Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

The current method of controlling malaria vectors using synthetic chemicals has caused serious problems for human health and the environment. Hence, a need for alternative, cheap, readily available, and acceptable mosquito control methods.

Objective

To evaluate the bioinsecticidal efficacy of and against using the bioassay method.

Methods

Oil extracts in 5 ml, 25 ml, and 75 ml serially diluted twice in 100 ml of olive oil formed 0.05%, 0.25%, and 0.75%, while 1 m in 100 ml formed 1%. Olive oil only served as a control. Twenty-five female mosquitoes, aged 2-4 days, were blown into tubes containing filter paper-coated essential oils of various concentrations in quadruplicates.

Results

Over 50% mortality was recorded in mosquitoes exposed to 0.75% and 1% compared to others ( <0.05). Knockdown time (KDT) was higher in mosquitoes exposed to 1% compared to others ( <0.05). Generalized linear regressions showed that the essential oils of and contributed 4% (f2 = 0.042) and 14% (f2 = 0.167) to the variability of mortality with time. KDT (9.34 - 131.5 minutes) and KDT (77.6 - 275 minutes) of as well as KDT (162.8 - 233.6 minutes) and KDT (302.8 - 415 minutes) of were recorded. Stigmastane; 4,22-Stigmastadiene-3-one (Area: 45.88%) in and gamma-Sitosterol (16.02%) in were identified by Gas Chromatogram as the highest dose of chemical compounds.

Conclusion

The low bioinsecticidal activities of these plant extracts could be attributed to the low occurrence of terpenoids and alkaloids.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072323207241022172309
2024-10-31
2025-10-22
Loading full text...

Full text loading...

