Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

The 1,3,4-oxadiazole nucleus is a biologically necessary scaffold that exhibits a wide range of pharmacological activities. The broad and strong activity of 1,3,4-oxadiazole and their derivatives has established them as significant pharmacological scaffolds, particularly in the treatment of cancer disease. A number of di-, tri-, aromatic, and heterocyclic substituted 1,3,4-oxadiazole derivatives have been reported to possess potent biological activities; these substituted 1,3,4-oxadiazoles had different mechanisms of action and contributed to the development of biologically active drugs. This review is intended to supplement previous reviews by reviewing the literature on the different activities of 1,3,4-oxadiazole derivatives from the last fifteen years. 1,3,4-oxadiazole can be produced in a number of ways and has a wide range of possible pharmacological uses. As a result, scientists have created novel procedures for the production of 1,3,4-oxadiazole derivatives and their use in medicine presently. Anticancer, antibacterial, anti-inflammatory, anti-HIV, anti-tubercular, anti-diabetic, antifungal, and other properties are among the activities. In this review, we discussed various research works based on 1,3,4-oxadiazole derivatives synthetic procedure and assessment of different biological activities. Many researchers may find the material on this page helpful, which could lead to the discovery of new medicinal species for society.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072318215240916073812
2024-09-27
2026-01-01
Loading full text...

Full text loading...

References

  1. LangD.K. KaurR. AroraR. SainiB. AroraS. Nitrogen-containing heterocycles as anticancer agents: An overview.Anticancer. Agents Med. Chem.202020182150216810.2174/1871520620666200705214917 32628593
    [Google Scholar]
  2. DhabalS. DasP. BiswasP. KumariP. YakubenkoV.P. KunduS. CathcartM.K. KunduM. BiswasK. BhattacharjeeA. Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13–stimulated monocytes and A549 lung carcinoma cells.J. Biol. Chem.201829336140401406410.1074/jbc.RA118.002321 30021838
    [Google Scholar]
  3. Satram-MaharajT. NyarkoJ.N. KuskiK. FehrK. PenningtonP.R. TruittL. FreywaldA. LukongK.E. AndersonD.H. MousseauD.D. The monoamine oxidase-A inhibitor clorgyline promotes a mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer cell line.Cell. Signal.201426122621263210.1016/j.cellsig.2014.08.005 25152370
    [Google Scholar]
  4. AlamM.M. NazreenS. AlmalkiA.S. ElhenawyA.A. AlsenaniN.I. ElbehairiS.E. MalebariA.M. AlfaifiM.Y. AlsharifM.A. AlfaifiS.Y. Naproxen based 1,3,4-oxadiazole derivatives as EGFR inhibitors: design, synthesis, anticancer, and computational studies.Pharmaceuticals202114987010.3390/ph14090870 34577570
    [Google Scholar]
  5. BoströmJ. HognerA. LlinàsA. WellnerE. PlowrightA.T. Oxadiazoles in medicinal chemistry.J. Med. Chem.20125551817183010.1021/jm2013248 22185670
    [Google Scholar]
  6. ZhangH.Z. ZhaoZ.L. ZhouC.H. Recent advance in oxazole-based medicinal chemistry.Eur. J. Med. Chem.201814444449210.1016/j.ejmech.2017.12.044 29288945
    [Google Scholar]
  7. RogolinoD. CarcelliM. CompariC. De LucaL. FerroS. FisicaroE. RispoliG. NeamatiN. DebyserZ. ChristF. ChimirriA. Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process.Eur. J. Med. Chem.20147842543010.1016/j.ejmech.2014.03.070 24704615
    [Google Scholar]
  8. RaneR.A. BangaloreP. BorhadeS.D. KhandareP.K. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4-oxadiazole derivatives as antimicrobial and anti-tubercular agents.Eur. J. Med. Chem.201370495810.1016/j.ejmech.2013.09.039 24140916
