Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The study is aimed to assess the plant bioactive compounds of in treating diabetic neuropathy. The plant components were assessed using ethanol as the solvent.

Methods

A phytochemical screening was conducted to ascertain the existence of secondary metabolites in the plant extracts. The efficacy of plant extract against neuropathic pain was determined using plantar test and Von Frey filament stimulation. Biochemical tests were performed to determine the level of SGOT, SGPT, ALP, HDL, CHO, LDL, Creatinine and Urea. The percentage yield of ethanol and aqueous extract was 19.22 g and 15.76 g, respectively.

Results

The ethanolic extract showed presence of most of the phytoconstituents like alkaloids, flavonoids, carbohydrates, tannins, phytosterols, glycosides, proteins, and gum. Thus, ethanolic extract was used for further studies. In contrast to disease induced rats, rats given the extract chronically had a considerably shorter hind paw withdrawal latency. In STZ-induced diabetic rats, the mechanical withdrawal threshold dramatically reduced mechanical allodynia after 7 days by a dose of 400 mg/kg.

Conclusion

The major findings of the study demonstrated that STZ-induced diabetic rats administered leaf extract had reduced neuropathic pain. It can be concluded that may be used as an alternative drug in the treatment of diabetic neuropathy.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072321553240908020112
2024-09-16
2025-08-13
Loading full text...

Full text loading...

