Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The antioxidant fraction of has important antidiabetic potential, is poorly soluble, and has low stability, which makes its applicability difficult.

Materials and Methods

In this study, Stevia's fraction was obtained, characterized by Ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS), and microencapsulated with maltodextrin (MDF), gum arabic (GAF), whey protein + maltodextrin (MDWF), and whey protein + gum arabic (GAWF). Then, the following parameters were evaluated: stability and antioxidant capacity over 30 days, physicochemical characteristics, preservation of bioactive compounds by digestion, and antidiabetic activity.

Results and Discussion

The microcapsule with gum arabic showed better microencapsulation efficiency, while its version with maltodextrin provided increased solubility. Microencapsulation reduced the humidity and water activity in the microcapsules, except for the microcapsules containing gum arabic. The combination of maltodextrin and whey protein showed greater luminosity and a whiter powder. The microcapsules with maltodextrin and its mixture with gum arabic kept the phenolic compounds stable for 30 days. The microencapsulation with whey protein increased the antioxidant activity after 15 days of the process and during digestion. All samples showed 96% inhibition of the α-glucosidase enzyme, and only the microcapsule with maltodextrin inhibited α-amylase (58%).

Conclusion

This study showed paramount results so that Antioxidant Stevia Fraction (ASF) can effectively be an adjuvant product to prevent and treat diabetes.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072319585240905042130
2024-09-12
2025-11-01
Loading full text...

Full text loading...

