Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction/Objective

The ethanolic pretreatment of stevia leaves is considered ecologically favorable and increases its yield, purity level, and sensory profile of sweeteners. We investigated the by-product generated so that we can provide a viable and applicable destination to effectively contribute to the production and industrial chain of stevia sweeteners. Recently, an antioxidant and antidiabetic fraction was obtained through stevia methanolic extraction. However, this process is costly, has a low yield, and is non-green. In this study, we got an antioxidant fraction of stevia from its pretreatment by-product, the ethanolic extract, characterized its bioactive compounds - mainly phenolic acids and flavonoids - and evaluated its antidiabetic and anti-lipid capacity.

Methods

The ethanolic extract was fractionated, then the ethyl acetate fraction was microencapsulated. Physicochemical, Mass Spectrometry (UHPLC/MS-MS), scanning electron microscopy, microencapsulation efficiency, and antioxidant capacity analyses were carried out. The antioxidant capacity was evaluated. Antihyperglycemic capacity was assessed by inhibition of α-glucosidase and α-amylase. For antilipid potential, inhibition of pancreatic lipase was measured.

Results

Antioxidant potential was observed mainly in the fraction. Microencapsulation improved the stability of the fraction. Mass spectrometry allowed comparison with phenolic and flavonoid compounds from the methanolic and ethanolic fractions of the by-product. Many compounds were coincident, which may explain the similar antioxidant capacity found. The samples showed more than 90% inhibition of alpha-glucosidase, which may indicate potential antidiabetic activity. All samples showed inhibition of the pancreatic lipase enzyme higher than 80%, reaching 91.05% for the free fraction.

Conclusion

This study represented the recovery of a by-product and showed that this antioxidant fraction deserves further investigation for its bioactive potential, especially antioxidant, antidiabetic, and anti-lipid.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322861240927105151
2024-10-09
2025-09-12
Loading full text...

Full text loading...