References

  1. Malaria. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
  2. OjianwunaC.C. EnwemiweV.N. The efficacy of Salt, ginger and two local peppers for the management of plantain chips infested with Tribolum castaneum (Herbst) (Coleoptera: Tenebrionidae).J. Biopesticides202114215416410.57182/jbiopestic.14.2.154‑164
    [Google Scholar]
  3. OjianwunaC.C. IlonduE.M. EnwemimeV.N. Larvicidal efficacy of leaf extracts from three asteraceous plant against mosquito (Culex quinquefasciatus).FUDMA J. Sci.20215210010810.33003/fjs‑2021‑0502‑528
    [Google Scholar]
  4. OjianwunaC.C. EnwemiweV.N. OjoM.G. OborayiruvbeE.T. Bio-efficacy of grounded Sesamum radiatum and Psoralea corylitolia on emergence of Anopheles gambiae and Culex quinquefasciatus.Agrobiol. Rec.202210748210.47278/journal.abr/2022.026
    [Google Scholar]
  5. OjianwunaC.C. EnwemiweV.N. Insecticidal effectiveness of naphthalene and its combination with kerosene against the emergence of Aedes aegypti in Ika North East, LGA, Delta State, Nigeria.Parasite Epidemiol. Control202218e0025910.1016/j.parepi.2022.e00259 35800035
    [Google Scholar]
  6. OjianwunaC.C. EnwemiweV.N. Monitoring the toxicity of dry wood termites using three plant powders in laboratory culture.J. Biopesticides202013215015810.57182/jbiopestic.13.2.150‑158
    [Google Scholar]
  7. EnwemiweV.N. AnyaeleO.O. OjianwunaC.C. Evaluating the potentials of randomised integrated control trial on tungiasis in a South-western Nigerian community.Acta Trop.202122310607610.1016/j.actatropica.2021.106076 34358514
    [Google Scholar]
  8. Şengül DemirakM.Ş. CanpolatE. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission.Insects202213216210.3390/insects13020162 35206735
    [Google Scholar]
  9. NgegbaP.M. CuiG. KhalidM.Z. ZhongG. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides.Agriculture202212560010.3390/agriculture12050600
    [Google Scholar]
  10. Senthil-NathanS. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes.Front. Physiol.202010159110.3389/fphys.2019.01591 32158396
    [Google Scholar]
  11. MuhammedM. DugassaS. BelinaM. ZohdyS. IrishS.R. GebresilassieA. Insecticidal effects of some selected plant extracts against Anopheles stephensi (Culicidae: Diptera).Malar. J.202221129510.1186/s12936‑022‑04320‑5 36271447
    [Google Scholar]
  12. YohanaR. ChisulumiP.S. KidimaW. TahghighiA. Maleki-RavasanN. KwekaE.J. Anti-mosquito properties of Pelargonium roseum (Geraniaceae) and Juniperus virginiana (Cupressaceae) essential oils against dominant malaria vectors in Africa.Malar. J.202221121910.1186/s12936‑022‑04220‑8 35836226
    [Google Scholar]
  13. UgboguO.C. EmmanuelO. AgiG.O. IbeC. EkweoguC.N. UdeV.C. UcheM.E. NnannaR.O. UgboguE.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.).Heliyon2021711e0840410.1016/j.heliyon.2021.e08404 34901489
    [Google Scholar]
  14. MohantaO. RayA. JenaS. SahooA. PandaS.S. DasP.K. NayakS. PandaP.C. Mesosphaerum suaveolens essential oil attenuates inflammatory response and oxidative stress in LPS-stimulated RAW 264.7 macrophages by regulating NF-κB signaling pathway.Molecules20232815581710.3390/molecules28155817 37570786
    [Google Scholar]
  15. Almeida-BezerraJ.W. RodriguesF.C. Lima BezerraJ.J. Vieira PinheiroA.A. Almeida de MenezesS. TavaresA.B. CostaA.R. Augusta de Sousa FernandesP. Bezerra da SilvaV. Martins da CostaJ.G. Pereira da CruzR. Bezerra Morais-BragaM.F. Melo CoutinhoH.D. Teixeira de AlbergariaE. MeiadoM.V. SiyadatpanahA. KimB. Morais de OliveiraA.F. Traditional uses, phytochemistry, and bioactivities of Mesosphaerum suaveolens (L.) kuntze.Evid. Based Complement. Alternat. Med.2022202212810.1155/2022/3829180 35310039
    [Google Scholar]
  16. MahendranG. VimolmangkangS. Chemical compositions, antioxidant, antimicrobial, and mosquito larvicidal activity of Ocimum americanum L. and Ocimum basilicum L. leaf essential oils.BMC Complementary Medicine and Therapies202323139010.1186/s12906‑023‑04214‑2 37898811
    [Google Scholar]
  17. OparaochaE.T. IwuI. AhanakucJ.E. Preliminary study on mosquito repellent and mosquitocidal activities of Ocimum gratissimum (L.) grown in eastern Nigeria.J. Vector Borne Dis.20104714550 20231773
    [Google Scholar]
  18. IlahiI. YousafzaiA.M. AttaullahM. HaqT.U. RahimA. KhanW. KhanA.A. UllahS. JanT. KhanM.M. RahimG. ZamanN. Mosquitocidal activities of Chenopodium botrys whole plant n-hexane extract against Culex quinquefasciatus.Braz. J. Biol.20218310.1590/1519‑6984.240842
    [Google Scholar]
  19. El-Kasem BoslyH.A. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae).Saudi J. Biol. Sci.202229810335010.1016/j.sjbs.2022.103350 35762012
    [Google Scholar]