    [Google Scholar]
  9. JakubkieneV. BurbulieneM.M. MekuskieneG. UdrenaiteE. GaidelisP. VainilaviciusP. Synthesis and anti-inflammatory activity of 5-(6-methyl-2-substituted 4-pyrimidinyloxymethyl)-1,3,4-oxadiazole-2-thiones and their 3-morpholinomethyl derivatives.Farmaco200358432332810.1016/S0014‑827X(02)00022‑8 12727542
    [Google Scholar]
  10. LadaniG.G. PatelM.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities.New J. Chem.201539129848985710.1039/C5NJ02566D
    [Google Scholar]
  11. DesaiN.C. SomaniH. TrivediA. BhattK. NawaleL. KhedkarV.M. JhaP.C. SarkarD. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents.Bioorg. Med. Chem. Lett.20162671776178310.1016/j.bmcl.2016.02.043 26920799
    [Google Scholar]
  12. SinghP. SharmaP. SharmaJ. UpadhyayA. KumarN. Synthesis and evaluation of substituted diphenyl-1,3,4-oxadiazole derivatives for central nervous system depressant activity.Org. Med. Chem. Lett.201221810.1186/2191‑2858‑2‑8 22380426
    [Google Scholar]
  13. AkhtarT. HameedS. KhanK.M. KhanA. ChoudharyM.I. Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-triazoles derived from mandelic acid.J. Enzyme Inhib. Med. Chem.201025457257610.3109/14756360903389864 20235688
    [Google Scholar]
  14. Al-OmarM.A. Synthesis and antimicrobial activity of new 5-(2-thienyl)-1,2,4-triazoles and 5-(2-thienyl)-1,3,4-oxadiazoles and related derivatives.Molecules201015150251410.3390/molecules15010502 20110905
    [Google Scholar]
  15. FarshoriN.N. BandayM.R. AhmadA. KhanA.U. RaufA. Synthesis, characterization, and in vitro antimicrobial activities of 5-alkenyl/hydroxyalkenyl-2-phenylamine-1,3,4-oxadiazoles and thiadiazoles.Bioorg. Med. Chem. Lett.20102061933193810.1016/j.bmcl.2010.01.126 20172722
    [Google Scholar]
  16. JhaK.K. SamadA. KumarY. ShaharyarM. KhosaR.L. JainJ. KumarV. SinghP. Design, synthesis and biological evaluation of 1,3,4-oxadiazole derivatives.Eur. J. Med. Chem.201045114963496710.1016/j.ejmech.2010.08.003 20817328
    [Google Scholar]
  17. PadmavathiV. ReddyS.N. ReddyG.D. PadmajaA. Synthesis and bioassay of aminosulfonyl-1,3,4-oxadiazoles and their interconversion to 1,3,4-thiadiazoles.Eur. J. Med. Chem.20104594246425110.1016/j.ejmech.2010.06.022 20630628
    [Google Scholar]
  18. RamazaniA. AhmadiY. RouhaniM. ShajariN. SouldoziA. The reaction of (N ‐isocyanimino) triphenylphosphorane with an electron‐poor α‐haloketone in the presence of aromatic carboxylic acids: A novel three‐component reaction for the synthesis of disubstituted 1,3,4‐oxadiazole derivatives.Heteroatom Chem.201021636837210.1002/hc.20626
    [Google Scholar]
  19. YanY.N. PanW. SongH-C. The synthesis and optical properties of novel 1,3,4-oxadiazole derivatives containing an imidazole unit.Dyes Pigments201086324925810.1016/j.dyepig.2010.01.011
    [Google Scholar]
  20. ZhengQ.Z. ZhangX.M. XuY. ChengK. JiaoQ.C. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1,3,4-oxadiazole moiety as potential antitumor agents.Bioorg. Med. Chem.201018227836784110.1016/j.bmc.2010.09.051 20947362
    [Google Scholar]
  21. ZhangX.M. QiuM. SunJ. ZhangY.B. YangY.S. WangX.L. TangJ.F. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents.Bioorg. Med. Chem.201119216518652410.1016/j.bmc.2011.08.013 21962523
    [Google Scholar]
  22. LiZ. Zhan, P; and Liu, X. 1,3,4-Oxadiazole: A privileged structure in antiviral agents.Med. Chem.2011111130114210.2174/138955711797655407 22353222
    [Google Scholar]
