Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Hepatocellular carcinoma (HCC) poses a threat to human health due to several risk factors associated with one’s lifestyle, including liver cirrhosis, alcohol intake, obesity, exposure to aflatoxin, hepatitis B and/or C virus infection, non-alcoholic steatohepatitis (NASH), diabetes and many other factors. The treatment of HCC involves several distinct approaches, including significant advancement in surgical interventions. Given the toxicity of conventional medicines or the need for a suitable approach focusing on the stages of HCC progression, the current treatment is not very effective, which brings a significant focus on improving alternative-targeted approaches as anti-HCC moieties.

Objective

Therefore, this review provides an update on how the phytoconstituents exhibit their anti-HCC effect by intervening in the control of autophagy.

Methods

This study conducted a thorough literature search on hepatocellular carcinoma (HCC), autophagy, and phytoconstituents. The search was performed using multiple search engines and the main keywords, and only English publications published before April 2023 were included.

Results

One of the various molecular-mediated mechanisms used in cancer therapies is ‘ a metabolic process whereby cellular stress causes damaged cells to be cleared out to preserve cellular homeostasis and provide cells with the nutrients they need to survive. Because of its dual activity as a tumor suppressor or tumorigenesis, autophagy-mediated manipulation could be a promising option for treating cancer.

Conclusion

Phytochemicals derived from natural sources offer an antitumorigenic effect and reduce the probability of HCC by regulating autophagy-mediated mechanisms and functioning as tumor suppressors.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072301308240607064104
2024-06-25
2025-09-03
Loading full text...

Full text loading...

References

  1. PhilipsC.A. RajeshS. NairD.C. AhamedR. AbduljaleelJ.K. AugustineP. Hepatocellular carcinoma in 2021: An exhaustive update.Cureus20211311e1927410.7759/cureus.1927434754704
    [Google Scholar]
  2. LyuN. YiJ.Z. ZhaoM. Immunotherapy in older patients with hepatocellular carcinoma.Eur. J. Cancer2022162769810.1016/j.ejca.2021.11.02434954439
    [Google Scholar]
  3. El-SeragH.B. KanwalF. Epidemiology of hepatocellular carcinoma in the United States: Where are we? Where do we go?Hepatology20146051767177510.1002/hep.2722224839253
    [Google Scholar]
  4. Kumar DasB. GadadP.C. Impact of diabetes on the increased risk of hepatic cancer: An updated review of biological aspects.Diabetes Epidemiol. Manag2021410002510.1016/j.deman.2021.100025
    [Google Scholar]
  5. DasB.K. ChoukimathS.M. GadadP.C. Asarone and metformin delays experimentally induced hepatocellular carcinoma in diabetic milieu.Life Sci.2019230101810.1016/j.lfs.2019.05.04631121175
    [Google Scholar]
  6. GianniniE.G. CucchettiA. ErroiV. GarutiF. OdaldiF. TrevisaniF. Surveillance for early diagnosis of hepatocellular carcinoma: How best to do it?World J. Gastroenterol.201319478808882110.3748/wjg.v19.i47.880824379604
    [Google Scholar]
  7. AhmadM. MishraA. UsmaniA. AhmadM.P. Dietary agents and phytochemicals in the prevention and treatment of hepatocellular carcinoma.J Natl Med Coll.2017215262
    [Google Scholar]
  8. PonSF. VarelaM. LlovetJ.M. Staging systems in hepatocellular carcinoma.HPB (Oxford)200571354110.1080/1365182041002405818333159
    [Google Scholar]
  9. KatyalS. OliverJ.H.III PetersonM.S. FerrisJ.V. CarrB.S. BaronR.L. Extrahepatic metastases of hepatocellular carcinoma.Radiology2000216369870310.1148/radiology.216.3.r00se2469810966697
