Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

In recent scientific studies, a variety of phytochemicals, including carotenoids, polyphenols, isoprenoids, phytosterols, saponins, and dietetic fibers, besides polysaccharides, have been linked to beneficial health effects, which include reducing the risk of diabetes, obesity, and cancer, cardiovascular diseases, and other conditions. Squash, pumpkin, cucumber, and melons are just a few examples of the Cucurbitaceae family plants that contain cucurbitacins, highly oxygenated tetracyclic triterpenes. Since ancient times, various traditional remedies have been made from plants that contain cucurbitacins. Several cucurbitacins (A, B, C, D, E, F, G, I, J, K, L, O, P, Q, R, S) have an extensive assortment of bioactivities, including hepatoprotective activity, liver protection, anticancer, anti-inflammatory, antiviral, and anti-diabetic properties. Cucurbitacins, for instance, have a well-known anticancer effect. Specific reports suggest that cucurbitacins stimulate apoptosis the JAK/STAT3 pathway. Through cyclin inhibition, cucurbitacins may inhibit the cell cycle. Besides, they expedite autophagy while preventing cancer cells from migrating and infecting other tissues. Cucurbitacins have been categorized as signal transducers and activators of transcription. It is soundly acknowledged that the plant-based compound cucurbitacin B (CuB) has insecticidal and repellent properties. CuB has been shown to have non-specific toxicity and limited bioavailability in studies evaluating its toxicity and pharmacokinetic characteristics. Hence, we aimed to concentrate on the numerous properties of cucurbitacins in this article, including their chemistry, an analysis of biosynthesis, several types of bioactivities, and studies on their toxicity.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072316509240530044415
2024-06-07
2025-09-11
Loading full text...

Full text loading...

References

  1. KumarA. PN. KumarM. JoseA. TomerV. OzE. ProestosC. ZengM. ElobeidT. KS. OzF. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules2802088736677944
    [Google Scholar]
  2. SharmaBR KumarV GatY KumarN ParasharA PinakinDJ Microbial maceration: A sustainable approach for phytochemical extraction.3 Biotech201889401
    [Google Scholar]
  3. JaegerR. CunyE. Terpenoids with special pharmacological significance: A review.Nat. Prod. Commun.20161191934578X160110010.1177/1934578X160110094630807045
    [Google Scholar]
  4. JayaprakasamB. SeeramN.P. NairM.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana.Cancer Lett.20031891111610.1016/S0304‑3835(02)00497‑412445672
    [Google Scholar]
  5. LeeD.H. IwanskiG.B. ThoennissenN.H. Cucurbitacin: Ancient compound shedding new light on cancer treatment.ScientificWorldJournal20101041341810.1100/tsw.2010.4420209387
    [Google Scholar]
  6. ChenJ.C. ChiuM.H. NieR.L. CordellG.A. QiuS.X. Cucurbitacins and cucurbitane glycosides: Structures and biological activities.Nat. Prod. Rep.200522338639910.1039/b418841c16010347
    [Google Scholar]
  7. AhmedM.S. HalaweishF.T. Cucurbitacins: Potential candidates targeting mitogen-activated protein kinase pathway for treatment of melanoma.J. Enzyme Inhib. Med. Chem.201429216216710.3109/14756366.2012.76264623368732
    [Google Scholar]
  8. GuptaP. SrivastavaS.K. Inhibition of HER2-integrin signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression.Oncotarget2014571812182810.18632/oncotarget.174324729020
    [Google Scholar]
  9. CaiY. FangX. HeC. LiP. XiaoF. WangY. ChenM. Cucurbitacins: A systematic review of the phytochemistry and anticancer activity.Am. J. Chin. Med.20154371331135010.1142/S0192415X1550075526503558