  23. VinayK.R. Review article on 1,3,4-oxadiazole derivaties and its pharmacological activities.Int. J. Chemtech Res.20113313621372
    [Google Scholar]
  24. SunJ. ZhuH. YangZ.M. ZhuH.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent.Eur. J. Med. Chem.201360232810.1016/j.ejmech.2012.11.039 23279864
    [Google Scholar]
  25. De OliveiraC.S. LiraB.F. Barbosa-FilhoJ.M. LorenzoJ.G. De Athayde-FilhoP.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: a review of the literature from 2000–2012.Molecules2012179101921023110.3390/molecules170910192
    [Google Scholar]
  26. GadegoniH. MandaS. Synthesis and screening of some novel substituted indoles contained 1,3,4-oxadiazole and 1,2,4-triazole moiety.Chin. Chem. Lett.201324212713010.1016/j.cclet.2013.01.001
    [Google Scholar]
  27. WangL. HeW. WangM. WeiM. SunJ. ChenX. YangH. Effects of symmetrically 2,5-disubstituted 1,3,4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study.Liq. Cryst.201340335436710.1080/02678292.2012.749306
    [Google Scholar]
  28. DuQ.R. LiD.D. PiY.Z. LiJ.R. SunJ. FangF. ZhongW.Q. GongH.B. ZhuH.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents.Bioorg. Med. Chem.20132182286229710.1016/j.bmc.2013.02.008 23490159
    [Google Scholar]
  29. HanJ. 1,3,4-Oxadiazole based liquid crystals.J. Mater. Chem.2013147777910.1039/c3tc31458h
    [Google Scholar]
  30. RapoluS. AllaM. BommenaV.R. MurthyR. JainN. BommareddyV.R. BommineniM.R. Synthesis and biological screening of 5-(alkyl(1H-indol-3-yl))-2-(substituted)-1,3,4-oxadiazoles as antiproliferative and anti-inflammatory agents.Eur. J. Med. Chem.2013669110010.1016/j.ejmech.2013.05.024 23792319
    [Google Scholar]
  31. YangS.J. LeeS.H. KwakH.J. GongY.D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate.J. Org. Chem.201378243844410.1021/jo302324r 23215154
    [Google Scholar]
  32. YuW. I2-mediated oxidative c−o bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides.J. Org. Chem.201378103371034310.1021/jo401751h 24059837
    [Google Scholar]
  33. BalaS. 1,3,4-Oxadiazole derivatives: Synthesis, characterization, antimicrobial potential, and computational studies.BioMed Res. Int.2014217279110.1155/2014/172791 25147788
    [Google Scholar]
  34. ChavesJ.D. NeumannF. FranciscoT.M. CorrêaC.C. LopesM.T. SilvaH. FontesA.P. de AlmeidaM.V. Synthesis and cytotoxic activity of gold(I) complexes containing phosphines and 3-benzyl-1,3-thiazolidine-2-thione or 5-phenyl-1,3,4-oxadiazole-2-thione as ligands.Inorg. Chim. Acta2014414859010.1016/j.ica.2014.01.042
    [Google Scholar]
  35. KurowskaA. KostyuchenkoA.S. ZassowskiP. SkorkaL. YurpalovV.L. FisyukA.S. PronA. DomagalaW. Symmetrically disubstituted bithiophene derivatives of 1,3,4-oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole – spectroscopic, electrochemical, and spectroelectrochemical properties.J. Phys. Chem. C201411843251762518910.1021/jp507838c
    [Google Scholar]
  36. NiuP. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4- thiadiazoles via sequential condensation and i2-mediated oxidative c−o/c−s bond formation.J. Org. Chem.2015801018102410.1021/jo502518c 25506709
    [Google Scholar]
  37. BenmansourF. EydouxC. QueratG. de LamballerieX. CanardB. AlvarezK. GuillemotJ.C. BarralK. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase.Eur. J. Med. Chem.201610914615610.1016/j.ejmech.2015.12.046 26774922
    [Google Scholar]
  38. BhartyM.K. DaniR.K. NathP. BhartiA. SinghN.K. PrakashO. SinghR.K. ButcherR.J. Syntheses, structural and thermal studies on Zn(II) complexes of 5-aryl-1,3,4-oxadiazole-2-thione and dithiocarbamates: Antibacterial activity and DFT calculations.Polyhedron201598849510.1016/j.poly.2015.05.045