References

  1. MilaniP.G. FormigoniM. DacomeA.S. BenossiL. Da CostaC.E.M. Da CostaS.C. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves.An Acad Bras Cienc201789318411850
    [Google Scholar]
  2. Molina-CalleM. Sánchez de MedinaV. Delgado de la TorreM.P. Priego-CapoteF. Luque de CastroM.D. Development and application of a quantitative method based on LC–QqQ MS/MS for determination of steviol glycosides in Stevia leaves.Talanta201615426326910.1016/j.talanta.2016.03.05127154673
    [Google Scholar]
  3. CabeçaC.L.S. NogueiraN.C. ZorzenonM.R.T. DacomeA.S. MadronaG.S. da CostaC.E.M. da CostaS.C. MilaniP.G. Microencapsulated antioxidant stevia fraction fortifies whey protein and enhances its antidiabetic activity.J. Food Sci. Technol.20236082275228510.1007/s13197‑023‑05755‑737273572
    [Google Scholar]
  4. RomaniniE.B. RodriguesL.M. StafussaA.P. Cantuaria ChierritoT.P. TeixeiraA.F. CorrêaR.C.G. MadronaG.S. Bioactive compounds from BRS violet grape pomace: An approach of extraction and microencapsulation, stability protection and food application.Plants20231218317710.3390/plants1218317737765341
    [Google Scholar]
  5. KhatunM.C.S. MuhitM.A. HossainM.J. Al-MansurM.A. RahmanS.M.A. Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches.Heliyon2021712e0847510.1016/j.heliyon.2021.e0847534917793
    [Google Scholar]
  6. MilaniP.G. FormigoniM. LimaY.C. PiovanS. PeixotoG.M.L. CamparsiD.M. da Silva RodriguesW.N. da SilvaJ.Q.P. da Silva AvincolaA. PilauE.J. da CostaC.E.M. da CostaS.C. Fortification of the whey protein isolate antioxidant and antidiabetic activity with fraction rich in phenolic compounds obtained from Stevia rebaudiana (Bert.). Bertoni leaves.J. Food Sci. Technol.20175472020202910.1007/s13197‑017‑2638‑028720959
    [Google Scholar]
  7. PiovanS. PavanelloA. PeixotoG.M.L. MatiussoC.C.I. De MoraesA.M.P. MartinsI.P. Stevia nonsweetener fraction displays an insulinotropic effect involving neurotransmission in pancreatic islets.Int J Endocrinol201820183189879
    [Google Scholar]
  8. MilaniP.G. PiovanS. LimaY.C. ZorzenonM.R.T. da RosaC.V.D. PeixotoG.M.L. de Freitas MathiasP.C. NataliM.R.M. da CostaS.C. Mareze-CostaC.E. Whey protein enriched with Stevia rebaudiana fraction restores the pancreatic function of streptozotocin induced diabetic rats.J. Food Sci. Technol.202158280581010.1007/s13197‑020‑04799‑333568874
    [Google Scholar]
  9. ChenX.D. ÖzkanN. Stickiness, functionality, and microstructure of food powders.Dry. Technol.200725695996910.1080/07373930701397400
    [Google Scholar]
  10. ZorzenonM. HodasF. MilaniP. FormigoniM. DacomeA. MonteiroA. CostaC. CostaS. Microencapsulation by spray-drying of stevia fraction with antidiabetics effects.Chem. Eng. Trans.201975307312
    [Google Scholar]
  11. FormigoniM. MilaniP.G. da Silva AvíncolaA. dos SantosV.J. BenossiL. DacomeA.S. PilauE.J. da CostaS.C. Pretreatment with ethanol as an alternative to improve steviol glycosides extraction and purification from a new variety of stevia.Food Chem.201824145245910.1016/j.foodchem.2017.09.02228958553
    [Google Scholar]
  12. MahdiA.A. MohammedJ.K. Al-AnsiW. GhalebA.D.S. Al-MaqtariQ.A. MaM. AhmedM.I. WangH. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying.Int. J. Biol. Macromol.20201521125113410.1016/j.ijbiomac.2019.10.20131751737
    [Google Scholar]
  13. PlatiF. ParaskevopoulouA. Hemp protein isolate – Gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate – Gum Arabic system.Food Hydrocoll.202313610828410.1016/j.foodhyd.2022.108284
    [Google Scholar]
  14. ChraniotiC. ChaniotiS. TziaC. Comparison of spray, freeze and oven drying as a means of reducing bitter aftertaste of steviol glycosides (derived from Stevia rebaudiana Bertoni plant) – Evaluation of the final products.Food Chem.20161901151115810.1016/j.foodchem.2015.06.08326213089
    [Google Scholar]
  15. Instituto Adolfo Lutz Physicochemical methods for food analysis.Adolfo Lutz Institute.20081020
    [Google Scholar]
  16. AhmadU. AhmadR.S. Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats.BMC Complement. Altern. Med.201818117910.1186/s12906‑018‑2245‑229890969
    [Google Scholar]
  17. RufinoM. Scientific methodology: Determination of total antioxidant activity in fruits by capturing the free radical ABTSº+.2007Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/426954/metodologia-cientifica-determinacao-da-atividade-antioxidante-total-em-frutas-pela-captura-do-radical-livre-abts
  18. Mass Color – Reflectance Colorimeter Method.International Method.199910.1094/AACCIntMethod‑14‑22.01
    [Google Scholar]
  19. ApostolidisE. KwonY.I. ShettyK. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension.Innov. Food Sci. Emerg. Technol.200781465410.1016/j.ifset.2006.06.001
    [Google Scholar]
  20. NatsirH. WahabA.W. LagaA. ArifA.R. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro.J. Phys. Conf. Ser.20189791012019https://iopscience.iop.org/article/10.1088/1742-6596/979/1/012019
    [Google Scholar]
  21. The R project for statistical computing.2023Available from: https://www.R-project.org/
  22. GaneshpurkarA. SalujaA.K. The pharmacological potential of rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.02528344465
    [Google Scholar]
  23. AdamiecJ. BorompichaichartkulC. SrzednickiG. PanketW. PiriyapunsakulS. ZhaoJ. Microencapsulation of kaffir lime oil and its functional properties.Dry. Technol.201230991492010.1080/07373937.2012.666777
    [Google Scholar]
  24. Cano-HiguitaD.M. VélezH.A.V. TelisV.R.N. Microencapsulation of turmeric oleoresin in binary and ternary blends of gum Arabic, maltodextrin and modified starch.Cienc. Agrotec.201539217318210.1590/S1413‑70542015000200009
    [Google Scholar]
