Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Aging is a natural biological process that occurs due to various factors like unhealthy diet, environmental factors, genetic factors, and lack of moisture. This process leads to the loss of skin elasticity, also known as sagging. It happens due to the gradual decline of collagen type VII (Col-7) and fibril, which slows down the connection between the dermis and epidermis layers, causing the skin to look aged externally. There are several theories of aging, such as the free radical theory, membrane theory, DNA or genetic theory, neuroendocrine theory, telomerase theory, mitochondrial decline theory, and Hayflick limit theory. According to WHO, by 2030, one in six individuals worldwide will be 60 years or older. There are synthetic compounds available in the market for anti-aging purposes, but they pose various side effects. Natural products play an essential role in managing aging, and anti-aging phytoconstituents are mostly found in plant parts like fruits, stems, roots, and other plant sources that have no side effects. This review focuses on various anti-aging agents derived from plants and other natural sources.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072313321240604104711
2024-06-25
2025-09-02
Loading full text...

Full text loading...

References

  1. GoldmanE.A. SternerK.N. Environment, epigenetics, and the pace of human aging.Annu. Rev. Anthropol.202352127929410.1146/annurev‑anthro‑052721‑090516
    [Google Scholar]
  2. ShinS.H. LeeY.H. RhoN.K. ParkK.Y. Skin aging from mechanisms to interventions: Focusing on dermal aging.Front. Physiol.202314119527210.3389/fphys.2023.1195272 37234413
    [Google Scholar]
  3. HarwanshR.K. DeshmukhR. Recent insight into uv-induced oxidative stress and role of herbal bioactives in the management of skin aging.Curr. Pharm. Biotechnol.20242511641 37102487
    [Google Scholar]
  4. Curieses AndrésC.M. Pérez de la LastraJ.M. Andrés JuanC. PlouF.J. Pérez-LebeñaE. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers.J. Biochem. Mol. Toxicol.20233711e2345510.1002/jbt.23455 37437103
    [Google Scholar]
  5. FuscoD. CollocaG. Lo MonacoM.R. CesariM. Effects of antioxidant supplementation on the aging process.Clin. Interv. Aging200723377387 18044188
    [Google Scholar]
  6. Rodríguez-RoderoS. Fernández-MoreraJ.L. Menéndez-TorreE. CalvaneseV. FernándezA.F. FragaM.F. Aging genetics and aging.Aging Dis.201123186195 22396873
    [Google Scholar]
  7. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.20172017841676310.1155/2017/8416763
    [Google Scholar]
  8. JohnsonB.Z. StevensonA.W. PrêleC.M. FearM.W. WoodF.M. The role of IL-6 in skin fibrosis and cutaneous wound healing.Biomedicines20208510110.3390/biomedicines8050101 32365896
    [Google Scholar]
  9. LeeJ.H. ParkJ. ShinD.W. The molecular mechanism of polyphenols with anti-aging activity in aged human dermal fibroblasts.Molecules20222714435110.3390/molecules27144351 35889225
    [Google Scholar]
  10. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a001651 20457564
    [Google Scholar]
  11. ZhangS. DuanE. Fighting against skin aging: The way from bench to bedside.Cell Transplant.201827572973810.1177/0963689717725755 29692196
    [Google Scholar]
  12. ChaudharyM. KhanA. GuptaM. Skin ageing: Pathophysiology and current market treatment approaches.Curr. Aging Sci.2020131223010.2174/1567205016666190809161115 31530270