    [Google Scholar]
  39. Gamal El-DinM.M. El-GamalM.I. Abdel-MaksoudM.S. YooK.H. OhC-H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety.Eur. J. Med. Chem.201590455210.1016/j.ejmech.2014.11.011
    [Google Scholar]
  40. GaoQ. LiuS. WuX. ZhangJ. WuA. Direct annulation of hydrazides to 1,3,4-oxadiazoles via oxidative c(co)–c(methyl) bond cleavage of methyl ketones.Org. Lett.201517122960296310.1021/acs.orglett.5b01241 26035338
    [Google Scholar]
  41. ParaschivescuC.C. HădadeN.D. ComanA.G. GautierA. CisnettiF. MatacheM. Symmetrical and non-symmetrical 2,5-diaryl-1,3,4-oxadiazoles: synthesis and photophysical properties.Tetrahedron Lett.201556253961396410.1016/j.tetlet.2015.05.005
    [Google Scholar]
  42. ShiL. LiP. WangW. GaoM. WuZ. SongX. HuD. Antibacterial activity and mechanism of action of sulfone derivatives containing 1,3,4-oxadiazole moieties on rice bacterial leaf blight.Molecules2015207116601167510.3390/molecules200711660 26114927
    [Google Scholar]
  43. WaniM.Y. AhmadA. ShiekhR.A. Al-GhamdiK.J. SobralA.J. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents.Bioorg. Med. Chem.201523154172418010.1016/j.bmc.2015.06.053 26164624
    [Google Scholar]
  44. WuW. Synthesis and antiviral activity of 2-substitutedmethlthio-5- (4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives.Bioorg. Med. Chem. Lett.201525102243224610.1016/j.bmcl.2015.02.069 25900217
    [Google Scholar]
  45. WangP.Y. ZhouL. ZhouJ. WuZ.B. XueW. SongB.A. YangS. Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives.Bioorg. Med. Chem. Lett.20162641214121710.1016/j.bmcl.2016.01.029 26810264
    [Google Scholar]
  46. GanX. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazolechalcone conjugates.Bioorg. Med. Chem. Lett.2017274298430110.1016/j.bmcl.2017.08.038 28838690
    [Google Scholar]
  47. GaoP. One-pot cyclization/decarboxylation of a-keto acids and acylhydrazines for the synthesis of 2,5-disubstituted 1,3,4- oxadiazoles under transition-metal-free conditions.Tetrahedron Lett.201657414616461910.1016/j.tetlet.2016.09.007
    [Google Scholar]
  48. KamalA. SrikanthP.S. VishnuvardhanM.V. KumarG.B. Suresh BabuK. HussainiS.M. KapureJ.S. AlarifiA. Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent Tubulin Polymerization inhibitors.Bioorg. Chem.20166512613610.1016/j.bioorg.2016.02.007 26943479
    [Google Scholar]
  49. LiY-T. WangJ-H. PanC-W. MengF-F. ChuX-Q. DingY. QuW-Z. LiH. YangC. ZhangQ. BaiC-G. ChenY. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib.Bioorg. Med. Chem. Lett.20162651419142710.1016/j.bmcl.2016.01.068
    [Google Scholar]
  50. PaunA. HadadeN. 1,3,4-Oxadiazoles as luminescent materials for organic light emitting diodes via cross-coupling reactions.J. Mater. Chem.201648596861010.1039/C6TC03003C
    [Google Scholar]
  51. TangL. ZhengZ. ZhongK. BianY.A. 2,5-diaryl-1,3,4-oxadiazole-based fluorescent probe for rapid and highly selective recognition of hydrogen sulfide with a large Stokes shift through switching on ESIPT.Tetrahedron Lett.201657121361136410.1016/j.tetlet.2016.02.056
    [Google Scholar]
  52. XieD.H. WangX-J. SunC. HanJ. Calix[4]arene based 1,3,4-oxadiazole as a fluorescent chemosensor for copper(II) ion detection.Tetrahedron Lett.201657515834583610.1016/j.tetlet.2016.11.051
    [Google Scholar]
  53. LiP. Novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety: Design, synthesis, antibacterial and nematocidal activities.Pest Manag. Sci.201774484485210.1002/ps.4762
    [Google Scholar]
