinoic acid induces nerve regeneration and increases serum and nerve contents of neural growth factor in experimental diabetic neuropathy.Transl. Res.20081521313710.1016/j.trsl.2008.05.007 18593635
    [Google Scholar]
  176. ArrietaO. García-NavarreteR. ZúñigaS. OrdóñezG. OrtizA. PalenciaG. Morales-EspinosaD. Hernández-PedroN. SoteloJ. Retinoic acid increases tissue and plasma contents of nerve growth factor and prevents neuropathy in diabetic mice.Eur. J. Clin. Invest.200535320120710.1111/j.1365‑2362.2005.01467.x 15733075
    [Google Scholar]
  177. RiceM.E. Ascorbate regulation and its neuroprotective role in the brain.Trends Neurosci.200023520921610.1016/S0166‑2236(99)01543‑X 10782126
    [Google Scholar]
  178. MayJ.M. Vitamin C transport and its role in the central nervous system.Subcell. Biochem.2012568510310.1007/978‑94‑007‑2199‑9_6 22116696
    [Google Scholar]
  179. MayJ.M. JayagopalA. QuZ. ParkerW.H. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes.Biochem. Biophys. Res. Commun.2014452111211710.1016/j.bbrc.2014.08.057 25152398
    [Google Scholar]
  180. HuangJ. MayJ.M. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by β-amyloid.Brain Res.200610971525810.1016/j.brainres.2006.04.047 16725131
    [Google Scholar]
  181. SaporitoM.S. BrownE.R. HartpenceK.C. WilcoxH.M. VaughtJ.L. CarswellS. Chronic 1,25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain.Brain Res.19946331-218919610.1016/0006‑8993(94)91539‑3 8137156
    [Google Scholar]
  182. RiazS. MalcangioM. MillerM. TomlinsonD.R. A vitamin D 3 derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozotocin-diabetic rats.Diabetologia199942111308131310.1007/s001250051443 10550414
    [Google Scholar]
  183. SoderstromL.H. JohnsonS.P. DiazV.A. MainousA.G. III Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001–2004 NHANES.Diabet. Med.2012291505510.1111/j.1464‑5491.2011.03379.x 21726279
    [Google Scholar]
  184. LeeP. ChenR. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain.Arch. Intern. Med.2008168777177210.1001/archinte.168.7.771 18413561
    [Google Scholar]
  185. BurtonG.W. TraberM.G. Vitamin E: antioxidant activity, biokinetics, and bioavailability.Annu. Rev. Nutr.199010135738210.1146/annurev.nu.10.070190.002041 2200468
    [Google Scholar]
  186. BehlC. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-β estradiol and induces the activity of the transcription factor NF-κB.J. Neural Transm. (Vienna)2000107439340710.1007/s007020070082 11215751
    [Google Scholar]
  187. ChoiJ. ConradC.C. DaiR. MalakowskyC.A. TalentJ.M. CarrollC.A. WeintraubS.T. GracyR.W. Vitamin E prevents oxidation of antiapoptotic proteins in neuronal cells.Proteomics200331737710.1002/pmic.200390011 12548636
    [Google Scholar]
  188. BaydasG. NedzvetskiiV.S. TuzcuM. YasarA. KirichenkoS.V. Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E.Eur. J. Pharmacol.20034621-3677110.1016/S0014‑2999(03)01294‑9 12591097
    [Google Scholar]
  189. OgberaA. EzeobiE. UnachukwuC. OshinaikeO. Treatment of diabetes mellitus-associated neuropathy with vitamin E and Eve primrose.Indian J. Endocrinol. Metab.201418684684910.4103/2230‑8210.140270 25364681
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072321268240920064955
Loading
/content/journals/cbc/10.2174/0115734072321268240920064955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test