    [Google Scholar]
  10. HuangK.W. LeeP.C. ChaoY. SuC.W. LeeI.C. LanK.H. ChuC.J. HungY.P. ChenS.C. HouM.C. HuangY.H. Durable objective response to sorafenib and role of sequential treatment in unresectable hepatocellular carcinoma.Ther. Adv. Med. Oncol.20221410.1177/1758835922109940135646162
    [Google Scholar]
  11. DaherS. MassarwaM. BensonA.A. KhouryT. Current and future treatment of hepatocellular carcinoma: An updated comprehensive review.J. Clin. Transl. Hepatol.20186111010.14218/JCTH.2017.0003129607307
    [Google Scholar]
  12. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  13. AttwaM.H. El-EtrebyS.A. Guide for diagnosis and treatment of hepatocellular carcinoma.World J. Hepatol.20157121632165110.4254/wjh.v7.i12.163226140083
    [Google Scholar]
  14. YangZ.J. CheeC.E. HuangS. SinicropeF.A. The role of autophagy in cancer: Therapeutic implications.Mol. Cancer Ther.20111091533154110.1158/1535‑7163.MCT‑11‑004721878654
    [Google Scholar]
  15. Alvarez-MeythalerJ.G. Garcia-MayeaY. MirC. KondohH. LLeonartM.E. Autophagy takes center stage as a possible cancer hallmark.Front. Oncol.20201058606910.3389/fonc.2020.58606933194736
    [Google Scholar]
  16. MastronJ.K. SiveenK.S. SethiG. BishayeeA. Silymarin and hepatocellular carcinoma.Anticancer Drugs201526547548610.1097/CAD.000000000000021125603021
    [Google Scholar]
  17. SpagnuoloC. RussoG.L. OrhanI.E. HabtemariamS. DagliaM. SuredaA. NabaviS.F. DeviK.P. LoizzoM.R. TundisR. NabaviS.M. Genistein and cancer: Current status, challenges, and future directions.Adv. Nutr.20156440841910.3945/an.114.00805226178025
    [Google Scholar]
  18. RenY. LiS. SongZ. LuoQ. ZhangY. WangH. The regulatory roles of polysaccharides and ferroptosis-related phytochemicals in liver diseases.Nutrients20221411230310.3390/nu1411230335684103
    [Google Scholar]
  19. JiG. WangY. DengY. LiX. JiangZ. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy.Lipids Health Dis.201514113410.1186/s12944‑015‑0139‑626498332
    [Google Scholar]
  20. ChengK.C. WangC.J. ChangY.C. HungT.W. LaiC.J. KuoC.W. HuangH.P. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo.Yao Wu Shi Pin Fen Xi2020281849310.38212/2224‑6614.122331883611
    [Google Scholar]
  21. BenvenutoM. AlboniciL. FocaccettiC. CiuffaS. FaziS. CifaldiL. MieleM.T. De MaioF. TresoldiI. ManzariV. ModestiA. MasuelliL. BeiR. Polyphenol-mediated autophagy in cancer: Evidence of in vitro and in vivo studies.Int. J. Mol. Sci.20202118663510.3390/ijms2118663532927836
    [Google Scholar]
  22. WuL. LiJ. LiuT. LiS. FengJ. YuQ. ZhangJ. ChenJ. ZhouY. JiJ. ChenK. MaoY. WangF. DaiW. FanX. WuJ. GuoC. Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway.Cancer Med.20198104806482010.1002/cam4.238831273958
    [Google Scholar]
  23. ElmansiA.M. El-KarefA.A. El-ShishtawyM.M. EissaL.A. Hepatoprotective effect of curcumin on hepatocellular carcinoma through autophagic and apoptic pathways.Ann. Hepatol.201716460761810.5604/01.3001.0010.030728611265
    [Google Scholar]
  24. AglanH.A. AhmedH.H. El-ToumyS.A. MahmoudN.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study.Tumour Biol.201739610.1177/101042831769912728618930
    [Google Scholar]
  25. FerrariE. BettuzziS. NaponelliV. The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review.Int. J. Mol. Sci.20222311607510.3390/ijms2311607535682754
    [Google Scholar]
  26. WangF. MaoY. YouQ. HuaD. CaiD. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway.Int. J. Immunopathol. Pharmacol.201528336237310.1177/039463201559884926246196
    [Google Scholar]
