Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Paprika oleoresin is a compound extracted from paprika, with functional properties, mainly due to its fatty acid composition and carotenoid profile. The effect of these compounds on PLA composite films has not been investigated.

Objective

The objective of this study is to evaluate the effect of paprika oleoresin at different concentrations on the surface color, UV barrier, mechanical barrier, water vapor barrier, hydrophobicity, paprika oleoresin release and antibacterial properties of PLA-based composite films.

Methods

Functional poly(lactic acid)-based films incorporating paprika oleoresin extract (POE) at three levels (0.01%, 0.03% and 0.06%) were prepared using a solution casting method.

Results

The paprika oleoresin showed an excellent compatibility with the PLA, as a uniform dispersion was observed. Moreover, the addition of POE improved properties such as elasticity (increase of 62%) and water vapor permeability (decrease of 69%). However, compared to the control film (polylactic acid), the solubility of the polylactic acid and paprika oleoresin extract films was found to be significantly increased. As the POE content increased, the color intensity of the PLA films became lighter orange-yellow. The film composed by PLA/ POE (0.06%) also presented significant bacterial inhibition for . In addition, the films demonstrated total carotenoid release in food-simulating liquids.

Conclusion

Functional PLA/POE films can be a good alternative to replace traditional food packaging.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072307858240906045719
2024-09-13
2025-08-18
Loading full text...

Full text loading...