  54. Pitasse-SantosP. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents.J. Braz. Chem. Soc.201829343545610.21577/0103‑5053.20170208
    [Google Scholar]
  55. Synthesis and biological activities of 1,3,4-oxadiazole. Synthetic Communications.Int. J. Rapid Comm. Syn. Org. Chem.201747201805184710.1080/00397911.2017.1360911
    [Google Scholar]
  56. SongX. Synthesis and investigation of the antibacterial activity and action mechanism of 1,3,4-oxadiazole thioether derivatives.Pestic. Biochem. Physiol.2017147111910.1016/j.pestbp.2017.10.011 29933979
    [Google Scholar]
  57. LiP. HuD. XieD. ChenJ. JinL. SongB. Design, synthesis, and evaluation of new sulfone derivatives containing a 1,3,4-oxadiazole moiety as active antibacterial agents.J. Agric. Food Chem.201866123093310010.1021/acs.jafc.7b06061 29502398
    [Google Scholar]
  58. ChenJ. ChenY. GanX. SongB. HuD. SongB. Synthesis, nematicidal evaluation, and 3d-qsar analysis of novel 1,3,4-oxadiazole–cinnamic acid hybrids.J. Agric. Food Chem.201866379616962310.1021/acs.jafc.8b03020 30145894
    [Google Scholar]
  59. HeX. LiX. LiangJ. CaoC. LiS. ZhangT. MengF. Design, synthesis and anticancer activities evaluation of novel 5 H -dibenzo[ b, e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units.Bioorg. Med. Chem. Lett.201828584785210.1016/j.bmcl.2018.02.008 29456106
    [Google Scholar]
  60. MohanC.D. NirvanappaC. Novel 1,3,4- oxadiazole induces anticancer activity by targeting nfkb in hepatocellular carcinoma cells. the journal.J. Front. Oncol.201884210.3389/fonc.2018.00042 29616186
    [Google Scholar]
  61. VosátkaR. KrátkýM. ŠvarcováM. JanoušekJ. StolaříkováJ. MadackiJ. HuszárS. MikušováK. KordulákováJ. TrejtnarF. VinšováJ. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action.Eur. J. Med. Chem.201815182483510.1016/j.ejmech.2018.04.017 29679902
    [Google Scholar]
  62. TantrayM.A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3b inhibitors with in vivo antidepressant activity.Bioorg. Chem.20187739340110.1016/j.bioorg.2018.01.040 29421716
    [Google Scholar]
  63. XuX. LiZ. BiZ. YuT. MaW. FengK. LiY. PengQ. Highly efficient nonfullerene polymer solar cells enabled by a copper(i) coordination strategy employing a 1,3,4‐oxadiazole‐containing wide‐bandgap copolymer donor.Adv. Mater.20183028180073710.1002/adma.201800737 29782681
    [Google Scholar]
  64. SinghaiA. Synthesis and characterization of 1, 3, 4-oxadiazole derivatives.J. Drug Deliv. Ther.201886-A2527
    [Google Scholar]
  65. HomocianuM. AirineiA. HamciucC. IpateA.M. Nonlinear optical properties (NLO) and metal ions sensing responses of a polymer containing 1,3,4-oxadiazole and bisphenol A units.J. Mol. Liq.201928114114910.1016/j.molliq.2019.02.065
    [Google Scholar]
  66. ShiJ. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety.Chin. Chem. Lett.201931243443810.1016/j.cclet.2019.06.037
    [Google Scholar]
  67. WangM.W. ZhuH.H. WangP.Y. ZengD. WuY.Y. LiuL.W. WuZ.B. LiZ. YangS. Synthesis of thiazolium-labeled 1,3,4-oxadiazole thioethers as prospective antimicrobials: In vitro and in vivo bioactivity and mechanism of action.J. Agric. Food Chem.20196746126961270810.1021/acs.jafc.9b03952 31657554
    [Google Scholar]
  68. WuY.Y. ShaoW.B. ZhuJ.J. LongZ.Q. LiuL.W. WangP.Y. LiZ. YangS. Novel 1,3,4-oxadiazole-2-carbohydrazides as prospective agricultural antifungal agents potentially targeting succinate dehydrogenase.J. Agric. Food Chem.20196750138921390310.1021/acs.jafc.9b05942 31774673
    [Google Scholar]
  69. YanL. DengM. ChenA. LiY. ZhangW. DuZ. DongC. MeunierB. ChenH. Synthesis of N-pyrimidin[1,3,4]oxadiazoles and N-pyrimidin[1,3,4]-thiadiazoles from 1,3,4-oxadiazol-2-amines and 1,3,4-thiadiazol-2-amines via Pd-catalyzed heteroarylamination.Tetrahedron Lett.201960201359136210.1016/j.tetlet.2019.04.022