  27. HotchkissR.S. StrasserA. McDunnJ.E. SwansonP.E. Cell death.N. Engl. J. Med.2009361161570158310.1056/NEJMra090121719828534
    [Google Scholar]
  28. JingK. LimK. Why is autophagy important in human diseases?Exp. Mol. Med.2012442697210.3858/emm.2012.44.2.02822257881
    [Google Scholar]
  29. SieńkoK. PoormassalehgooA. YamadaK. Goto-YamadaS. Microautophagy in plants: Consideration of Its Molecular Mechanism.Cells20209488710.3390/cells904088732260410
    [Google Scholar]
  30. ParzychK.R. KlionskyD.J. An overview of autophagy: Morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.537123725295
    [Google Scholar]
  31. SuT. LiX. YangM. ShaoQ. ZhaoY. MaC. WangP. Autophagy: An intracellular degradation pathway regulating plant survival and stress response.Front. Plant Sci.20201116410.3389/fpls.2020.0016432184795
    [Google Scholar]
  32. YazdaniH. HuangH. TsungA. Autophagy: Dual response in the development of hepatocellular carcinoma.Cells2019829110.3390/cells802009130695997
    [Google Scholar]
  33. Poillet-PerezL. WhiteE. Role of tumor and host autophagy in cancer metabolism.Genes Dev.20193311-1261061910.1101/gad.325514.11931160394
    [Google Scholar]
  34. WuD.H. JiaC.C. ChenJ. LinZ.X. RuanD.Y. LiX. LinQ. Min-Dong MaX.K. WanX.B. ChengN. ChenZ.H. XingY.F. WuX.Y. WenJ.Y. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma.Tumour Biol.20143512122251223310.1007/s13277‑014‑2531‑725256671
    [Google Scholar]
  35. WuY. ZhangJ. LiQ. Autophagy, an accomplice or antagonist of drug resistance in HCC?Cell Death Dis.202112326610.1038/s41419‑021‑03553‑733712559
    [Google Scholar]
  36. ChenH.Y. WhiteE. Role of autophagy in cancer prevention.Cancer Prev. Res. (Phila.)20114797398310.1158/1940‑6207.CAPR‑10‑038721733821
    [Google Scholar]
  37. DingW.X. Role of autophagy in liver physiology and pathophysiology.World J. Biol. Chem.20101131210.4331/wjbc.v1.i1.321540988
    [Google Scholar]
  38. SieghartW. FuerederT. SchmidK. CejkaD. WerzowaJ. WrbaF. WangX. GruberD. Rasoul-RockenschaubS. Peck-RadosavljevicM. WacheckV. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation.Transplantation200783442543210.1097/01.tp.0000252780.42104.9517318075
    [Google Scholar]
  39. MatterM.S. DecaensT. AndersenJ.B. ThorgeirssonS.S. Targeting the mTOR pathway in hepatocellular carcinoma: Current state and future trends.J. Hepatol.201460485586510.1016/j.jhep.2013.11.03124308993
    [Google Scholar]
  40. HsiehA.C. LiuY. EdlindM.P. IngoliaN.T. JanesM.R. SherA. ShiE.Y. StumpfC.R. ChristensenC. BonhamM.J. WangS. RenP. MartinM. JessenK. FeldmanM.E. WeissmanJ.S. ShokatK.M. RommelC. RuggeroD. The translational landscape of mTOR signalling steers cancer initiation and metastasis.Nature20124857396556110.1038/nature1091222367541
    [Google Scholar]
  41. RiquelmeI. TapiaO. EspinozaJ.A. LealP. BucheggerK. SandovalA. BizamaC. ArayaJ.C. PeekR.M. RoaJ.C. The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines.Pathol. Oncol. Res.201622479780510.1007/s12253‑016‑0066‑527156070
    [Google Scholar]
  42. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  43. KiruthigaC. DeviK.P. NabaviS.M. BishayeeA. Autophagy: A potential therapeutic target of polyphenols in hepatocellular carcinoma.Cancers202012356210.3390/cancers1203056232121322
    [Google Scholar]
  44. WhiteE. The role for autophagy in cancer.J. Clin. Invest.20151251424610.1172/JCI7394125654549
    [Google Scholar]
  45. LiuK. ShiY. GuoX.H. OuyangY.B. WangS.S. LiuD.J. WangA.N. LiN. ChenD.X. Phosphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria.Cell Death Dis.201452e107810.1038/cddis.2014.5124556693
    [Google Scholar]