    [Google Scholar]
  10. ChungS.O. KimY.J. ParkS.U. An updated review of Cucurbitacins and their biological and pharmacological activities.EXCLI J.20151456256626648815
    [Google Scholar]
  11. AlsayariA. KopelL. AhmedM.S. SolimanH.S.M. AnnaduraiS. HalaweishF.T. Isolation of anticancer constituents from Cucumis prophetarum var. prophetarum through bioassay-guided fractionation.BMC Complement. Altern. Med.201818127410.1186/s12906‑018‑2295‑530301463
    [Google Scholar]
  12. OzunaC. León-GalvánM.F. Cucurbitaceae seed protein hydrolysates as a potential source of bioactive peptides with functional properties.BioMed Res. Int.2017201711610.1155/2017/212187829181389
    [Google Scholar]
  13. KimM.Y. KimE.J. KimY.N. ChoiC. LeeB.H. Comparison of the chemical compositions and nutritive values of various pumpkin ( Cucurbitaceae ) species and parts.Nutr. Res. Pract.201261212710.4162/nrp.2012.6.1.2122413037
    [Google Scholar]
  14. MukherjeeP.K. MaityN. NemaN.K. SarkarB.K. Bioactive compounds from natural resources against skin aging.Phytomedicine2011191647310.1016/j.phymed.2011.10.00322115797
    [Google Scholar]
  15. InsanuM. RizaldyD. SilvianiV. FidriannyI. Chemical compounds and pharmacological activities of Cucumis genus.Biointerface Res. Appl. Chem.202212113241334
    [Google Scholar]
  16. StuppnerH. MollerE.P. Cucurbitacins with unusual side chains from Picrorhiza kurroa.Phytochemistry19933351139114510.1016/0031‑9422(93)85038‑S
    [Google Scholar]
  17. SaM. SM. SM. GP. Cucurbitacins a vibrant triterpenoid: A review on its anticancer property.PharmaTutor201972435410.29161/PT.v7.i2.2019.43
    [Google Scholar]
  18. JingS. ZouH. WuZ. RenL. ZhangT. ZhangJ. WeiZ. Cucurbitacins: Bioactivities and synergistic effect with small-molecule drugs.J. Funct. Foods20207210404210.1016/j.jff.2020.104042
    [Google Scholar]
  19. ChuK.H. KongH. XingH. Method of inducing apoptosis in cancer treatment by using cucurbitacins.Patent Application Publication2008
    [Google Scholar]
  20. AeriV. KaushikU. MirS. Cucurbitacins - An insight into medicinal leads from nature.Pharmacogn. Rev.2015917121810.4103/0973‑7847.15631426009687
    [Google Scholar]
  21. HuangWW YangJS LinMW ChenPY ChiouSM ChuehFS LanYH PaiSJ TsuzukiM HoWJ ChungJG Cucurbitacin E induces G2/M phase arrest through STAT3/p53/p21 signaling and provokes apoptosis via Fas/CD95 and mitochondria-dependent pathways in human bladder cancer T24 cells.Evid Based Complement Alternat Med.20122012952762
    [Google Scholar]
  22. GeW. ChenX. HanF. LiuZ. WangT. WangM. ChenY. DingY. ZhangQ. Synthesis of cucurbitacin B derivatives as potential anti-hepatocellular carcinoma agents.Molecules20182312334510.3390/molecules2312334530567327
    [Google Scholar]
  23. RiosJL EscandellJM RecioMC New insights into the bio activity of cucurbitacins.Stud. Nat. Prod. Chem.200532429469
    [Google Scholar]
  24. LangK.L. SilvaI.T. MachadoV.R. ZimmermannL.A. CaroM.S.B. SimõesC.M.O. SchenkelE.P. DuránF.J. BernardesL.S.C. de MeloE.B. Multivariate SAR and QSAR of cucurbitacin derivatives as cytotoxic compounds in a human lung adenocarcinoma cell line.J. Mol. Graph. Model.201448707910.1016/j.jmgm.2013.12.00424378396
    [Google Scholar]
  25. DuncanK.L.K. DuncanM.D. AlleyM.C. SausvilleE.A. Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells.Biochem. Pharmacol.199652101553156010.1016/S0006‑2952(96)00557‑68937470
    [Google Scholar]
  26. EscandellJ.M. KalerP. RecioM.C. SasazukiT. ShirasawaS. AugenlichtL. RíosJ.L. KlampferL. Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis: The role of p53 and p21.Biochem. Pharmacol.200876219820710.1016/j.bcp.2008.05.00418561895