    [Google Scholar]
  13. Mc AuleyM.T. GuimeraA.M. HodgsonD. McdonaldN. MooneyK.M. MorganA.E. ProctorC.J. Modelling the molecular mechanisms of aging.Biosci. Rep.2017371BSR2016017710.1042/BSR20160177 28096317
    [Google Scholar]
  14. BarberiL. ScicchitanoB.M. De RossiM. BigotA. DuguezS. WielgosikA. StewartC. McPheeJ. ConteM. NariciM. FranceschiC. MoulyV. Butler-BrowneG. MusaròA. Age-dependent alteration in muscle regeneration: The critical role of tissue niche.Biogerontology201314327329210.1007/s10522‑013‑9429‑4 23666344
    [Google Scholar]
  15. GroteC. ReinhardtD. ZhangM. WangJ. Regulatory mechanisms and clinical manifestations of musculoskeletal aging.J. Orthop. Res.20193771475148810.1002/jor.24292 30919498
    [Google Scholar]
  16. da SilvaP.F.L. SchumacherB. Principles of the molecular and cellular mechanisms of aging.J. Invest. Dermatol.2021141495196010.1016/j.jid.2020.11.018 33518357
    [Google Scholar]
  17. RowanS. BejaranoE. TaylorA. Mechanistic targeting of advanced glycation end-products in age-related diseases.Biochim. Biophys. Acta Mol. Basis Dis.20181864123631364310.1016/j.bbadis.2018.08.036 30279139
    [Google Scholar]
  18. BirchH.L. Extracellular Matrix and Ageing.In: Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Subcellular Biochemistry.SingaporeSpringer201890
    [Google Scholar]
  19. KimC.S. ParkS. KimJ. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise.J. Exerc. Nutrition Biochem.2017213556110.20463/jenb.2017.0027 29036767
    [Google Scholar]
  20. XingR. ChenZ. SunH. LiaoH. QinS. LiuW. ZhangY. ChenZ. ZhouS. Free radicals accelerate in situ ageing of microplastics during sludge composting.J. Hazard. Mater.202242912840510.1016/j.jhazmat.2022.128405 35236030
    [Google Scholar]
  21. AdetuyiB.O. AdebayoP.F. OlajideP.A. AtandaO.O. OlokeJ.K. Involvement of free radicals in the ageing of cutaneous membrane.World News Nat. Sci.2022431137
    [Google Scholar]
  22. RossM.E. Cell division and the nervous system: Regulating the cycle from neural differentiation to death.Trends Neurosci.1996192626810.1016/0166‑2236(96)89622‑6 8820869
    [Google Scholar]
  23. SpeidelD. The role of DNA damage responses in p53 biology.Arch. Toxicol.201589450151710.1007/s00204‑015‑1459‑z 25618545
    [Google Scholar]
  24. JeffreyP.D. TongL. PavletichN.P. Structural basis of inhibition of CDK–cyclin complexes by INK4 inhibitors.Genes Dev.200014243115312510.1101/gad.851100 11124804
    [Google Scholar]
  25. Russell-GoldmanE. MurphyG.F. The pathobiology of skin aging: New insights into an old dilemma.Am. J. Pathol.202019071356136910.1016/j.ajpath.2020.03.007 32246919
    [Google Scholar]
  26. SinghS. KhannaD. KalraS. Minocycline and doxycycline: More than antibiotics.Curr. Mol. Pharmacol.20211461046106510.2174/1874467214666210210122628 33568043
    [Google Scholar]
  27. Altay BenettiA. TarboxT. BenettiC. Current insights into the formulation and delivery of therapeutic and cosmeceutical agents for aging skin.Cosmetics20231025410.3390/cosmetics10020054
    [Google Scholar]
  28. LiuC. GuoX. ChenY. ZhaoM. ShiS. LuoZ. SongJ. ZhangZ. YangW. LiuK. Anti-photoaging effect and mechanism of flexible liposomes co-loaded with apigenin and doxycycline.Biomed. Pharmacother.202316411499810.1016/j.biopha.2023.114998 37301137
    [Google Scholar]