  46. LiuK. LouJ. WenT. YinJ. XuB. DingW. WangA. LiuD. ZhangC. ChenD. LiN. Depending on the stage of hepatosteatosis, p53 causes apoptosis primarily through either DRAM ‐induced autophagy or BAX.Liver Int.201333101566157410.1111/liv.1223823875779
    [Google Scholar]
  47. WangK. Autophagy and apoptosis in liver injury.Cell Cycle201514111631164210.1080/15384101.2015.103868525927598
    [Google Scholar]
  48. LiuQ. GuanJ.Z. SunY. LeZ. ZhangP. YuD. LiuY. Insulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway.Mol. Med. Rep.20171542136214210.3892/mmr.2017.626528260056
    [Google Scholar]
  49. LeeS.G. KimM.M. Pachymic acid promotes induction of autophagy related to IGF-1 signaling pathway in WI-38 cells.Phytomedicine201736828710.1016/j.phymed.2017.09.02029157832
    [Google Scholar]
  50. IchimuraY. WaguriS. SouY. KageyamaS. HasegawaJ. IshimuraR. SaitoT. YangY. KounoT. FukutomiT. HoshiiT. HiraoA. TakagiK. MizushimaT. MotohashiH. LeeM.S. YoshimoriT. TanakaK. YamamotoM. KomatsuM. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy.Mol. Cell201351561863110.1016/j.molcel.2013.08.00324011591
    [Google Scholar]
  51. BartoliniD. DallaglioK. TorquatoP. PiroddiM. GalliF. Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma.Transl. Res.2018193547110.1016/j.trsl.2017.11.00729274776
    [Google Scholar]
  52. CoppleI.M. ListerA. ObengA.D. KitteringhamN.R. JenkinsR.E. LayfieldR. FosterB.J. GoldringC.E. ParkB.K. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway.J. Biol. Chem.201028522167821678810.1074/jbc.M109.09654520378532
    [Google Scholar]
  53. DeyP. KarunaD. BhaktaT. Medicinal plants used as anti-acne agents by tribal and non-tribal people of Tripura, India.Am J Phytomed Clin Ther.201425556570
    [Google Scholar]
  54. TalibW.H. AwajanD. HamedR.A. AzzamA.O. MahmodA.I. AL-YasariI.H. Combination anticancer therapies using selected phytochemicals.Molecules20222717545210.3390/molecules2717545236080219
    [Google Scholar]
  55. McCubreyJ.A. LertpiriyapongK. SteelmanL.S. AbramsS.L. YangL.V. MurataR.M. RosalenP.L. ScalisiA. NeriL.M. CoccoL. RattiS. MartelliA.M. LaidlerP. Dulińska-LitewkaJ. RakusD. GizakA. LombardiP. NicolettiF. CandidoS. LibraM. MontaltoG. CervelloM. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs.Aging2017961477153610.18632/aging.10125028611316
    [Google Scholar]
  56. DarveshA.S. BishayeeA. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer.Nutr. Cancer201365332934410.1080/01635581.2013.76736723530632
    [Google Scholar]
  57. BabyJ. DevanA.R. KumarA.R. GorantlaJ.N. NairB. AishwaryaT.S. NathL.R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review.J. Food Biochem.2021457e1376110.1111/jfbc.1376134028054
    [Google Scholar]
  58. BöhlM. TietzeS. SokollA. MadathilS. PfennigF. ApostolakisJ. FahmyK. GutzeitH.O. Flavonoids affect actin functions in cytoplasm and nucleus.Biophys. J.20079382767278010.1529/biophysj.107.10781317573428
    [Google Scholar]
  59. MandairD.S. RossiR.E. PericleousM. WhyandT. CaplinM. The impact of diet and nutrition in the prevention and progression of hepatocellular carcinoma.Expert Rev. Gastroenterol. Hepatol.20148436938210.1586/17474124.2014.89487924597926
    [Google Scholar]
  60. de Sousa SilvaG.V. LopesA.L.V.F.G. VialiI.C. LimaL.Z.M. BizutiM.R. HaagF.B. Tavares de Resende e SilvaD. Therapeutic properties of flavonoids in treatment of cancer through autophagic modulation: A systematic review.Chin. J. Integr. Med.202329326827910.1007/s11655‑022‑3674‑935809179
    [Google Scholar]
  61. PangX. ZhangX. JiangY. SuQ. LiQ. LiZ. Autophagy: Mechanisms and therapeutic potential of flavonoids in cancer.Biomolecules202111213510.3390/biom1102013533494431