    [Google Scholar]
  27. KupchanS.M. MeshulamH. SnedenA.T. New cucurbitacins from Phormium tenax and Marah oreganus.Phytochemistry197817476776910.1016/S0031‑9422(00)94223‑7
    [Google Scholar]
  28. SalehiB. CapanogluE. AdrarN. CatalkayaG. ShaheenS. JafferM. GiriL. SuyalR. JugranA.K. CalinaD. DoceaA.O. KamilogluS. KregielD. AntolakH. PawlikowskaE. SenS. AcharyaK. SelamogluZ. Sharifi-RadJ. MartorellM. RodriguesC.F. SharopovF. MartinsN. CapassoR. Cucurbits plants: A key emphasis to its pharmacological potential.Molecules20192410185410.3390/molecules2410185431091784
    [Google Scholar]
  29. CasselC.K. Policy challenges and clinical practices.Hosp. Pract.199328391010.1080/21548331.1993.114427588444986
    [Google Scholar]
  30. WangH.X. NgT.B. Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds.Peptides200324796997210.1016/S0196‑9781(03)00191‑814499274
    [Google Scholar]
  31. BarbieriL. PolitoL. BolognesiA. CianiM. PelosiE. FariniV. JhaA. SharmaN. VivancoJ. ChamberyA. ParenteA. StirpeF. Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata.Biochim. Biophys. Acta, Gen. Subj.20061760578379210.1016/j.bbagen.2006.01.00216564632
    [Google Scholar]
  32. JafargholizadehN. ZargarS.J. YassaN. TavakoliS. Rich Fruits and Study of Their Cytotoxic Effects on the AGS Cell Line Purification of cucurbitacins D, E, and I from Ecballium elaterium (L.) A. rich fruits and study of their cytotoxic effects on the AGS cell line.APJCP201617104631463527892675
    [Google Scholar]
  33. PatelS.B. AttarU.A. SakateD.M. GhaneS.G. Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities.Sci. Rep.2020101210910.1038/s41598‑020‑58924‑532034276
    [Google Scholar]
  34. Sharifi-RadM. OzcelikB. AltınG. Daşkaya-DikmenC. MartorellM. Ramírez-AlarcónK. Alarcón-ZapataP. Morais-BragaM.F.B. CarneiroJ.N.P. Alves Borges LealA.L. CoutinhoH.D.M. GyawaliR. TahergorabiR. IbrahimS.A. Sahrifi-RadR. SharopovF. SalehiB. del Mar ContrerasM. Segura-CarreteroA. SenS. AcharyaK. Sharifi-RadJ. Salvia spp. plants-from farm to food applications and phytopharmacotherapy.Trends Food Sci. Technol.20188024226310.1016/j.tifs.2018.08.008
    [Google Scholar]
  35. SilvestreG.F.G. de LucenaR.P. da Silva AlvesH. Cucurbitacins and the immune system: Update in research on anti-inflammatory, antioxidant, and immunomodulatory mechanisms.Curr. Med. Chem.202229213774378910.2174/092986732966622010715325334994307
    [Google Scholar]
  36. ShangY. MaY. ZhouY. ZhangH. DuanL. ChenH. ZengJ. ZhouQ. WangS. GuW. LiuM. RenJ. GuX. ZhangS. WangY. YasukawaK. BouwmeesterH.J. QiX. ZhangZ. LucasW.J. HuangS. Biosynthesis, regulation, and domestication of bitterness in cucumber.Science201434662131084108810.1126/science.125921525430763
    [Google Scholar]
  37. KayaG.I. MelzigM.F. Quantitative determination of cucurbitacin E and cucurbitacin I in homoeopathic mother tincture of Gratiola officinalis L. by HPLC.Pharmazie2008631285185319177898
    [Google Scholar]
  38. OlmedoD. RodríguezN. VásquezY. SolísP.N. López-PérezJ.L. FelicianoA.S. GuptaM.P. A new coumarin from the fruits of Coutarea hexandra .Nat. Prod. Res.200721762563110.1080/1478641070137111617613820
    [Google Scholar]
  39. VarelaC. MelimC. NevesB.G. Sharifi-RadJ. CalinaD. MamurovaA. CabralC. Cucurbitacins as potential anticancer agents: new insights on molecular mechanisms.J. Transl. Med.202220163010.1186/s12967‑022‑03828‑336585670
    [Google Scholar]
  40. DinanL. HarmathaJ. LafontR. Chromatographic procedures for the isolation of plant steroids.J. Chromatogr. A20019351-210512310.1016/S0021‑9673(01)00992‑X11762770
    [Google Scholar]
  41. GamlathC.B. GunatilakaA.A.L. AlviK.A. Atta-ur-Rahman BalasubramaniamS. Cucurbitacins of Colocynthis vulgaris.Phytochemistry198827103225322910.1016/0031‑9422(88)80031‑1
