Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Isoquinolone scaffolds are among the most important core structures of nitrogen heterocyclic compounds, which possess vital roles in biological and physiological activities such as anti-tumor, anti-microbial, anti-leukemic, anti-malaria, anti-dengue, anti-HIV and anti-bacterial. Over the years, multiple studies have been done to synthesize these isoquinolone derivatives, and several authors have reported on various methods and synthetic routes to produce the target skeletons of isoquinolones. Therefore, many scientific communities have developed these compounds as the intended structure and evaluated their biological activities. Thus, this review confers several information on isoquinolone analogue synthetic strategies and their biological effects on mosquito-borne diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072321232240927090613
2024-10-08
2025-12-05
Loading full text...

Full text loading...

References

  1. DeyP. KunduA. KumarA. GuptaM. LeeB.M. BhaktaT. DashS. KimH.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).Rec. Adv. Nat. Prod. Anal.2020Jan50556710.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  2. LiscombeD.K. MacLeodB.P. LoukaninaN. NandiO.I. FacchiniP.J. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms.Phytochemistry200566111374139310.1016/j.phytochem.2005.04.029 16342378
    [Google Scholar]
  3. HarrisJ.E.G. PopeW.J. CXXII.-isoQuinoline and the isoquinoline-reds.J. Chem. Soc. Trans.192212101029103310.1039/CT9222101029
    [Google Scholar]
  4. PandeyaS.N. TyagiA. Synthetic approaches for quinoline and isoquinoline.Int. J. Pharm. Pharm. Sci.2011335361
    [Google Scholar]
  5. GilchristT.L. Heterocyclic chemistry.Harlow, Essex, EnglandLongman1997
    [Google Scholar]
  6. BentleyK.W. β-Phenylethylamines and the isoquinoline alkaloids.Nat. Prod. Rep.19929436539110.1039/NP9920900365 1522979
    [Google Scholar]
  7. TsoungJ. BogdanA.R. KantorS. WangY. CharaschanyaM. DjuricS.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor.J. Org. Chem.20178221073108410.1021/acs.joc.6b02520 28001397
    [Google Scholar]
  8. Fallah-MehrjardiM. Friedlander synthesis of poly-substituted quinolines: A mini review.Mini Rev. Org. Chem.201714310.2174/1570193X14666170206124809
    [Google Scholar]
  9. LvQ. FangL. WangP. LuC. YanF. A simple one-pot synthesis of quinoline-4-carboxylic acid derivatives by Pfitzinger reaction of isatin with ketones in water.Monatsh. Chem.2013144339139410.1007/s00706‑012‑0822‑5
    [Google Scholar]
  10. Ballesteros-GarridoR. Recent developments in the synthesis of 4-, 5-, 6- and 7-azaindoles.Adv. Heterocycl. Chem.20231406712310.1016/bs.aihch.2023.01.001
    [Google Scholar]
  11. WangZ. Conrad-limpach quinoline synthesis.Compr. Org. Name React. Reagents2010Sep69269610.1002/9780470638859.conrr152
    [Google Scholar]
  12. HuaR. Isoquinolone syntheses by annulation protocols.Catalysts202111562010.3390/catal11050620
    [Google Scholar]
  13. FrascoD.A. LillyC.P. BoyleP.D. IsonE.A. Cp*IrIII-catalyzed oxidative coupling of benzoic acids with alkynes.ACS Catal.20133102421242910.1021/cs400656q
    [Google Scholar]
  14. GarrettC.E. PrasadK. The art of meeting palladium specifications in active pharmaceutical ingredients produced by pd‐catalyzed reactions.Adv. Synth. Catal.2004346888990010.1002/adsc.200404071
    [Google Scholar]
  15. ChiaM. HaiderM.A. PollockG. KrausG.A. NeurockM. Mechanistic insights into ring-opening and decarboxylation of 2-pyrones in liquid water and tetrahydrofuran.J. Am. Chem. Soc.2013135155699570810.1021/ja312075r
    [Google Scholar]
  16. da SilvaP.L. GuimarãesL. PliegoJ.R.Jr Revisiting the mechanism of neutral hydrolysis of esters: water autoionization mechanisms with acid or base initiation pathways.J. Phys. Chem. B2013117216487649710.1021/jp311504d 23642004
    [Google Scholar]
  17. ZhangL. XiongW. YaoB. LiuH. LiM. QinY. YuY. LiX. ChenM. WuW. LiJ. WangJ. JiangH. Facile synthesis of isoquinolines and isoquinoline N -oxides via a copper-catalyzed intramolecular cyclization in water.RSC Advances20221247302483025210.1039/D2RA06097C 36349148
    [Google Scholar]
  18. RanadeP.B. NavaleN. ZoteS.W. KulalD.K. SheikhM.V. RamanaM.M. Synthesis and spectroscopic investigation of binding of novel Thiazolo [2, 3-a] isoquinoline analog with bovine serum albumin.Indian J. Chem.20216010811085
    [Google Scholar]
  19. ChengJ. YangR. WuX. SunS. YuJ-T. Rhodium-catalyzed annulation of 2-arylimidazoles and α-aroyl sulfoxonium ylides toward 5-arylimidazo[2,1-a]isoquinolines.Synthesis201850173487349210.1055/s‑0037‑1610124
    [Google Scholar]
  20. WangF.X. YanJ.L. LiuZ. ZhuT. LiuY. RenS.C. LvW.X. JinZ. ChiY.R. Assembly of multicyclic isoquinoline scaffolds from pyridines: formal total synthesis of fredericamycin A.Chem. Sci.20211230102591026510.1039/D1SC02442F 34377413
    [Google Scholar]