    [Google Scholar]
  70. LuF. GongF. LiL. ZhangK. LiZ. ZhangX. YinY. WangY. GaoZ. ZhangH. LeiA. Electrochemical synthesis of 2,5‐disubstituted 1,3,4‐oxadiazoles from α‐keto acids and acylhydrazines under mild conditions.Eur. J. Org. Chem.20202020223257326010.1002/ejoc.202000311
    [Google Scholar]
  71. KarabelyovV. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity.Bioorg. Med. Chem.20202911588810.1016/j.bmc.2020.115888 33360082
    [Google Scholar]
  72. LiJ. LuX.C. XuY. WenJ.X. HouG.Q. LiuL. Photoredox catalysis enables decarboxylative cyclization with hypervalent iodine(iii) reagents: Access to 2,5-disubstituted 1,3,4-oxadiazoles.Org. Lett.202022249621962610.1021/acs.orglett.0c03663 33334110
    [Google Scholar]
  73. ChenJ. Novel sulfone derivatives containing a 1,3,4-oxadiazole moiety: design and synthesis based on the 3D-QSAR model as potential antibacterial agent.Pest Manag. Sci.20207693188319810.1002/ps.5873
    [Google Scholar]
  74. HanX. Synthesis, telomerase inhibitory and anticancer activity of new 2-phenyl-4Hchromone derivatives containing 1,3,4-oxadiazole moiety.J. Enzyme Inhib. Med. Chem.202136134436010.1080/14756366.2020.1864630 33356666
    [Google Scholar]
  75. VaghaniH. 1,3,4-Oxadiazole and its poTENCY.Int. J. Pharm. Sci. Res.202112105292529910.1080/14756366.2020.1864630
    [Google Scholar]
  76. AbdelrehimE.M. Synthesis and screening of new [1,3,4]] oxadiazole, [1,2,4]triazole, and [1,2,4]triazolo[4,3-b] [1,2,4]triazole derivatives as potential antitumor agents on the colon carcinoma cell line (HCT-116).ACS Omega2021621687169610.1021/acsomega.0c05718 33490827
    [Google Scholar]
  77. Al-WahaibiL.H. AhmedA.B. Synthesis, antimicrobial, and anti-proliferative activities.Molecules202126211010.3390/molecules26082110 33916955
    [Google Scholar]
  78. BahriF. ShadiM. MohammadianR. JavanbakhtS. ShaabaniA. Cu-decorated cellulose through a three-component Betti reaction: An efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine C H functionalization of N-acylhydrazones.Carbohydr. Polym.202126511806710.1016/j.carbpol.2021.118067 33966831
    [Google Scholar]
  79. Az‐eddineE.N. Discovery of novel furo[2,3‐d]pyrimidin‐2‐one–1,3, 4‐oxadiazole hybrid derivatives as dual antiviral and anticancer agents that induce apoptosis.Arch Pharm202135410e210014610.1002/ardp.202100146
    [Google Scholar]
  80. GlombT. ŚwiątekP. Antimicrobial activity of 1,3,4-oxadiazole derivatives.Int. J. Mol. Sci.20212213697910.3390/ijms22136979 34209520
    [Google Scholar]
  81. LongZ.Q. YangL.L. ZhangJ.R. LiuS.T. Jiao Xie Wang, P.Y.; Zhu, J.J.; Shao, W.B.; Liu, L.W.; Yang, S. Fabrication of versatile pyrazole hydrazide derivatives bearing a 1,3,4-oxadiazole core as multipurpose agricultural chemicals against plant fungal, oomycete, and bacterial diseases.J. Agric. Food Chem.202169308380839310.1021/acs.jafc.1c02460 34296859
    [Google Scholar]
  82. Matheau-RavenD. DixonD.J. General α‐amino 1,3,4‐oxadiazole synthesis via late‐stage reductive functionalization of tertiary amides and lactams.Angew. Chem. Int. Ed.20216036197251972910.1002/anie.202107536 34191400
    [Google Scholar]
  83. AlmalkiA.S. NazreenS. MalebariA.M. AliN.M. ElhenawyA.A. AlghamdiA.A. AhmadA. AlfaifiS.Y. AlsharifM.A. AlamM.M. Synthesis and biological evaluation of 1,2,3-triazole tethered thymol-1,3,4-oxadiazole derivatives as anticancer and antimicrobial agents.Pharmaceuticals202114986610.3390/ph14090866 34577567