References

  1. AbbasiK. Bad science in a plastic world.J. R. Soc. Med.202011324710.1177/014107682090574932031490
    [Google Scholar]
  2. European BioplasticsBioplasctics Market Data.2021Available From: https://www.european-bioplastics.org/market/
  3. StollL. DomenekS. Hickmann FlôresS. NachtigallS.M.B. de Oliveira RiosA. Polylactide films produced with bixin and acetyl tributyl citrate: Functional properties for active packaging.J. Appl. Polym. Sci.2021138175030210.1002/app.50302
    [Google Scholar]
  4. SharmaS. ByrneM. PereraK.Y. DuffyB. JaiswalA.K. JaiswalS. Active film packaging based on bio-nanocomposite TiO2 and cinnamon essential oil for enhanced preservation of cheese quality.Food Chem.202340513479810.1016/j.foodchem.2022.134798
    [Google Scholar]
  5. Manzanarez-LópezF. Soto-ValdezH. AurasR. PeraltaE. Release of α-Tocopherol from Poly(lactic acid) films, and its effect on the oxidative stability of soybean oil.J. Food Eng.2011104450851710.1016/j.jfoodeng.2010.12.029
    [Google Scholar]
  6. YamanM. YildizS. ÖzdemirA. YemişG.P. Multicomponent system for development of antimicrobial PLA-based films with enhanced physical characteristics.Int. J. Biol. Macromol.2024262Pt 112983210.1016/j.ijbiomac.2024.12983238331069
    [Google Scholar]
  7. FerriJ.M. Garcia-GarciaD. Sánchez-NacherL. FenollarO. BalartR. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.Carbohydr. Polym.2016147606810.1016/j.carbpol.2016.03.08227178909
    [Google Scholar]
  8. DingY. LuB. WangP. WangG. JiJ. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends.Polym. Degrad. Stabil.2018147414810.1016/j.polymdegradstab.2017.11.012
    [Google Scholar]
  9. GereD. CziganyT. Future trends of plastic bottle recycling: Compatibilization of PET and PLA.Polym. Test.20208110616010616010.1016/j.polymertesting.2019.106160
    [Google Scholar]
  10. Santos AssunçãoL. Quênia Muniz BezerraP. Stahl Hermes PolettoV. de Oliveira RiosA. Graça RamosI. Duarte Ferreira RibeiroC. Aparecida Souza MachadoB. Izabel DruzianJ. Alberto Vieira CostaJ. Larroza NunesI. Combination of carotenoids from Spirulina and PLA/PLGA or PHB: New options to obtain bioactive nanoparticles.Food Chem.202134612874210.1016/j.foodchem.2020.12874233373823
    [Google Scholar]
  11. StollL. RechR. FlôresS.H. NachtigallS.M.B. de Oliveira RiosA. Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation.Food Chem.201928121322110.1016/j.foodchem.2018.12.10030658750
    [Google Scholar]
  12. LukicI. VulicJ. IvanovicJ. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging.Food Packag. Shelf Life20202610057810.1016/j.fpsl.2020.100578
    [Google Scholar]
  13. ZabidiN.A. NazriF. TawakkalI.S.M.A. BasriM.S.M. BashaR.K. OthmanS.H. Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application.Int. J. Biol. Macromol.202221222023110.1016/j.ijbiomac.2022.05.11635597382
    [Google Scholar]
  14. PagnanC.S. MottinA.C. OréficeR.L. AyresE. CâmaraJ.J.D. Annatto-colored Poly(3-hydroxybutyrate): A Comprehensive Study on Photodegradation.J. Polym. Environ.20182631169117810.1007/s10924‑017‑1026‑1
    [Google Scholar]
  15. MilaniA. BasirnejadM. ShahbaziS. BolhassaniA. Carotenoids: Biochemistry, pharmacology and treatment.Br. J. Pharmacol.2017174111290132410.1111/bph.1362527638711
    [Google Scholar]
  16. Hernández-GarcíaE. VargasM. ChiraltA. Effect of active phenolic acids on properties of PLA-PHBV blend films.Food Packag. Shelf Life20223310089410.1016/j.fpsl.2022.100894
    [Google Scholar]
  17. KhanjariA. EsmaeiliH. HamediM. Shelf life extension of minced squab using poly-lactic acid films containing Cinnamomum verum essential oil.Int. J. Food Microbiol.202338510998210.1016/j.ijfoodmicro.2022.10998236332448
    [Google Scholar]
  18. MolnárH. KónyaÉ. ZalánZ. Bata-VidácsI. Tömösközi-FarkasR. SzékácsA. AdányiN. Chemical characteristics of spice paprika of different origins.Food Control201883546010.1016/j.foodcont.2017.04.028
    [Google Scholar]
  19. SharmaP.K. FuloriaS. AlamS. SriM.V. SinghA. SharmaV.K. KumarN. SubramaniyanV. FuloriaN.K. Chemical composition and antimicrobial activity of oleoresin of Capsicum annuum fruits.Mindanao J. Sci. Technol.2021191294310.61310/mndjstecbe.1030.21
    [Google Scholar]
  20. López-RubioA. LagaronJ.M. Improvement of UV stability and mechanical properties of biopolyesters through the addition of β-carotene.Polym. Degrad. Stabil.201095112162216810.1016/j.polymdegradstab.2010.03.002
    [Google Scholar]
  21. AsadiS. PirsaS. Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO2 and Studying Its Physicochemical Properties.J. Polym. Environ.202028243344410.1007/s10924‑019‑01618‑5
    [Google Scholar]