References

  1. BodmanM.A. VaracalloM. Peripheral diabetic neuropathy.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  2. MunyambaluDK HildagoI BafwaYT LagoroCA SikakulyaFK VahwereBM Prevalence and grade of diabetic peripheral neuropathy among known diabetic patients in rural Uganda.2023310.3389/fcdhc.2022.1001872
    [Google Scholar]
  3. BurgessJ. FrankB. MarshallA. KhalilR.S. PonirakisG. PetropoulosI.N. CuthbertsonD.J. MalikR.A. AlamU. Early detection of diabetic peripheral neuropathy: A focus on small nerve fibres.Diagnostics202111216510.3390/diagnostics1102016533498918
    [Google Scholar]
  4. JoH.G. BaekE. LeeD. Comparative efficacy of east asian herbal formulae containing astragali radix–cinnamomi ramulus herb-pair against diabetic peripheral neuropathy and mechanism prediction: a bayesian network meta-analysis integrated with network pharmacology.Pharmaceutics2023155136110.3390/pharmaceutics1505136137242603
    [Google Scholar]
  5. ElliottJ. SloanG. StevensL. SelvarajahD. CruccuG. GandhiR.A. KemplerP. FullerJ.H. ChaturvediN. TesfayeS. EURODIAB prospective complications study group. Female sex is a risk factor for painful diabetic peripheral neuropathy: the EURODIAB prospective diabetes complications study.Diabetologia202467119019810.1007/s00125‑023‑06025‑z37870649
    [Google Scholar]
  6. KiyaniM. YangZ. CharalambousL.T. AdilS.M. LeeH.J. YangS. PagadalaP. ParenteB. SprattS.E. LadS.P. Painful diabetic peripheral neuropathy.Neurol. Clin. Pract.2020101475710.1212/CPJ.000000000000067132190420
    [Google Scholar]
  7. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  8. MinochaT. BirlaH. ObaidA.A. RaiV. SushmaP. ShivamalluC. MoustafaM. Al-ShehriM. Al-EmamA. TikhonovaM.A. YadavS.K. PoeggelerB. SinghD. SinghS.K. Flavonoids as promising neuroprotectants and their therapeutic potential against alzheimer’s disease.Oxid. Med. Cell. Longev.2022202211310.1155/2022/603899636071869
    [Google Scholar]
  9. ShoaibS. AnsariM.A. FateaseA.A. SafhiA.Y. HaniU. JahanR. AlomaryM.N. AnsariM.N. AhmedN. WahabS. AhmadW. YusufN. IslamN. Plant-Derived bioactive compounds in the management of neurodegenerative disorders: Challenges, future directions and molecular mechanisms involved in neuroprotection.Pharmaceutics202315374910.3390/pharmaceutics1503074936986610
    [Google Scholar]
  10. SinghR. KaurN. KishoreL. Kumar GuptaG. Management of diabetic complications: A chemical constituents based approach.J. Ethnopharmacol.20131501517010.1016/j.jep.2013.08.05124041460
    [Google Scholar]
  11. JoH.G. KimH. LeeD. Oral administration of east asian herbal medicine for inflammatory skin lesions in plaque psoriasis: A systematic review, meta-analysis, and exploration of core herbal materials.Nutrients20221412243410.3390/nu1412243435745164
    [Google Scholar]
  12. SariY.M. NovriyantiN. Menstrual health problems of women indigenous peoples around protected forest area in sumatra, indonesia, and plants’ usefulness to treat it.J Mother Child.20232711937303200
    [Google Scholar]
  13. RenM. LiS. GaoQ. QiaoL. CaoQ. YangZ. ChenC. JiangY. WangG. FuS. Advances in the anti-tumor activity of biflavonoids in Selaginella. Int. J. Mol. Sci.2023249773110.3390/ijms2409773137175435
    [Google Scholar]
  14. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  15. EntezariM. HashemiD. TaheriazamA. ZabolianA. MohammadiS. FakhriF. HashemiM. HushmandiK. AshrafizadehM. ZarrabiA. ErtasY.N. MirzaeiS. SamarghandianS. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.11256335062059
    [Google Scholar]
  16. SutoyoS. SanjayaA.I.G.M. HidayahR. PuspitaD. NurrulhidayahS. Phytochemical screening, total flavonoid content, and total phenolic content of ethanol extract of the Indonesian Fern Selaginella Plana.2021209357362
    [Google Scholar]
  17. TiwariP. KumarB. KaurM. KaurG. KaurH. Phytochemical screening and extraction: A Review.Internationale Pharmaceutica Sciencia2011198106
    [Google Scholar]
  18. EdeogaH.O. OkwuD.E. MbaebieB.O. Phytochemical constituents of some Nigerian medicinal plants.Afr. J. Biotechnol.20054768568810.5897/AJB2005.000‑3127
    [Google Scholar]
  19. ShaikhJ.R. PatilM.K. Qualitative tests for preliminary phytochemical screening: An overview.Int. J. Chem. Stud.20208260360810.22271/chemi.2020.v8.i2i.8834
    [Google Scholar]
  20. BansalV. KalitaJ. MisraU.K. Diabetic neuropathy.Postgrad. Med. J.2006829649510010.1136/pgmj.2005.03613716461471
    [Google Scholar]
  21. FarmerK.L. LiC. DobrowskyR.T. Diabetic peripheral neuropathy: should a chaperone accompany our therapeutic approach?Pharmacol. Rev.201264488090010.1124/pr.111.00531422885705
    [Google Scholar]
  22. TembhurneS.V. SakarkarD.M. Effect of fluoxetine on an experimental model of diabetes-induced neuropathic pain perception in the rat.Indian J. Pharm. Sci.201173662162510.4103/0250‑474X.10023523112395
    [Google Scholar]
  23. Patil-ChhablaniP. NairA.G. VenkatramaniD. GandhiR. Ocular myasthenia gravis: A review.Indian J. Ophthalmol.2014621098599110.4103/0301‑4738.14598725449931
    [Google Scholar]
  24. BierhausA. HaslbeckK.M. HumpertP.M. LiliensiekB. DehmerT. MorcosM. SayedA.A.R. AndrassyM. SchiekoferS. SchneiderJ.G. SchulzJ.B. HeussD. NeundörferB. DierlS. HuberJ. TritschlerH. SchmidtA.M. SchwaningerM. HaeringH.U. SchleicherE. KasperM. SternD.M. ArnoldB. NawrothP.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily.J. Clin. Invest.2004114121741175110.1172/JCI1805815599399
    [Google Scholar]
  25. DubinA.E. PatapoutianA. Nociceptors: the sensors of the pain pathway.J. Clin. Invest.2010120113760377210.1172/JCI4284321041958
    [Google Scholar]
  26. HuF. SunD.S. WangK.L. ShangD.Y. Nanomedicine of plant origin for the treatment of metabolic disorders.Front. Bioeng. Biotechnol.2022981191710.3389/fbioe.2021.81191735223819
    [Google Scholar]
  27. AretiA. YerraV.G. NaiduV.G.M. KumarA. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy.Redox Biol.2014228929510.1016/j.redox.2014.01.00624494204
    [Google Scholar]
  28. KawaguchiM. SatohY. OtsuboY. KazamaT. Molecular hydrogen attenuates neuropathic pain in mice.PLoS One201496e10035210.1371/journal.pone.010035224941001
    [Google Scholar]
  29. BhowmikB. SiddiqueeT. MujumderA. AfsanaF. AhmedT. MdalaI.A. do V MoreiraN.C. KhanA.K.A. HussainA. Holmboe-OttesenG. OmslandT.K. Serum lipid profile and its association with diabetes and prediabetes in a Rural Bangladeshi population.Int. J. Environ. Res. Public Health2018159194410.3390/ijerph1509194430200612
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072321553240908020112
Loading
/content/journals/cbc/10.2174/0115734072321553240908020112
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): diabetes; fern; glucose; hypoglycaemia; secondary metabolites; Selaginella
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test