  21. HuK. QiL. YuS. ChengT. WangX. LiZ. XiaY. ChenJ. WuH. Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids.Green Chem.20171971740175010.1039/C7GC00267J
    [Google Scholar]
  22. JonckersT.H.M. van MiertS. CimangaK. BaillyC. ColsonP. De Pauw-GilletM.C. van den HeuvelH. ClaeysM. LemièreF. EsmansE.L. RozenskiJ. QuirijnenL. MaesL. DommisseR. LemièreG.L.F. VlietinckA. PietersL. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives.J. Med. Chem.200245163497350810.1021/jm011102i 12139461
    [Google Scholar]
  23. YehL.H. WangH.K. PallikondaG. CiouY.L. HsiehJ.C. Palladium-catalyzed dual annulation: A method for the synthesis of norneocryptolepine.Org. Lett.20192161730173410.1021/acs.orglett.9b00287 30829491
    [Google Scholar]
  24. VinothP. KaruppasamyM. GuptaA. NagarajanS. MaheswariC.U. SridharanV. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines.Tetrahedron202313413327210.1016/j.tet.2023.133272
    [Google Scholar]
  25. TianW. XuL. WeiY. LiP. Synthesis of isoquinoline-3-carboxylate chelated B, B -diaryl tetracoordinated organoboron complexes.Youji Huaxue2023435179210.6023/cjoc202301001
    [Google Scholar]
  26. WangL. ZhangL. GongL. Cobalt(III)-catalyzed synthesis of isoquinolines from oximes and alkynes in deep eutectic solvents.Mendeleev Commun.202333224324510.1016/j.mencom.2023.02.030
    [Google Scholar]
  27. ThomasS.J. RothmanA.L. Trials and Tribulations on the Path to Developing a Dengue Vaccine.Am. J. Prev. Med.2015496Suppl. 4S334S34410.1016/j.amepre.2015.09.006 26590433
    [Google Scholar]
  28. De la GuardiaC. StephensD. DangH. QuijadaM. LarionovO. LleonartR. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2.Molecules201823367210.3390/molecules23030672 29547522
    [Google Scholar]
  29. NoboriH. UemuraK. TobaS. SanakiT. ShishidoT. HallW.W. OrbaY. SawaH. SatoA. Identification of quinolone derivatives as effective anti-Dengue virus agents.Antiviral Res.202018410496910.1016/j.antiviral.2020.104969 33160000
    [Google Scholar]
  30. ThamH.W. BalasubramaniamV. OoiM.K. ChewM.F. Viral determinants and vector competence of zika virus transmission.Front. Microbiol.20189MAY104010.3389/fmicb.2018.01040 29875751
    [Google Scholar]
  31. ChenH. LaoZ. XuJ. LiZ. LongH. LiD. LinL. LiuX. YuL. LiuW. LiG. WuJ. Antiviral activity of lycorine against Zika virus in vivo and in vitro .Virology2020546889710.1016/j.virol.2020.04.009 32452420
    [Google Scholar]
  32. AdcockR.S. ChuY.K. GoldenJ.E. ChungD.H. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay.Antiviral Res.2017138475610.1016/j.antiviral.2016.11.018 27919709
    [Google Scholar]
  33. RatanakomolT. RoytrakulS. WikanN. SmithD.R. Berberine inhibits dengue virus through dual mechanisms.Molecules20212618550110.3390/molecules26185501 34576974
    [Google Scholar]
  34. MarraR.K.F. KümmerleA.E. GuedesG.P. BarrosC.S. GomesR.S.P. Cirne-SantosC.C. PaixãoI.C.N.P. NevesA.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors.Bioorg. Med. Chem. Lett.202030212688110.1016/j.bmcl.2019.126881 31843348
    [Google Scholar]
  35. KhanM. SanthoshS.R. TiwariM. Lakshmana RaoP.V. ParidaM. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells.J. Med. Virol.201082581782410.1002/jmv.21663 20336760
    [Google Scholar]
  36. IslamuddinM. AfzalO. KhanW.H. HisamuddinM. AltamimiA.S.A. HusainI. KatoK. AlamriM.A. ParveenS. Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1 H)-one (QVIR) Targeting nsP2 and E2 Proteins.ACS Omega20216149791980310.1021/acsomega.1c00447 33869959
    [Google Scholar]
  37. NarulaA.K. AzadC.S. NainwalL.M. New dimensions in the field of antimalarial research against malaria resurgence.Eur. J. Med. Chem.201918111135310.1016/j.ejmech.2019.05.043 31525705
    [Google Scholar]
  38. MarellaA. VermaG. ShaquiquzzamanM. KhanM.F. AkhtarW. AlamM.M. Malaria hybrids: A chronological evolution.Mini Rev. Med. Chem.201919141144117710.2174/1389557519666190315100027 30887923
    [Google Scholar]
  39. AlvenS. AderibigbeB. Combination therapy strategies for the treatment of malaria.Molecules20192419360110.3390/molecules24193601 31591293
    [Google Scholar]
  40. VinindwaB. DziwornuG.A. MasambaW. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents.Molecules20212613409310.3390/molecules26134093 34279438
    [Google Scholar]
  41. MuruganK. PanneerselvamC. SubramaniamJ. PaulpandiM. RajaganeshR. VasanthakumaranM. MadhavanJ. ShafiS.S. RoniM. Portilla-PulidoJ.S. MendezS.C. DuqueJ.E. WangL. AzizA.T. ChandramohanB. DineshD. PiramanayagamS. HwangJ.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases.Sci. Rep.2022121476510.1038/s41598‑022‑08397‑5 35306526
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072321232240927090613
Loading
/content/journals/cbc/10.2174/0115734072321232240927090613
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alkaloids; Anti-dengue; anti-malaria; isoquinolone; P. falciparum; quinolone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test