  22. NoJ. ShinM. Preparation and characteristics of octenyl succinic anhydride-modified partial waxy rice starches and encapsulated paprika pigment powder.Food Chem.201929546647410.1016/j.foodchem.2019.05.06431174783
    [Google Scholar]
  23. ASTM InternationalASTM D882-12 Standard test method for tensile properties of thin plastic sheeting; west conshohocken.2012Available From: https://pkgcompliance.com/test/tensile-strength/?matchtype=&network=g&device=c&keyword=&campaign=14128528962&adgroup=129130303367&gad_source=1&gclid=EAIaIQobChMIy53ixpPnhwMVPK9oCR2E1wKOEAAYASAAEgJ87PD_BwE
  24. TaljaR.A. HelénH. RoosY.H. JouppilaK. Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films.Carbohydr. Polym.200871226927610.1016/j.carbpol.2007.05.037
    [Google Scholar]
  25. CollaE. do Amaral SobralP.J. MenegalliF.C. Amaranthus cruentus flour edible films: Influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.J. Agric. Food Chem.200654186645665310.1021/jf061121716939322
    [Google Scholar]
  26. RoyS. RhimJ.W. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application.Int. J. Biol. Macromol.20201621780178910.1016/j.ijbiomac.2020.08.09432814100
    [Google Scholar]
  27. MeleG. BloiseE. CosentinoF. LomonacoD. AvelinoF. MarcianòT. MassaroC. MazzettoS.E. TammaroL. ScaloneA.G. SchioppaM. TerziR. Influence of Cardanol Oil on the Properties of Poly(lactic acid) Films Produced by Melt Extrusion.ACS Omega20194171872610.1021/acsomega.8b02880
    [Google Scholar]
  28. RatsameetammajakN. MolloyR. SomsunanR. Preparation and property testing of polymer blends of poly(lactic acid) and poly(butylene succinate) plasticised with long-chain fatty acids.Plast. Rubber Compos.201847413914610.1080/14658011.2018.1443875
    [Google Scholar]
  29. AsdaghA. Karimi SaniI. PirsaS. AmiriS. ShariatifarN. Eghbaljoo-GharehgheshlaghiH. ShabahangZ. TaniyanA. Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract.J. Polym. Environ.202129133534910.1007/s10924‑020‑01882‑w
    [Google Scholar]
  30. GononH. SrisaA. PromhuadK. ChonhenchobV. BumbudsanpharokeN. JarupanL. HarnkarnsujaritN. PLA thermoformed trays incorporated with cinnamaldehyde and carvacrol as active biodegradable bakery packaging.Food Packag. Shelf Life20233810112310.1016/j.fpsl.2023.101123
    [Google Scholar]
  31. LiC. QiuX.L. LuL.X. TangY.L. LongQ. DangJ.G. Preparation of low‐density polyethylene film with quercetin and α‐tocopherol loaded with mesoporous silica for synergetic‐release antioxidant active packaging.J. Food Process Eng.2019425e1308810.1111/jfpe.13088
    [Google Scholar]
  32. ZhouL. FuJ. BianL. ChangT. ZhangC. Preparation of a novel curdlan/bacterial cellulose/cinnamon essential oil blending film for food packaging application.Int. J. Biol. Macromol.202221221121910.1016/j.ijbiomac.2022.05.13735609836
    [Google Scholar]
  33. Darie-NițăR. RâpăM. SivertsvikM. RosnesJ. PopaE. DumitriuR. MarincașO. MateiE. PredescuC. VasileC. PLA-based materials containing bio-plasticizers and chitosan modified with rosehip seed oil for ecological packaging.Polymers (Basel)20211310161010.3390/polym1310161034067539
    [Google Scholar]
  34. LiangH. FriedmanJ.M. NacharajuP. Fabrication of biodegradable PEG–PLA nanospheres for solubility, stabilization, and delivery of curcumin.Artif. Cells Nanomed. Biotechnol.201745229730410.3109/21691401.2016.114673626924283
    [Google Scholar]
  35. ChanT.C. LiH.T. LiK.Y. Effects of Shapes of Solute Molecules on Diffusion: A Study of Dependences on Solute Size, Solvent, and Temperature.J. Phys. Chem. B201511951157181572810.1021/acs.jpcb.5b1055026606513
    [Google Scholar]
  36. RoyS. RhimJ.W. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application.Colloids Surf. B Biointerfaces202018811076110.1016/j.colsurfb.2019.11076131901685
    [Google Scholar]
  37. MouraL.E. de SouzaC.O. de OliveiraE.A.S. LemosP.V.F. DruzianJ.I. Bioactive efficacy of low‐density polyethylene films with natural additives.J. Appl. Polym. Sci.2018135344646110.1002/app.46461
    [Google Scholar]
  38. NavesE.R. de Ávila SilvaL. SulpiceR. AraújoW.L. Nunes-NesiA. PeresL.E.P. ZsögönA. Capsaicinoids: Pungency beyond Capsicum.Trends Plant Sci.201924210912010.1016/j.tplants.2018.11.00130630668
    [Google Scholar]
  39. SalihA.A. Extraction and identification of oil extract from Capsicum annuum L. fruits and study of its antimicrobial activity.J. Basrah Res. (Sci.)2006328087
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072307858240906045719
Loading
/content/journals/cbc/10.2174/0115734072307858240906045719
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Active packaging; biopolymers; carotenoids; fatty acids; lactic acid; PLA films
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test