    [Google Scholar]
  42. ZhengC.H. FuH.W. PeiY.H. A new cucurbitacin from Bolbostemma paniculatum Franguent.J. Asian Nat. Prod. Res.20079218719010.1080/1028602050024672517454317
    [Google Scholar]
  43. MondalS. BharK. KumariR. MondalP. ChakrabortyS. TejaN.Y. An insight into the elusive healer plant “Luffa echinata Roxb.”.Pharmacognosy Res.2022151264110.5530/097484900254
    [Google Scholar]
  44. ClericuzioM. MellaM. Vita-FinziP. ZemaM. VidariG. Cucurbitane Triterpenoids from Leucopaxillus g entianeus.J. Nat. Prod.200467111823182810.1021/np049883o15568769
    [Google Scholar]
  45. SamuelA. Cucurbitacins and its anticancer property: A review.Himal. J. Health Sci201944172310.22270/hjhs.v4i4.46
    [Google Scholar]
  46. LuoF. LiQ. YuL. WangC. QiH. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt.Plant Physiol. Biochem.202015477078110.1016/j.plaphy.2020.05.03332827970
    [Google Scholar]
  47. RamezaniM. RahmaniF. DehestaniA. Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus.BMC Complement. Altern. Med.201717129510.1186/s12906‑017‑1808‑y28583179
    [Google Scholar]
  48. DongY. LuB. ZhangX. ZhangJ. LaiL. LiD. WuY. SongY. LuoJ. PangX. YiZ. LiuM. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway.Carcinogenesis201031122097210410.1093/carcin/bgq16720732905
    [Google Scholar]
  49. SalehiB. Sharifi-RadJ. CapanogluE. AdrarN. CatalkayaG. ShaheenS. JafferM. GiriL. SuyalR. JugranA.K. CalinaD. DoceaA.O. KamilogluS. KregielD. AntolakH. PawlikowskaE. SenS. AcharyaK. BashiryM. SelamogluZ. MartorellM. SharopovF. MartinsN. NamiesnikJ. ChoW.C. Cucurbita plants: From farm to industry.Appl. Sci.2019916338710.3390/app9163387
    [Google Scholar]
  50. Ul HaqF. AliA. KhanM.N. ShahS.M.Z. KandelR.C. AzizN. AdhikariA. ChoudharyM.I. ur-RahmanA. El-SeediH.R. MusharrafS.G. Metabolite profiling and quantitation of cucurbitacins in cucurbitaceae plants by liquid chromatography coupled to tandem mass spectrometry.Sci. Rep.2019911599210.1038/s41598‑019‑52404‑131690753
    [Google Scholar]
  51. ArjaibiH.M. AhmedM.S. HalaweishF.T. Mechanistic investigation of hepato-protective potential for cucurbitacins.Med. Chem. Res.20172671567157310.1007/s00044‑017‑1872‑3
    [Google Scholar]
  52. RanjanA. FofariaN.M. KimS.H. SrivastavaS.K. Modulation of signal transduction pathways by natural compounds in cancer.Chin. J. Nat. Med.2015131073074210.1016/S1875‑5364(15)30073‑X26481373
    [Google Scholar]
  53. BoykinC. ZhangG. ChenY-H. ZhangR-W. FanX-E. YangW-M. LuQ. Cucurbitacin IIa: A novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation.Br. J. Cancer2011104578178910.1038/bjc.2011.1021304528
    [Google Scholar]
  54. GuoJ. ZhaoW. HaoW. RenG. LuJ. ChenX. CucurbitacinB. Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species (ROS) in leukemia K562 cells.Anticancer. Agents Med. Chem.20141481146115310.2174/187152061466614060122091524893803
    [Google Scholar]
  55. LuoW.W. ZhaoW.W. LuJ.J. WangY.T. ChenX.P. Cucurbitacin B suppresses metastasis mediated by reactive oxygen species (ROS) via focal adhesion kinase (FAK) in breast cancer MDA-MB-231 cells.Chin. J. Nat. Med.2018161101910.1016/S1875‑5364(18)30025‑629425586
    [Google Scholar]
  56. XuG. ShiY. Apoptosis signaling pathways and lymphocyte homeostasis.Cell Res.200717975977110.1038/cr.2007.5217576411
    [Google Scholar]
  57. DelhalleS. DuvoixA. SchnekenburgerM. MorceauF. DicatoM. DiederichM. An introduction to the molecular mechanisms of apoptosis.Ann. N. Y. Acad. Sci.2003101011810.1196/annals.1299.00115033687
    [Google Scholar]