  29. VaneJ.R. BottingR.M. The mechanism of action of aspirin.Thromb. Res.20031105-625525810.1016/S0049‑3848(03)00379‑7 14592543
    [Google Scholar]
  30. ZhouT. XuX. DuM. ZhaoT. WangJ. A preclinical overview of metformin for the treatment of type 2 diabetes.Biomed. Pharmacother.20181061227123510.1016/j.biopha.2018.07.085 30119191
    [Google Scholar]
  31. ZhuH. JiaZ. LiY.R. DanelisenI. Molecular mechanisms of action of metformin: Latest advances and therapeutic implications.Clin. Exp. Med.20232372941295110.1007/s10238‑023‑01051‑y 37016064
    [Google Scholar]
  32. ChengF.F. LiuY.L. DuJ. LinJ.T. Metformin’s mechanisms in attenuating hallmarks of aging and age-related disease.Aging Dis.202213497098610.14336/AD.2021.1213 35855344
    [Google Scholar]
  33. ShahH. Rawal MahajanS. Photoaging: New insights into its stimulators, complications, biochemical changes and therapeutic interventions.Biomed. Aging Pathol.20133316116910.1016/j.biomag.2013.05.003
    [Google Scholar]
  34. BooY.C. Ascorbic acid (vitamin C) as a cosmeceutical to increase dermal collagen for skin antiaging purposes: Emerging combination therapies.Antioxidants2022119166310.3390/antiox11091663 36139737
    [Google Scholar]
  35. KirklandJ.B. Meyer-FiccaM.L. Niacin. In: Advances in food and nutrition research; Elsevier,20188383149
    [Google Scholar]
  36. BooY.C. Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation.Antioxidants2021108131510.3390/antiox10081315 34439563
    [Google Scholar]
  37. FarrisP.K. Topical skin care and the cosmetic patient.Master Techniques in Facial Rejuvenation201826872.e210.1016/B978‑0‑323‑35876‑7.00005‑4
    [Google Scholar]
  38. ChapmanM.S. In Seminars in cutaneous medicine and surgery.WB Saunders2012Vol. 311116
    [Google Scholar]
  39. KuljacaS. Mechanisms and treatment strategies to overcome resistance to non-cytotoxic therapy in cancer.UNSW Sydney2010
    [Google Scholar]
  40. MilaniM. ColomboF. Skin anti-aging effect of oral vitamin a supplementation in combination with topical retinoic acid treatment in comparison with topical treatment alone: A randomized, prospective, assessor-blinded, parallel trial.Cosmetics202310514410.3390/cosmetics10050144
    [Google Scholar]
  41. BayE.Y. TopalI.O. Aging skin and anti-aging strategies.Explor. Res. Hypothesis Med.202383269279
    [Google Scholar]
  42. AltalhabS. The effectiveness of imiquimod 5% cream as an anti‐wrinkle treatment: A pilot study.J. Cosmet. Dermatol.20191861729173210.1111/jocd.12939 30941881
    [Google Scholar]
  43. HwangE.S. Pharmacological nicotinamide: Mechanisms centered around SIRT1 activity.In: Pharmacoepigenetics.Elsevier201978179910.1016/B978‑0‑12‑813939‑4.00029‑2
    [Google Scholar]
  44. EgliC. MinM. AfzalN. SivamaniR.K. The hydroxy acids: Where have we been and what’s new?Dermatol. Rev.20234626026710.1002/der2.217
    [Google Scholar]
  45. AhmedI.A. MikailM.A. ZamakshshariN. AbdullahA.S.H. Natural anti-aging skincare: Role and potential.Biogerontology202021329331010.1007/s10522‑020‑09865‑z 32162126
    [Google Scholar]
  46. BelluE. MediciS. CoradduzzaD. CrucianiS. AmlerE. MaioliM. Nanomaterials in skin regeneration and rejuvenation.Int. J. Mol. Sci.20212213709510.3390/ijms22137095 34209468
    [Google Scholar]
  47. KarwalK. MukovozovI. Topical AHA in dermatology: Formulations, mechanisms of action, efficacy, and future perspectives.Cosmetics202310513110.3390/cosmetics10050131