  20. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2016. Available from:https://iris.who.int/bitstream/handle/10665/250677/9789241511575-eng.pdf
  21. OjianwunaC.C. EnwemiweV.N. Toxicity and repellency of scent leave (Ocimum gratissimum), kerosene and naphthalene in single and mixed forms on termites (Macrotermes bellicosus).J. Biopesticides2021141414910.57182/jbiopestic.14.1.41‑49
    [Google Scholar]
  22. Nigeria national census: Population distribution by sex, state, lgas and senatorial district: 2006 census priority tables. 2006. Available from:http://www.population.gov.ng/index.php/publication/140-popn-distri-by-sex-state-jgas-and-senatorial-distr-2006
  23. OjianwunaC.C. OmotayoA.I. EnwemiweV.N. AdetoroF.A. EyebokaD.N. AdesaluK. EgedegbeA. EsiwoE. OyeniyiT.A. Pyrethroid susceptibility in Culex quinquefasciatus say. (Diptera: Culicidae) populations from Delta state, Niger-Delta region, Nigeria.J. Med. Entomol.202259275876310.1093/jme/tjab217 35024861
    [Google Scholar]
  24. AbbottW.S. A method of computing the effectiveness of an insecticide.J. Econ. Entomol.192518226526710.1093/jee/18.2.265a
    [Google Scholar]
  25. AbrahamE.J. WallaceE.D. KelloggJ.J. A comparison of high‐ and low‐resolution gas chromatography–mass spectrometry for herbal product classification: A case study with Ocimum essential oils.Phytochem. Anal.202334668069110.1002/pca.3258 37393908
    [Google Scholar]
  26. IlekeK.D. AdesinaJ.M. Toxicity of Ocimum basilicum and Ocimum gratissimum Extracts against main malaria vector, Anopheles gambiae (Diptera: Culicidae) in Nigeria.J. Arthropod Borne Dis.2019134362368 32368553
    [Google Scholar]
  27. LuzT.R.S.A. de MesquitaL.S.S. AmaralF.M.M. CoutinhoD.F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae.Acta Trop.202021210570510.1016/j.actatropica.2020.105705 32956639
    [Google Scholar]
  28. MoolaA.K. AyyaduraiT. BalasubramaniS. VigneshR. MohanP.K. SathishS. DianaR.K.B. Chemical composition and larvicidal activity against Aedes aegypti larvae from Hyptis suaveolens (L.) Poit essential oil.J. Nat. Pestic. Res.2023310001810.1016/j.napere.2022.100018
    [Google Scholar]
  29. OjewumiM.E. ObanlaO.R. AtaubaD.M. A review on the efficacy of Ocimum gratissimum, Mentha spicata, and Moringa oleifera leaf extracts in repelling mosquito.Beni. Suef Univ. J. Basic Appl. Sci.20211018710.1186/s43088‑021‑00176‑x
    [Google Scholar]
  30. GnankinéO. BassoléI. Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex giles (Diptera: Culicidae).Molecules20172210132110.3390/molecules22101321 28937642
    [Google Scholar]
  31. ZhaoH.Z. LuoJ.Y. LiuQ.T. LvZ.L. YangS.H. YangM.H. Study on essential oils of medicinal plants in insect repellent.Zhongguo Zhong Yao Za Zhi2016411283410.4268/cjcmm20160106 28845635
    [Google Scholar]
  32. AsadollahiA. KhoobdelM. Zahraei-RamazaniA. AzarmiS. MosawiS.H. Effectiveness of plant-based repellents against different Anopheles species: A systematic review.Malar. J.201918143610.1186/s12936‑019‑3064‑8 31864359
    [Google Scholar]
  33. OcholaJ.B. MuteroC.M. MarubuR.M. HallerB.F. HassanaliA. LwandeW. Mosquitoes larvicidal activity of Ocimum kilimandscharicum oil formulation under laboratory and field-simulated conditions.Insects202213220310.3390/insects13020203 35206778
    [Google Scholar]
  34. PenicheT. DuarteJ.L. FerreiraR.M.A. SidônioI.A.P. SarquisR.S.F.R. SarquisÍ.R. OliveiraA.E.M.F.M. CruzR.A.S. FerreiraI.M. FlorentinoA.C. CarvalhoJ.C.T. SoutoR.N.P. FernandesC.P. Larvicidal effect of Hyptis suaveolens (L.) Poit. essential oil nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae).Molecules20222723843310.3390/molecules27238433 36500534
    [Google Scholar]
  35. ScalerandiE. FloresG.A. PalacioM. DefagóM.T. CarpinellaM.C. ValladaresG. BertoniA. PalaciosS.M. Understanding synergistic toxicity of terpenes as insecticides: Contribution of metabolic detoxification in Musca domestica.Front. Plant Sci.20189157910.3389/fpls.2018.01579 30420868
    [Google Scholar]
  36. YoussefiM.R. TabariM.A. EsfandiariA. KazemiS. MoghadamniaA.A. SutS. Dall’AcquaS. BenelliG. MaggiF. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile Vector Culex pipiens.Molecules20192410186710.3390/molecules24101867 31096594
    [Google Scholar]
  37. GadeS.G. RajamanikyamM. VadlapudiV. NukalaK.M. AluvalaR. GiddigariC. KaranamN.J. BaruaN.C. PandeyR. UpadhyayulaV.S.V. SripadiP. AmanchyR. UpadhyayulaS.M. Acetylcholinesterase inhibitory activity of stigmasterol and hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata.Biochim. Biophys. Acta, Gen. Subj.18613541550
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072323207241022172309
Loading
/content/journals/cbc/10.2174/0115734072323207241022172309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test