  58. DakengS. DuangmanoS. JiratchariyakulW. U-PratyaY. BöglerO. PatmasiriwatP. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt‐associated proteins and reduced translocation of galectin‐3‐mediated β‐catenin to the nucleus.J. Cell. Biochem.20121131496010.1002/jcb.2332621866566
    [Google Scholar]
  59. LiuT. PengH. ZhangM. DengY. WuZ. Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin.Eur. J. Pharmacol.20106411152210.1016/j.ejphar.2010.04.06220483353
    [Google Scholar]
  60. U-Pratya Y. Immunosuppressive effects of Cucurbitacin B on human peripheral blood lymphocytes.J. Med. Plants Res.201042223402347
    [Google Scholar]
  61. TuamaA.A. MohammedA.A. Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J. Biol. Sci.201926360060410.1016/j.sjbs.2018.07.01230899178
    [Google Scholar]
  62. ArumuggamN. BhowmickN.A. RupasingheH.P.V. A review: Phytochemicals targeting JAK/STAT signaling and IDO expression in cancer.Phytother. Res.201529680581710.1002/ptr.532725787773
    [Google Scholar]
  63. TurksonJ. BowmanT. GarciaR. CaldenhovenE. De GrootR.P. JoveR. Stat3 activation by Src induces specific gene regulation and is required for cell transformation.Mol. Cell. Biol.19981852545255210.1128/MCB.18.5.25459566874
    [Google Scholar]
  64. WakimotoN. YinD. O’KellyJ. HarituniansT. KarlanB. SaidJ. XingH. KoefflerH.P. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo.Cancer Sci.20089991793179710.1111/j.1349‑7006.2008.00899.x18627377
    [Google Scholar]
  65. YesiladaE. TanakaS. SezikE. TabataM. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium.J. Nat. Prod.198851350450810.1021/np50057a0083404148
    [Google Scholar]
  66. SikanderM. HafeezB.B. MalikS. AlsayariA. HalaweishF.T. YallapuM.M. ChauhanS.C. JaggiM. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer.Sci. Rep.2016613659410.1038/srep3659427824155
    [Google Scholar]
  67. SongJ. LiuH. LiZ. YangC. WangC. Cucurbitacin I inhibits cell migration and invasion and enhances chemosensitivity in colon cancer.Oncol. Rep.20153341867187110.3892/or.2015.374925625299
    [Google Scholar]
  68. KuJ.M. KimS.R. HongS.H. ChoiH.S. SeoH.S. ShinY.C. KoS.G. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells.Mol. Cell. Biochem.20154091-2334310.1007/s11010‑015‑2509‑926169986
    [Google Scholar]
  69. RamalheteC. MolnárJ. MulhovoS. RosárioV.E. FerreiraM.J.U. New potent P-glycoprotein modulators with the cucurbitane scaffold and their synergistic interaction with doxorubicin on resistant cancer cells.Bioorg. Med. Chem.200917196942695110.1016/j.bmc.2009.08.02019733087
    [Google Scholar]
  70. RiosJL GinerRM JimenezMJ WickmanG HanckeJL A study on the anti-inflammatory activity of Cayaponia tayuya root.Fitoterapia1990613275278
    [Google Scholar]
  71. GautamR. JachakS.M. Recent developments in anti‐inflammatory natural products.Med. Res. Rev.200929576782010.1002/med.2015619378317
    [Google Scholar]
  72. ParkC.S. LimH. HanK.J. BaekS.H. SohnH.O. LeeD.W. KimY.G. YunH.Y. BaekK.J. KwonN.S. Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages.J. Pharmacol. Exp. Ther.2004309270571010.1124/jpet.103.06369314752064
    [Google Scholar]
  73. NasrinF. BulbulI.J. AktarF. RashidM.A. Anti-inflammatory and antioxidant activities of Cucumis sativus leaves.Bangladesh Pharmaceutical Journal201518216917310.3329/bpj.v18i2.24317
    [Google Scholar]
  74. BernardiniC. ZannoniA. BertocchiM. TubonI. FernandezM. ForniM. Water/ethanol extract of Cucumis sativus L. fruit attenuates lipopolysaccharide-induced inflammatory response in endothelial cells.BMC Complement. Altern. Med.201818119410.1186/s12906‑018‑2254‑129941006
    [Google Scholar]