References

  1. MilaniP.G. FormigoniM. DacomeA.S. BenossiL. Da CostaC.E.M. Da CostaS.C. New seminal variety of Stevia rebaudiana: Obtaining fractions with high antioxidant potential of leaves.An Acad. Bras. Cienc.201789318411850
    [Google Scholar]
  2. WangX. LiJ. LiL. ZhuL. HuangF. Fusion glycosyltransferase design for enhanced conversion of rebaudioside A into rebaudioside M in cascade.Mol. Cataly.202354711331710.1016/j.mcat.2023.113317
    [Google Scholar]
  3. KoubaaM. Roselló-SotoE. Šic ŽlaburJ. Režek JambrakA. BrnčićM. GrimiN. BoussettaN. BarbaF.J. Current and New Insights in the Sustainable and Green Recovery of Nutritionally Valuable Compounds from Stevia rebaudiana Bertoni.J. Agric. Food Chem.201563316835684610.1021/acs.jafc.5b0199426172915
    [Google Scholar]
  4. MilaniG. VianM. CavalluzziM.M. FranchiniC. CorboF. LentiniG. ChematF. Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction.Ultrason. Sonochem.20206910525510.1016/j.ultsonch.2020.10525532682311
    [Google Scholar]
  5. FormigoniM. MilaniP.G. da Silva AvíncolaA. dos SantosV.J. BenossiL. DacomeA.S. PilauE.J. da CostaS.C. Pretreatment with ethanol as an alternative to improve steviol glycosides extraction and purification from a new variety of stevia.Food Chem.201824145245910.1016/j.foodchem.2017.09.02228958553
    [Google Scholar]
  6. RaspeD.T. CiottaS.R. ZorzenonM.R.T. DacomeA.S. da SilvaC. MilaniP.G. da CostaS.C. Ultrasound-assisted extraction of compounds from Stevia leaf pretreated with ethanol.Ind. Crops Prod.202117211403510.1016/j.indcrop.2021.114035
    [Google Scholar]
  7. CiottaS.R. ZorzenonM.R.T. DacomeA.S. HodasF. CoutoJ.M.F.A. FernandesP.G.M. CostaC.E.M. CostaS.C. Extraction of sweeteners from Stevia rebaudiana by semicontinuous percolation of untreated leaves and leaves pretreated with ethanol.J. Food Process. Preserv.20224631630310.1111/jfpp.16303
    [Google Scholar]
  8. EggemanT ElanderRT Process and economic analysis of pretreatment technologies.Bioresour. Technol.2005961820192510.1016/j.biortech.2005.01.017
    [Google Scholar]
  9. MilaniP.G. PiovanS. LimaY.C. ZorzenonM.R.T. da RosaC.V.D. PeixotoG.M.L. de Freitas MathiasP.C. NataliM.R.M. da CostaS.C. Mareze-CostaC.E. Whey protein enriched with Stevia rebaudiana fraction restores the pancreatic function of streptozotocin induced diabetic rats.J. Food Sci. Technol.202158280581010.1007/s13197‑020‑04799‑333568874
    [Google Scholar]
  10. MilaniP.G. FormigoniM. LimaY.C. PiovanS. PeixotoG.M.L. CamparsiD.M. da Silva RodriguesW.N. da SilvaJ.Q.P. da Silva AvincolaA. PilauE.J. da CostaC.E.M. da CostaS.C. Fortification of the whey protein isolate antioxidant and antidiabetic activity with fraction rich in phenolic compounds obtained from Stevia rebaudiana (Bert.). Bertoni leaves.J. Food Sci. Technol.20175472020202910.1007/s13197‑017‑2638‑028720959
    [Google Scholar]
  11. PiovanS. PavanelloA. PeixotoG.M.L. MatiussoC.C.I. de MoraesA.M.P. MartinsI.P. MaltaA. Palma-RigoK. da Silva FrancoC.C. MilaniP.G. DacomeA.S. da CostaS.C. de Freitas MathiasP.C. Mareze-CostaC.E. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets.Int. J. Endocrinol.201820181710.1155/2018/318987929853880
    [Google Scholar]
  12. Carreira-CasaisA. Lourenço-LopesC. OteroP. Application of Green Extraction Techniques for Natural Additives Production.Natural Food Additives.LondonIntechOpen202210.5772/intechopen.100320
    [Google Scholar]
  13. CabeçaC.L.S. NogueiraN.C. ZorzenonM.R.T. DacomeA.S. MadronaG.S. da CostaC.E.M. da CostaS.C. MilaniP.G. Microencapsulated antioxidant stevia fraction fortifies whey protein and enhances its antidiabetic activity.J. Food Sci. Technol.20236082275228510.1007/s13197‑023‑05755‑737273572
    [Google Scholar]
  14. ZorzenonM.R.T. HodasF. MilaniP.G. Microencapsulation by spray-drying of stevia fraction with antidiabetics effects.Chem. Eng. Trans.20197530731210.3303/CET1975052
    [Google Scholar]
  15. LiB. ZhaoY. WangM. GuanW. LiuJ. ZhaoH. BrennanC.S. Microencapsulation of roselle anthocyanins with β‐cyclodextrin and proteins enhances the thermal stability of anthocyanins.J. Food Process. Preserv.2022465e1661210.1111/jfpp.16612
    [Google Scholar]
  16. NeuenfeldtN.H. Almeida FariasC.A. de Oliveira MelloR. RobaloS.S. BarinJ.S. Picolli da SilvaL. MüllerE.I. Moraes FloresE.M. BarciaM.T. Ragagnin de MenezesC. Effects of blueberry extract co-microencapsulation on the survival of Lactobacillus rhamnosus. Lebensm. Wiss. Technol.202215511288610.1016/j.lwt.2021.112886
    [Google Scholar]
  17. ChraniotiC. ChaniotiS. TziaC. Comparison of spray, freeze and oven drying as a means of reducing bitter aftertaste of steviol glycosides (derived from Stevia rebaudiana Bertoni plant) – Evaluation of the final products.Food Chem.20161901151115810.1016/j.foodchem.2015.06.08326213089
    [Google Scholar]
  18. DacomeA.S. da SilvaC.C. da CostaC.E.M. FontanaJ.D. AdelmannJ. da CostaS.C. Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: Isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods.Process Biochem.200540113587359410.1016/j.procbio.2005.03.035
    [Google Scholar]
  19. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.Methods Enzymol.199929915217810.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  20. Ruiz-RuizJ.C. Moguel-OrdoñezY.B. Matus-BastoA.J. Segura-CamposM.R. Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread.J. Food Sci. Technol.201552127894790310.1007/s13197‑015‑1883‑326604361