    [Google Scholar]
  62. AkkoçY. GözüaçıkD. Autophagy and liver cancer.Turk. J. Gastroenterol.201829327028210.5152/tjg.2018.15031829755011
    [Google Scholar]
  63. NazimU.M. ParkS.Y. Luteolin sensitizes human liver cancer cells to TRAIL‑induced apoptosis via autophagy and JNK‑mediated death receptor 5 upregulation.Int. J. Oncol.201954266567230431076
    [Google Scholar]
  64. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy regulation using luteolin: New insight into its anti-tumor activity.Cancer Cell Int.202020153710.1186/s12935‑020‑01634‑933292250
    [Google Scholar]
  65. PrietschR.F. MonteL.G. da SilvaF.A. BeiraF.T. Del PinoF.A.B. CamposV.F. CollaresT. PintoL.S. SpanevelloR.M. GamaroG.D. BraganholE. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes.Mol. Cell. Biochem.20143901-223524210.1007/s11010‑014‑1974‑x24573886
    [Google Scholar]
  66. LiS. LiJ. DaiW. ZhangQ. FengJ. WuL. LiuT. YuQ. XuS. WangW. LuX. ChenK. XiaY. LuJ. ZhouY. FanX. MoW. XuL. GuoC. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death.Br. J. Cancer2017117101518152810.1038/bjc.2017.32328926527
    [Google Scholar]
  67. GranatoM. RizzelloC. Gilardini MontaniM.S. CuomoL. VitilloM. SantarelliR. GonnellaR. D’OraziG. FaggioniA. CironeM. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways.J. Nutr. Biochem.20174112413610.1016/j.jnutbio.2016.12.01128092744
    [Google Scholar]
  68. WangZ. ShenG. XieJ. LiB. GaoQ. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.201849511503150910.1016/j.bbrc.2017.11.19829203243
    [Google Scholar]
  69. KumarD. ShankarS. SrivastavaR.K. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway.Cancer Lett.2014343217918910.1016/j.canlet.2013.10.00324125861
    [Google Scholar]
  70. NishidaH. OmoriM. FukutomiY. NinomiyaM. NishiwakiS. SuganumaM. MoriwakiH. MutoY. Inhibitory effects of (-)-epigallocatechin gallate on spontaneous hepatoma in C3H/HeNCrj mice and human hepatoma-derived PLC/PRF/5 cells.Jpn. J. Cancer Res.199485322122510.1111/j.1349‑7006.1994.tb02085.x7514585
    [Google Scholar]
  71. TakadaM. KuY. ToyamaH. SuzukiY. KurodaY. Suppressive effects of tea polyphenol and conformational changes with receptor for advanced glycation end products (RAGE) expression in human hepatoma cells.Hepatogastroenterology2002494692893112143244
    [Google Scholar]
  72. ShirakamiY. ShimizuM. AdachiS. SakaiH. NakagawaT. YasudaY. TsurumiH. HaraY. MoriwakiH. (–)‐Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor–vascular endothelial growth factor receptor axis.Cancer Sci.2009100101957196210.1111/j.1349‑7006.2009.01241.x19558547
    [Google Scholar]
  73. LiangG. TangA. LinX. LiL. ZhangS. HuangZ. TangH. LiQ.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer.Int. J. Oncol.201037111112320514403
    [Google Scholar]
  74. HanG. XiaJ. GaoJ. InagakiY. TangW. KokudoN. Anti-tumor effects and cellular mechanisms of resveratrol.Drug Discov. Ther.20159111210.5582/ddt.2015.0100725788047
    [Google Scholar]
  75. ZhangB. YinX. SuiS. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3‑kinase/protein kinase B pathway.Oncol. Rep.20184052758276510.3892/or.2018.664830132535
    [Google Scholar]
  76. BishayeeA. PolitisT. DarveshA.S. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma.Cancer Treat. Rev.2010361435310.1016/j.ctrv.2009.10.00219910122
    [Google Scholar]
  77. ChowH.H.S. GarlandL.L. HsuC.H. ViningD.R. ChewW.M. MillerJ.A. PerloffM. CrowellJ.A. AlbertsD.S. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study.Cancer Prev. Res.2010391168117510.1158/1940‑6207.CAPR‑09‑015520716633
    [Google Scholar]