  75. EzzatS.M. RaslanM. SalamaM.M. MenzeE.T. El HawaryS.S. In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus.J. Ethnopharmacol.201923724525410.1016/j.jep.2019.03.01530857984
    [Google Scholar]
  76. DemsieD.G. YimerE.M. BerheA.H. AltayeB.M. BerheD.F. Anti-nociceptive and anti-inflammatory activities of crude root extract and solvent fractions of Cucumis ficifolius in mice model.J. Pain Res.2019121399140910.2147/JPR.S19302931118758
    [Google Scholar]
  77. KapoorN. GhoraiS.M. KushwahaP.K. ShuklaR. AggarwalC. BandichhorR. Plausible mechanisms explaining the role of cucurbitacins as potential therapeutic drugs against coronavirus 2019.Inform Med Unlocked202021100484
    [Google Scholar]
  78. YanM. ZhuL. YangQ. Infection of porcine circovirus 2 (PCV2) in intestinal porcine epithelial cell line (IPEC-J2) and interaction between PCV2 and IPEC-J2 microfilaments.Virol. J.201411119310.1186/s12985‑014‑0193‑025407967
    [Google Scholar]
  79. Delgado-TiburcioE.E. Cadena-IñiguezJ. Santiago-OsorioE. Ruiz-PosadasL.M. Castillo-JuárezI. Aguiñiga-SánchezI. Soto-HernándezM. Pharmacokinetics and biological activity of cucurbitacins.Pharmaceuticals20221511132510.3390/ph1511132536355498
    [Google Scholar]
  80. TanM.J. YeJ.M. TurnerN. Hohnen-BehrensC. KeC.Q. TangC.P. ChenT. WeissH.C. GesingE.R. RowlandA. JamesD.E. YeY. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem. Biol.200815326327310.1016/j.chembiol.2008.01.01318355726
    [Google Scholar]
  81. HuangS. CzechM.P. The GLUT4 glucose transporter.Cell Metab.20075423725210.1016/j.cmet.2007.03.00617403369
    [Google Scholar]
  82. LetoD. SaltielA.R. Regulation of glucose transport by insulin: traffic control of GLUT4.Nat. Rev. Mol. Cell Biol.201213638339610.1038/nrm335122617471
    [Google Scholar]
  83. RodriguezT. Pacheco-FernándezT. Vázquez-MendozaA. Nieto-YañezO. Juárez-AvelarI. ReyesJ.L. TerrazasL.I. Rodriguez-SosaM. MGL1 receptor plays a key role in the control of T. cruzi infection by increasing macrophage activation through modulation of ERK1/2, c-Jun, NF-κB and NLRP3 pathways.Cells20209110810.3390/cells901010831906385
    [Google Scholar]
  84. Hernández NaviaS.E. Figueroa-HernándezJ.L. Rodríguez-ZavalaJ.S. Rodriguez-SosaM. Martínez-VázquezM. Anti-diabetic effects of cucurbitacins from ibervillea lindheimeri on induced mouse diabetes.J. Chem.2022202211510.1155/2022/3379557
    [Google Scholar]
  85. Guerrero-AnalcoJ. Medina-CamposO. BrindisF. ByeR. Pedraza-ChaverriJ. NavarreteA. MataR. Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family.Phytochemistry200768152087209510.1016/j.phytochem.2007.05.00617575991
    [Google Scholar]
  86. DixitY. KarA. Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice.Plant Foods Hum. Nutr.201065328428910.1007/s11130‑010‑0175‑320614191
    [Google Scholar]
  87. SalahuddinM. JalalpureS.S. Antidiabetic activity of aqueous fruit extract of Cucumis trigonus Roxb. in streptozotocin-induced-diabetic rats.J. Ethnopharmacol.2010127256556710.1016/j.jep.2009.10.01819854256
    [Google Scholar]
  88. WangH.X. LiuM. WengS.Y. LiJ.J. XieC. HeH.L. GuanW. YuanY.S. GaoJ. Immune mechanisms of Concanavalin A model of autoimmune hepatitis.World J. Gastroenterol.201218211912510.3748/wjg.v18.i2.11922253517
    [Google Scholar]
  89. LiuJ. MaoY. Eugenol attenuates concanavalin A-induced hepatitis through modulation of cytokine levels and inhibition of mitochondrial oxidative stress.Arch. Biol. Sci.201971233934610.2298/ABS190121016L
    [Google Scholar]
  90. MohamedG.A. IbrahimS.R.M. El-AgamyD.S. ElsaedW.M. SirwiA. AsfourH.Z. KoshakA.E. ElhadyS.S. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways.J. Ethnopharmacol.202229211522310.1016/j.jep.2022.11522335354089
    [Google Scholar]