    [Google Scholar]
  48. ThakurA. SharmaR. Health promoting phytochemicals in vegetables: A mini review.Int. J. Food Sci. Technol.20188210711710.30954/2277‑9396.02.2018.1
    [Google Scholar]
  49. SharmaS. KatochV. KumarS. ChatterjeeS. Functional relationship of vegetable colors and bioactive compounds: Implications in human health.J. Nutr. Biochem.20219210861510.1016/j.jnutbio.2021.108615 33705954
    [Google Scholar]
  50. WangK. LiuH. HuQ. WangL. LiuJ. ZhengZ. ZhangW. RenJ. ZhuF. LiuG.H. Epigenetic regulation of aging: Implications for interventions of aging and diseases.Signal Transduct. Target. Ther.20227137410.1038/s41392‑022‑01211‑8 36336680
    [Google Scholar]
  51. FernandoK. KanankeT. Phytochemicals as prospective human anti-aging compounds2020
    [Google Scholar]
  52. SolomonovY. LevyR. Astaxanthin supports normal human dermal fibroblasts from neutrophil-induced collagen damage in co-culture.Food Nutr. Sci.202351614
    [Google Scholar]
  53. ZhengW.V. XuW. LiY. QinJ. ZhouT. LiD. XuY. ChengX. XiongY. ChenZ. Anti-aging effect of β-carotene through regulating the KAT7-P15 signaling axis, inflammation and oxidative stress process.Cell. Mol. Biol. Lett.20222718610.1186/s11658‑022‑00389‑7 36209059
    [Google Scholar]
  54. GaoY. WeiY. WangY. GaoF. ChenZ. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent.Aging Dis.20178677879110.14336/AD.2017.0725 29344416
    [Google Scholar]
  55. BrahmaD. DuttaD. Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF.World J. Microbiol. Biotechnol.2023391131010.1007/s11274‑023‑03747‑5 37715879
    [Google Scholar]
  56. NaikA.A. GadgoliC.H. NaikA.B. Evaluation of gene expression and in vitro enzyme study for antiaging effect of crocin and lutein.Nat. Prod. J.202010559560410.2174/2210315509666190801162217
    [Google Scholar]
  57. PalomboP. FabriziG. RuoccoV. RuoccoE. FluhrJ. RobertsR. MorgantiP. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study.Skin Pharmacol. Physiol.200720419921010.1159/000101807 17446716
    [Google Scholar]
  58. PetyaevI.M. PristenskyD.V. MorgunovaE.Y. ZigangirovaN.A. TsibezovV.V. ChalykN.E. KlochkovV.A. BlinovaV.V. BogdanovaT.M. IljinA.A. SulkovskayaL.S. ChernyshovaM.P. LozbiakovaM.V. KyleN.H. BashmakovY.K. Lycopene presence in facial skin corneocytes and sebum and its association with circulating lycopene isomer profile: Effects of age and dietary supplementation.Food Sci. Nutr.2019741157116510.1002/fsn3.799 31024688
    [Google Scholar]
  59. ChaikulP. Khat-udomkiriN. IangthanaratK. ManosroiJ. ManosroiA. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome.Eur. J. Pharm. Sci.2019131394910.1016/j.ejps.2019.02.008 30735821
    [Google Scholar]
  60. LiuJ. XuX. JiangR. SunL. ZhaoD. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway.Biosci. Biotechnol. Biochem.20198371205121510.1080/09168451.2019.1606694 30999826
    [Google Scholar]
  61. RyuJ.Y. NaE.J. MMP expression alteration and MMP-1 production control by syringic acid via AP-1 mechanism.Biomed. Dermatol.2018211510.1186/s41702‑018‑0023‑x
    [Google Scholar]
  62. ZhangX. ShiG.F. LiuX. AnL. GuanS. Anti‐ageing effects of protocatechuic acid from Alpinia on spleen and liver antioxidative system of senescent mice.Cell Biochem. Funct.201129434234710.1002/cbf.1757 21491470
    [Google Scholar]
  63. ShinS. ChoS.H. ParkD. JungE. Anti‐skin aging properties of protocatechuic acid in vitro and in vivo.J. Cosmet. Dermatol.202019497798410.1111/jocd.13086 31389672