    [Google Scholar]
  84. WangY. [4+1] cyclization of benzohydrazide and ClCF2COONa towards 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-d5.Chin. Chem. Lett.20213331511151410.1016/j.cclet.2021.08.089
    [Google Scholar]
  85. TokF. UğraşZ. SağlıkB.N. ÖzkayY. KaplancıklıZ.A. Koçyiğit-KaymakçıoğluB. Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies.Bioorg. Chem.202111210491710.1016/j.bioorg.2021.104917 33932769
    [Google Scholar]
  86. WangF. YangB-X. ZhangT-H. TaoQ-Q. ZhouX. WangP-Y. YangS. Novel 1,3,4-oxadiazole thioether and sulfone derivatives bearing a flexible N-heterocyclic moiety: Synthesis, characterization, and anti-microorganism activity.Arab. J. Chem.202316210447910.1016/j.arabjc.2022.104479
    [Google Scholar]
  87. HossanA. AbumelhaH.M. AlnomanR.B. BayazeedA. AlsoliemyA. KeshkA.A. El-MetwalyN.M. Synthesis, self-assembly and optical properties of novel fluorescent alkoxy-substituted fluoroaryl 1, 3, 4-oxadiazole organogelator.Arab. J. Chem.202215510377110.1016/j.arabjc.2022.103771
    [Google Scholar]
  88. Matheau-RavenD. DixonD.J. A One-pot synthesis-functionalization strategy for streamlined access to 2,5-disubstituted 1,3,4-oxadiazoles from carboxylic acids.J. Org. Chem.20228718124981250510.1021/acs.joc.2c01669 36054913
    [Google Scholar]
  89. DaiA. 1,3,4-oxadiazole contained sesquiterpene derivatives: synthesis and microbiocidal activity for plant disease.Front Chem.20221085427410.3389/fchem.2022.854274 35273952
    [Google Scholar]
  90. Baby RamanaM. MothilalM. Strategies to synthesis of 1,3,4-oxadiazole derivatives and their biological activities.J. Chem. Rev.20224325527110.22034/JCR.2022.341351.1170
    [Google Scholar]
  91. KumarD. 1,3,4-oxadiazole – a bioactive scaffold for treating major depression-associated cognitive dysfunction.Aging Commu.202352910.53388/AGING202305009
    [Google Scholar]
  92. LuoX. ZhangY. LiuX. ZouY. SongH. WangS. ChenJ. Screening method and antibacterial activity of 1,3,4-oxadiazole sulfone compounds against citrus huanglongbing.Int. J. Mol. Sci.202324131051510.3390/ijms241310515 37445692
    [Google Scholar]
  93. LiuH. YangS. LiT. MaS. WangP. WangG. SuS. DingY. YangL. ZhouX. YangS. Design, synthesis and bioactivity evaluation of novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles containing an imidazole fragment as antibacterial agents.Molecules2023286244210.3390/molecules28062442 36985415
    [Google Scholar]
  94. IrfanA. FaisalS. AhmadS. Al-HussainS.A. JavedS. ZahoorA.F. ParveenB. ZakiM.E. Structure-based virtual screening of furan-1,3,4-oxadiazole tethered n-phenylacetamide derivatives as novel class of htyr and htyrp1 inhibitors.Pharmaceuticals202316334410.3390/ph16030344 36986444
    [Google Scholar]
  95. KumarD. AggarwalN. KumarH. KapoorG. DeepA. BibiS. SharmaA. ChopraH. Kumar MarwahaR. AlshammariA. AlharbiM. HayeeA. 2-Substituted-3-(5-substituted-1,3,4-oxadiazol/thiadiazol-2-yl) thiazolidin-4-one derivatives: synthesis, anticancer, antimicrobial, and antioxidant potential.Pharmaceuticals202316680510.3390/ph16060805 37375752
    [Google Scholar]
  96. IrfanA. FaisalS. ZahoorA.F. NoreenR. Al-HussainS.A. TuzunB. JavaidR. ElhenawyA.A. ZakiM.E. AhmadS. AbdellattifM.H. In silico development of novel benzofuran-1,3,4-oxadiazoles as lead inhibitors of m. tuberculosis polyketide synthase 13.Pharmaceuticals202316682910.3390/ph16060829 37375776
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072318215240916073812
Loading
/content/journals/cbc/10.2174/0115734072318215240916073812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test