  91. KarinM. DelhaseM. The IκB kinase (IKK) and NF-κB: Key elements of proinflammatory signalling.Semin. Immunol.2000121859810.1006/smim.2000.021010723801
    [Google Scholar]
  92. PopaC. NeteaM.G. van RielP.L.C.M. van der MeerJ.W.M. StalenhoefA.F.H. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk.J. Lipid Res.200748475176210.1194/jlr.R600021‑JLR20017202130
    [Google Scholar]
  93. MaedaS. KamataH. LuoJ.L. LeffertH. KarinM. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.Cell2005121797799010.1016/j.cell.2005.04.01415989949
    [Google Scholar]
  94. BartalisJ. HalaweishF.T. Relationship between cucurbitacins reversed-phase high-performance liquid chromatography hydrophobicity index and basal cytotoxicity on HepG2 cells.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2005818215916610.1016/j.jchromb.2004.12.02015734155
    [Google Scholar]
  95. XuX. HuY. ZhaiX. LinM. ChenZ. TianX. ZhangF. GaoD. MaX. LvL. YaoJ. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice.Toxicol. Appl. Pharmacol.20132731687610.1016/j.taap.2013.08.02123993977
    [Google Scholar]
  96. PengX.P. LiX.H. LiY. HuangX.T. LuoZ.Q. The protective effect of oleanolic acid on NMDA-induced MLE-12 cells apoptosis and lung injury in mice by activating SIRT1 and reducing NF-κB acetylation.Int. Immunopharmacol.20197052052910.1016/j.intimp.2019.03.01830901738
    [Google Scholar]
  97. Allen-PerkinsA. EstradaE. Mathematical modeling for sustainable aphid control in agriculture via intercropping.Proc Math Phys Eng Sci.2019475222620190136
    [Google Scholar]
  98. ZüstT. AgrawalA.A. Mechanisms and evolution of plant resistance to aphids.Nat. Plants2016211520610.1038/nplants.2015.20627250753
    [Google Scholar]
  99. ConstantineK.L. KansiimeM.K. MugambiI. NundaW. ChachaD. RwareH. MakaleF. MulemaJ. Lamontagne-GodwinJ. WilliamsF. EdgingtonS. DayR. Why don’t smallholder farmers in Kenya use more biopesticides?Pest Manag. Sci.202076113615362510.1002/ps.589632400959
    [Google Scholar]
  100. ChekeR.A. New pests for old as GMOs bring on substitute pests.Proc. Natl. Acad. Sci. USA2018115338239824010.1073/pnas.181126111530026195
    [Google Scholar]
  101. MarroneP.G. Pesticidal natural products – status and future potential.Pest Manag. Sci.20197592325234010.1002/ps.543330941861
    [Google Scholar]
  102. LopezT.E. PhamH.M. BarbourJ. TranP. Van NguyenB. HoganS.P. HomoR.L. CoskunV. SchrinerS.E. JafariM. The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster. J. Funct. Foods20162055656610.1016/j.jff.2015.11.00226693252
    [Google Scholar]
  103. MithöferA. BolandW. Plant defense against herbivores: Chemical aspects.Annu. Rev. Plant Biol.201263143145010.1146/annurev‑arplant‑042110‑10385422404468
    [Google Scholar]
  104. ZhaoC. MaC. LuoJ. NiuL. HuaH. ZhangS. CuiJ. Potential of cucurbitacin b and epigallocatechin gallate as biopesticides against Aphis gossypii.Insects20211213210.3390/insects1201003233466501
    [Google Scholar]
  105. QinS. LiJ. SiY. HeZ. ZhangT. WangD. LiuX. GuoY. ZhangL. LiS. LiQ. LiuY. Cucurbitacin B induces inhibitory effects via CIP2A/PP2A/Akt pathway in glioblastoma multiforme.Mol. Carcinog.201857668769910.1002/mc.2278929393542
    [Google Scholar]
  106. LiuX. DuanC. JiJ. ZhangT. YuanX. ZhangY. MaW. YangJ. YangL. JiangZ. YuH. LiuY. Cucurbitacin B induces autophagy and apoptosis by suppressing CIP2A/PP2A/mTORC1 signaling axis in human cisplatin resistant gastric cancer cells.Oncol. Rep.201738127127810.3892/or.2017.564828534965
    [Google Scholar]
  107. AljohaniO.S. Phytochemical evaluation of Cucumis prophetarum : Protective effects against carrageenan-induced prostatitis in rats.Drug Chem. Toxicol.20224541461146910.1080/01480545.2020.183853833092416