  78. CarterL.G. D’OrazioJ.A. PearsonK.J. Resveratrol and cancer: Focus on in vivo evidence.Endocr. Relat. Cancer2014213R209R22510.1530/ERC‑13‑017124500760
    [Google Scholar]
  79. TianY. SongW. LiD. CaiL. ZhaoY. Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer.OncoTargets Ther.2019128601860910.2147/OTT.S21304331802896
    [Google Scholar]
  80. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  81. DengS. ShanmugamM.K. KumarA.P. YapC.T. SethiG. BishayeeA. Targeting autophagy using natural compounds for cancer prevention and therapy.Cancer201912581228124610.1002/cncr.3197830748003
    [Google Scholar]
  82. WangJ. WangC. BuG. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Exp. Ther. Med.20181543650365810.3892/etm.2018.580529545895
    [Google Scholar]
  83. MarquardtJ.U. Gomez-QuirozL. Arreguin CamachoL.O. PinnaF. LeeY.H. KitadeM. DomínguezM.P. CastvenD. BreuhahnK. ConnerE.A. GalleP.R. AndersenJ.B. FactorV.M. ThorgeirssonS.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer.J. Hepatol.201563366166910.1016/j.jhep.2015.04.01825937435
    [Google Scholar]
  84. DaiM. ChenN. LiJ. TanL. LiX. WenJ. LeiL. GuoD. In vitro and in vivo anti-metastatic effect of the alkaliod matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms.Phytomedicine20218715358010.1016/j.phymed.2021.15358034029939
    [Google Scholar]
  85. LiuC. YangS. WangK. BaoX. LiuY. ZhouS. LiuH. QiuY. WangT. YuH. Alkaloids from traditional chinese medicine against hepatocellular carcinoma.Biomed. Pharmacother.201912010954310.1016/j.biopha.2019.10954331655311
    [Google Scholar]
  86. XieS.B. HeX.X. YaoS.K. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.Int. J. Oncol.201547251752610.3892/ijo.2015.302326034977
    [Google Scholar]
  87. LuoC. ZhuY. JiangT. LuX. ZhangW. JingQ. LiJ. PangL. ChenK. QiuF. YuX. YangJ. HuangJ. Matrine induced gastric cancer MKN45 cells apoptosis via increasing pro-apoptotic molecules of Bcl-2 family.Toxicology2007229324525210.1016/j.tox.2006.10.02017134813
    [Google Scholar]
  88. LiouC.J. LaiY.R. ChenY.L. ChangY.H. LiZ.Y. HuangW.C. Matrine attenuates COX-2 and ICAM-1 expressions in human lung epithelial cells and prevents acute lung injury in LPS-induced mice.Mediators Inflamm.2016201611210.1155/2016/363048526880863
    [Google Scholar]
  89. JordanM.A. ThrowerD. WilsonL. Mechanism of inhibition of cell proliferation by Vinca alkaloids.Cancer Res.1991518221222222009540
    [Google Scholar]
  90. AdiseshaiahP.P. ClogstonJ.D. McLelandC.B. RodriguezJ. PotterT.M. NeunB.W. SkoczenS.L. ShanmugavelandyS.S. KesterM. SternS.T. McNeilS.E. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models.Cancer Lett.2013337225426510.1016/j.canlet.2013.04.03423664889
    [Google Scholar]
  91. GongK. ChenC. ZhanY. ChenY. HuangZ. LiW. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma.J. Biol. Chem.201228742355763558810.1074/jbc.M112.37058522927446
    [Google Scholar]
  92. LallemandB. GelbckeM. DuboisJ. PrévostM. JabinI. KissR. Structure-activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents.Mini Rev. Med. Chem.2011111088188710.2174/13895571179657544321762107
    [Google Scholar]
  93. WuF. LiX. JiangB. YanJ. ZhangZ. QinJ. YuW. GaoZ. Glycyrrhetinic acid functionalized nanoparticles for drug delivery to liver cancer.J. Biomed. Nanotechnol.201814111837185210.1166/jbn.2018.263830165922
    [Google Scholar]
  94. TangZ.H. LiT. ChangL.L. ZhuH. TongY.G. ChenX.P. WangY.T. LuJ.J. Glycyrrhetinic Acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells.J. Agric. Food Chem.20146249119101191610.1021/jf503968k25403108
    [Google Scholar]