    [Google Scholar]
  21. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  22. RufinoM. MouraS. AlvesR.E. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS.2007Available From: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10225/1/Cot_128.pdf
  23. ApostolidisE. KwonY.I. ShettyK. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension.Innov. Food Sci. Emerg. Technol.200781465410.1016/j.ifset.2006.06.001
    [Google Scholar]
  24. NatsirH. WahabA.W. LagaA. ArifA.R. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro.The 2nd International Conference on Science (ICOS)2–3 November 2017Makassar, Indonesia200710.1088/1742‑6596/979/1/012019
    [Google Scholar]
  25. IswantiniD. HanifN. Active Fraction as Anti-obesity by in Vitro toward Pancreatic Lipase Activity.IOP Conf. Ser.: Mater. Sci. Eng.2021107001201210.1088/1757‑899X/1070/1/012012
    [Google Scholar]
  26. LaureantiE.J.G. PaivaT.S. de Matos JorgeL.M. JorgeR.M.M. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques.Int. J. Biol. Macromol.2023253Pt 412696910.1016/j.ijbiomac.2023.12696937730006
    [Google Scholar]
  27. SriwidodoS. PratamaR. UmarA.K. ChaerunisaA.Y. AmbarwatiA.T. WathoniN. Preparation of Mangosteen Peel Extract Microcapsules by Fluidized Bed Spray-Drying for Tableting: Improving the Solubility and Antioxidant Stability.Antioxidants2022117133110.3390/antiox1107133135883823
    [Google Scholar]
  28. ZorzenonM.R.T. CabeçaC.L.S. NogueiraN.C. AristidesL.G.B. CordeiroE.B. DacomeA.S. Mareze-CostaC.E. FernandesP.G.M. da CostaS.C. Cold extraction of minimally processed Stevia UEM‐13 leaves: Amylase inhibition and increased bioaccessibility of bioactive compounds by microencapsulation.J. Food Process. Preserv.20224612e1721310.1111/jfpp.17213
    [Google Scholar]
  29. KhatunM.C.S. MuhitM.A. HossainM.J. Al-MansurM.A. RahmanS.M.A. Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches.Heliyon2021712e0847510.1016/j.heliyon.2021.e0847534917793
    [Google Scholar]
  30. SL. ChaudharyS. R SR. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.Biomed. Pharmacother.2017951040105010.1016/j.biopha.2017.08.08228922721
    [Google Scholar]
  31. OlszowyM. What is responsible for antioxidant properties of polyphenolic compounds from plants?Plant Physiol. Biochem.201914413514310.1016/j.plaphy.2019.09.03931563754
    [Google Scholar]
  32. NogueiraN.C. CabeçaC.L.S. SicilianoP.L.M. PereiraB.C. ZorzenonM.R.T. DacomeA.S. SouzaF.O. PilauE.J. EnokidaM.K. OliveiraA.R. SilvaP.G. CostaS.C. FernandesP.G.M. Methanolic and hydroalcoholic extract of stevia stems have antihyperglycemic and antilipid activity.Food Biosci.20245810369010.1016/j.fbio.2024.103690
    [Google Scholar]
  33. Molina-CalleM. Priego-CapoteF. Luque de CastroM.D. Characterization of Stevia leaves by LC–QTOF MS/MS analysis of polar and non-polar extracts.Food Chem.201721932933810.1016/j.foodchem.2016.09.14827765234
    [Google Scholar]
  34. RiazA. RasulA. HussainG. ZahoorM.K. JabeenF. SubhaniZ. YounisT. AliM. SarfrazI. SelamogluZ. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities.Adv. Pharmacol. Sci.2018201811510.1155/2018/979462529853868
    [Google Scholar]
  35. GaneshpurkarA. SalujaA.K. The Pharmacological Potential of Rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.02528344465
    [Google Scholar]
  36. ImranM. SalehiB. Sharifi-RadJ. Aslam GondalT. SaeedF. ImranA. ShahbazM. Tsouh FokouP.V. Umair ArshadM. KhanH. GuerreiroS.G. MartinsN. EstevinhoL.M. Kaempferol: A key emphasis to its anticancer potential.Molecules20192412227710.3390/molecules2412227731248102
    [Google Scholar]
  37. Alcázar MagañaA. KamimuraN. SoumyanathA. StevensJ.F. MaierC.S. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity.Plant J.202110751299131910.1111/tpj.1539034171156
    [Google Scholar]
  38. HyunY.J. PiaoM.J. KangK.A. RyuY.S. ZhenA.X. ChoS.J. KangH.K. KohY.S. AhnM.J. KimT.H. HyunJ.W. 3,4-Dicaffeoylquinic acid protects human keratinocytes against environmental oxidative damage.J. Funct. Foods20195243044110.1016/j.jff.2018.11.026
    [Google Scholar]
  39. NaveedM. HejaziV. AbbasM. KambohA.A. KhanG.J. ShumzaidM. AhmadF. BabazadehD. FangFangX. Modarresi-GhazaniF. WenHuaL. XiaoHuiZ. Chlorogenic acid (CGA): A pharmacological review and call for further research.Biomed. Pharmacother.201897677410.1016/j.biopha.2017.10.06429080460
    [Google Scholar]
  40. IsmailS. ChandelT.I. RamakrishnanJ. KhanR.H. PoomaniK. DevarajanN. Phytochemical profiling, human insulin stability and alpha glucosidase inhibition of Gymnema latifolium leaves aqueous extract: Exploring through experimental and in silico approach.Comput. Biol. Chem.202310710796410.1016/j.compbiolchem.2023.10796437820470
    [Google Scholar]
  41. LiuB.R. ShiX.L. YanJ.K. ZhaoR. A high-resolution α-glucosidase inhibition profiling for targeted identification of natural antidiabetic products from Lycopodiella cernua (L.) Pic. Serm and their inhibitory mechanism study.Nat. Prod. Res.202337244099411110.1080/14786419.2023.216986036710469
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322861240927105151
Loading
/content/journals/cbc/10.2174/0115734072322861240927105151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test