    [Google Scholar]
  108. YuanR. ZhaoW. WangQ.Q. HeJ. HanS. GaoH. FengY. YangS. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis.Pharmacol. Res.202117010574810.1016/j.phrs.2021.10574834217831
    [Google Scholar]
  109. DaiS. WangC. ZhaoX. MaC. FuK. LiuY. PengC. LiY. CucurbitacinB. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics.Pharmacol. Res.202318710658710.1016/j.phrs.2022.10658736460279
    [Google Scholar]
  110. BartalisJ. HalaweishF.T. In vitro and QSAR studies of cucurbitacins on HepG2 and HSC-T6 liver cell lines.Bioorg. Med. Chem.20111982757276610.1016/j.bmc.2011.01.03721459003
    [Google Scholar]
  111. HoC.H. HoM.G. HoS.P. HoH.H. Bitter bottle gourd (Lagenaria siceraria) toxicity.J. Emerg. Med.201446677277510.1016/j.jemermed.2013.08.10624360122
    [Google Scholar]
  112. IwanskiG.B. LeeD.H. En-GalS. DoanN.B. CastorB. VogtM. TohM. BokemeyerC. SaidJ.W. ThoennissenN.H. KoefflerH.P. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer.Br. J. Pharmacol.20101604998100710.1111/j.1476‑5381.2010.00741.x20590594
    [Google Scholar]
  113. PonsankarA. SahayarajK. Senthil-NathanS. Vasantha-SrinivasanP. KarthiS. ThanigaivelA. PetchiduraiG. MadasamyM. HunterW.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny.Environ. Sci. Pollut. Res. Int.20202719233902340110.1007/s11356‑019‑04438‑130734910
    [Google Scholar]
  114. MuszaL KillarLM SpeightP McElhinneyS BarrowCJ GillumAM CooperR Potent new cell adhesion inhibitory compounds from the root of trichilia rubra.Tetrahedron19945039113691137810.1016/S0040‑4020(01)89279‑6
    [Google Scholar]
  115. WitkowskiA. KonopaJ. Binding of the cytotoxic and antitumor triterpenes, cucurbitacins, to glucocorticoid receptors of Hela cells.Biochim. Biophys. Acta, Gen. Subj.1981674224625510.1016/0304‑4165(81)90382‑26894552
    [Google Scholar]
  116. DavidA. VallanceD.K. Bitter principles of cucurbitaceæ.J. Pharm. Pharmacol.20117129529610.1111/j.2042‑7158.1955.tb12040.x
    [Google Scholar]
  117. GryJ. SoborgI. AnderssonH.C. Cucurbitacins in plant food.CopenhagenNordic Council of Ministers200668
    [Google Scholar]
  118. KurmanY. KilicciogluI. DikmenA.U. EsendagliG. BilenC.Y. SozenS. KonacE. Cucurbitacin B and cisplatin induce the cell death pathways in MB49 mouse bladder cancer model.Exp. Biol. Med. (Maywood)2020245980581410.1177/153537022091736732252554
    [Google Scholar]
  119. AjaniE. SabiuS. BamisayeF. IbrahimS. SalauB. Evaluation of the acute and sub-acute toxicity effects of ethanolic leaves extract of Lagenaria brevifolia (Bitter gourd) on hepatic and renal function of rats.European J. Med. Plants20155221021910.9734/EJMP/2015/13400
    [Google Scholar]
  120. BjørklundG. Cruz-MartinsN. GohB.H. MykhailenkoO. LysiukR. ShanaidaM. LenchykL. UpyrT. RusuM.E. PryshlyakA. ShanaidaV. ChirumboloS. Medicinal plant-derived phytochemicals in detoxification.Curr. Pharm. Des.202337559241
    [Google Scholar]
  121. Islam ShawonS. Nargis ReydaR. QaisN. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review.Heliyon2024103e2534010.1016/j.heliyon.2024.e2534038356556
    [Google Scholar]
  122. MaloneyK.N. FujitaM. EggertU.S. SchroederF.C. FieldC.M. MitchisonT.J. ClardyJ. Actin-aggregating cucurbitacins from Physocarpus capitatus.J. Nat. Prod.200871111927192910.1021/np800525918959442
    [Google Scholar]
  123. EderyH. Schatzberg-PorathG. GitterS. Pharmaco-dynamic activity of elatericin (cucurbitacin D).Arch. Int. Pharmacodyn. Ther.196113031533513725687
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072316509240530044415
Loading
/content/journals/cbc/10.2174/0115734072316509240530044415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test