  25. Cano-ChaucaM. StringhetaP.C. RamosA.M. Cal-VidalJ. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization.Innov. Food Sci. Emerg. Technol.20056442042810.1016/j.ifset.2005.05.003
    [Google Scholar]
  26. MastersK. Spray Drying; An Introduction to Principles Operational Practice and Applications.Leonard Hill1972
    [Google Scholar]
  27. National Health Surveillance Agency - ANVISA. Collegiate board resolution – rdc no. 45, of November 3, 2010.2010Available from: https://antigo.anvisa.gov.br/documents/10181/2718376/%281%29RDC_45_2010_COMP.pdf/ca8fab82-845e-4856-8883-c414612800d1
  28. TontulI. TopuzA. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties.Trends Food Sci. Technol.2017639110210.1016/j.tifs.2017.03.009
    [Google Scholar]
  29. PorrarudS. PraneeA. Microencapsulation of Zn-chlorophyll pigment from Pandan leaf by spray drying and its characteristic.Int. Food Res. J.201017410311042
    [Google Scholar]
  30. Castillo TéllezM. Pilatowsky FigueroaI. Castillo TéllezB. López VidañaE.C. López OrtizA. Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies.Sol. Energy201815989890710.1016/j.solener.2017.11.031
    [Google Scholar]
  31. MilovanovicB. DjekicI. MiocinovicJ. DjordjevicV. LorenzoJ.M. BarbaF.J. MörleinD. TomasevicI. What is the color of milk and dairy products and how is it measured?Foods2020911162910.3390/foods911162933171601
    [Google Scholar]
  32. LeónK. MeryD. PedreschiF. LeónJ. Color measurement in L∗a∗b∗ units from RGB digital images.Food Res. Int.200639101084109110.1016/j.foodres.2006.03.006
    [Google Scholar]
  33. SpenceC. On the psychological impact of food colour.Flavour20154111610.1186/s13411‑015‑0031‑3
    [Google Scholar]
  34. ZorzenonM.R.T. CabeçaC.L.S. NogueiraN.C. AristidesL.G.B. CordeiroE.B. DacomeA.S. Mareze-CostaC.E. FernandesP.G.M. da CostaS.C. Cold extraction of minimally processed Stevia UEM‐13 leaves: Amylase inhibition and increased bioaccessibility of bioactive compounds by microencapsulation.J. Food Process. Preserv.20224612e1721310.1111/jfpp.17213
    [Google Scholar]
  35. NegriG. TeixeiraE.W. Florêncio AlvesM.L.T.M. MoretiA.C.C.C. OtsukI.P. BorguiniR.G. SalatinoA. Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil.J. Agric. Food Chem.201159105516552210.1021/jf200602k21500799
    [Google Scholar]
  36. MoraisN.N.G. Microencapsulation of seriguela (Spondias purpúrea L.) residue extract using maltodextrin, gum arabic and whey: development and characterization.2020http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8480
  37. TolunA. AltintasZ. ArtikN. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization.J. Biotechnol.2016239233310.1016/j.jbiotec.2016.10.00127720817
    [Google Scholar]
  38. Pereira SouzaA.C. Deyse GurakP. Damasceno Ferreira MarczakL. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace.Food Bioprod. Process.201710218619410.1016/j.fbp.2016.12.012
    [Google Scholar]
  39. Calderón-OliverM. Ponce-AlquiciraE. The role of microencapsulation in food application.Moléculas20222710.3390/molecules2705149935268603
    [Google Scholar]
  40. VonghirundechaP. ChusriS. MeunprasertdeeP. KaewmaneeT. Microencapsulated functional ingredients from a Moringa oleifera leaf polyphenol-rich extract: Characterization, antioxidant properties, in vitro simulated digestion, and storage stability.Lebensm. Wiss. Technol.202215411282010.1016/j.lwt.2021.112820
    [Google Scholar]
  41. MansourM. SalahM. XuX. Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions.Ultrason. Sonochem.20206310492710.1016/j.ultsonch.2019.10492731952001
    [Google Scholar]
  42. GullonB. PintadoM.E. Fernández-LópezJ. Pérez-ÁlvarezJ.A. Viuda-MartosM. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability.J. Funct. Foods20151961762810.1016/j.jff.2015.09.056
    [Google Scholar]
  43. Wootton-BeardPC MoranA. RyanL. Stability of total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods.Food Res. Int.2011441217224
    [Google Scholar]
  44. Carbonell-CapellaJ.M. BuniowskaM. EsteveM.J. FrígolaA. Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion.Food Chem.201518412213010.1016/j.foodchem.2015.03.09525872434
    [Google Scholar]
  45. Sedaghat DoostA. Nikbakht NasrabadiM. WuJ. A’yunQ. Van der MeerenP. Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques.Trends Food Sci. Technol.20199111110.1016/j.tifs.2019.06.011
    [Google Scholar]
  46. LiX. DaiT. HuP. ZhangC. ChenJ. LiuC. LiT. Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids.Food Hydrocoll.202010510576110.1016/j.foodhyd.2020.105761
    [Google Scholar]
  47. de MoraisF.P.R. PessatoT.B. RodriguesE. Peixoto MallmannL. MariuttiL.R.B. NettoF.M. Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion.Food Res. Int.202013310910410.1016/j.foodres.2020.10910432466919
    [Google Scholar]
  48. BabaW.N. McClementsD.J. MaqsoodS. Whey protein–polyphenol conjugates and complexes: Production, characterization, and applications.Food Chem.202136513045510.1016/j.foodchem.2021.130455
    [Google Scholar]
  49. BuggyA.K. McManusJ.J. BrodkorbA. HoganS.A. FenelonM.A. Pilot-scale formation of whey protein aggregates determine the stability of heat-treated whey protein solutions—Effect of pH and protein concentration.J. Dairy Sci.201810112108191083010.3168/jds.2017‑1417730243639
    [Google Scholar]
  50. DuruK.C. KovalevaE.G. DanilovaI.G. van der BijlP. BelousovaA.V. The potential beneficial role of isoflavones in type 2 diabetes mellitus.Nutr. Res.20185911510.1016/j.nutres.2018.06.00530442228
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072319585240905042130
Loading
/content/journals/cbc/10.2174/0115734072319585240905042130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test