  95. SonH.S. KwonH.Y. SohnE.J. LeeJ.H. WooH.J. YunM. KimS.H. KimY.C. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells.Phytother. Res.201327111714172210.1002/ptr.492523325562
    [Google Scholar]
  96. XuZ-X. LiangJ. HaridasV. GaikwadA. ConnollyF.P. MillsG.B. GuttermanJ.U. A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase.Cell Death Differ.200714111948195710.1038/sj.cdd.440220717690712
    [Google Scholar]
  97. SuY.C. LiuC.T. ChuY.L. RaghuR. KuoY.H. SheenL.Y. Eburicoic acid, an active triterpenoid from the fruiting bodies of basswood cultivated antrodia cinnamomea, induces ER stress-mediated autophagy in human hepatoma cells.J. Tradit. Complement. Med.20122431232210.1016/S2225‑4110(16)30117‑124716146
    [Google Scholar]
  98. AoZ.H. XuZ.H. LuZ.M. XuH.Y. ZhangX.M. DouW.F. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases.J. Ethnopharmacol.2009121219421210.1016/j.jep.2008.10.03919061947
    [Google Scholar]
  99. VerfaillieT. SalazarM. VelascoG. AgostinisP. LinkingE.R. Linking ER stress to autophagy: Potential implications for cancer therapy.Int. J. Cell Biol.2010201011910.1155/2010/93050920145727
    [Google Scholar]
  100. HanB. HeC. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases.Pharmacol. Res.202116610542810.1016/j.phrs.2021.10542833540047
    [Google Scholar]
  101. XuX.H. LiT. FongC. ChenX. ChenX.J. WangY.T. HuangM.Q. LuJ.J. Saponins from chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules2110132627782048
    [Google Scholar]
  102. SobolewskaD. GalantyA. GrabowskaK. Makowska-WąsJ. Wróbel-BiedrawaD. PodolakI. Saponins as cytotoxic agents: An update (2010–2018). Part I—steroidal saponins.Phytochem. Rev.202019113918910.1007/s11101‑020‑09661‑0
    [Google Scholar]
  103. LiuJ. ManS. LiuZ. MaL. GaoW. A synergistic antitumor effect of polyphyllin I and formosanin C on hepatocarcinoma cells.Bioorg. Med. Chem. Lett.201626204970497510.1016/j.bmcl.2016.09.00527623551
    [Google Scholar]
  104. XieZ.Z. LiM.M. DengP.F. WangS. WangL. LuX.P. HuL.B. ChenZ. JieH.Y. WangY.F. LiuX.X. LiuZ. Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway.Chem. Biol. Interact.20172641910.1016/j.cbi.2017.01.00428088315
    [Google Scholar]
  105. YoonJ.H. ChoiY.J. LeeS.G. Ginsenoside Rh1 suppresses matrix metalloproteinase-1 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells.Eur. J. Pharmacol.20126791-3243310.1016/j.ejphar.2012.01.02022314224
    [Google Scholar]
  106. Sorafenib induced autophagy using hydroxychloroquine in hepatocellular cancer.Available from: https://clinicaltrials.gov/ct2/show/NCT03037437?cond=NCT03037437 (Assessed on 22 January 2023).
  107. Ezurpimtrostat autophagy inhibitor in association with atezolizumab-bevacizumab in first line treatment of unresectable hepatocellular carcinoma (ABE-LIVER).Available from: https://clinicaltrials.gov/ct2/show/NCT05448677?cond=NCT05448677 (Assessed on 22 January 2023).
  108. Composition for treating cirrhosis and liver cancer (SB-1121) (SB-1121).Available from: https://clinicaltrials.gov/ct2/show/NCT05178303?cond=NCT05178303 (Assessed on 22 January 2023).
  109. Resveratrol and human hepatocyte function in cancer.Available from: https://clinicaltrials.gov/ct2/show/NCT02261844?cond=NCT02261844 (Assessed on 22 January 2023).
  110. LiY. MartinR.C.G.II Herbal medicine and hepatocellular carcinoma: Applications and challenges.Evid. Based Complement. Alternat. Med.2011201111410.1093/ecam/neq04421799681
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072301308240607064104
Loading
/content/journals/cbc/10.2174/0115734072301308240607064104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test