    [Google Scholar]
  64. ShengX. ZhuY. ZhouJ. YanL. DuG. LiuZ. ChenH. Antioxidant effects of caffeic acid lead to protection of drosophila intestinal stem cell aging.Front. Cell Dev. Biol.2021973548310.3389/fcell.2021.735483 34568344
    [Google Scholar]
  65. ParkH.J. ChoJ.H. HongS.H. KimD.H. JungH.Y. KangI.K. ChoY.J. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells.J. Nat. Med.201872112713510.1007/s11418‑017‑1120‑7 28884442
    [Google Scholar]
  66. JeonJ. SungJ. LeeH. KimY. JeongH.S. LeeJ. Protective activity of caffeic acid and sinapic acid against UVB-induced photoaging in human fibroblasts.J. Food Biochem.2019432e1270110.1111/jfbc.12701 31353648
    [Google Scholar]
  67. CaoY. ZhaoH. WangZ. ZhangC. BianY. LiuX. ZhangC. ZhangX. ZhaoY. Quercetin promotes in vitro maturation of oocytes from humans and aged mice.Cell Death Dis.2020111196510.1038/s41419‑020‑03183‑5 33177495
    [Google Scholar]
  68. KimJ.M. LeeE.K. KimD.H. YuB.P. ChungH.Y. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase.Age201032219720810.1007/s11357‑009‑9124‑1 20431987
    [Google Scholar]
  69. JungS.K. LeeK.W. KimH.Y. OhM.H. ByunS. LimS.H. HeoY.S. KangN.J. BodeA.M. DongZ. LeeH.J. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf.Biochem. Pharmacol.201079101455146110.1016/j.bcp.2010.01.004 20093107
    [Google Scholar]
  70. LeeJ.J. NgS.C. HsuJ.Y. LiuH. ChenC.J. HuangC.Y. KuoW.W. Galangin reverses H2O2-induced dermal fibroblast senescence via SIRT1-PGC-1α/NRF2 signaling.Int. J. Mol. Sci.2022233138710.3390/ijms23031387 35163314
    [Google Scholar]
  71. TakayaK. AsouT. KishiK. Fisetin, a potential skin rejuvenation drug that eliminates senescent cells in the dermis.Biogerontology2024251161175 37736858
    [Google Scholar]
  72. WangL. LeeW. CuiY.R. AhnG. JeonY.J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. Environ. Pollut.,2019252Pt B1318132410.1016/j.envpol.2019.06.029 31252129
  73. ChaikulP. SripisutT. ChanpiromS. DitthawutthikulN. Anti-skin aging activities of green tea (Camelliasinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts.Eur. J. Integr. Med.20204010121210.1016/j.eujim.2020.101212
    [Google Scholar]
  74. ChenJ. LiY. ZhuQ. LiT. LuH. WeiN. HuangY. ShiR. MaX. WangX. ShengJ. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by d-Galactose.Mech. Ageing Dev.20171641710.1016/j.mad.2017.03.007 28343910
    [Google Scholar]
  75. ChoiS. YounJ. KimK. JooD.H. ShinS. LeeJ. LeeH.K. AnI.S. KwonS. YounH.J. AhnK.J. AnS. ChaH.J. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo.Int. J. Mol. Med.201638262763410.3892/ijmm.2016.2626 27279007
    [Google Scholar]
  76. SalamaA. ElgoharyR. KassemA.A. AsfourM.H. Chrysin–phospholipid complex-based solid dispersion for improved anti-aging and neuroprotective effects in mice.Pharm. Dev. Technol.202328110912310.1080/10837450.2023.2165102 36593750
    [Google Scholar]
  77. LimS.H. JungS.K. ByunS. LeeE.J. HwangJ.A. SeoS.G. KimY.A. YuJ.G. LeeK.W. LeeH.J. Luteolin suppresses UVB ‐induced photoageing by targeting JNK1 and p90RSK2.J. Cell. Mol. Med.201317567268010.1111/jcmm.12050 23551430
    [Google Scholar]
  78. YepesA. Ochoa-BautistaD. Murillo-ArangoW. Quintero-SaumethJ. BravoK. OsorioE. Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies.Arab. J. Chem.202114110290510.1016/j.arabjc.2020.11.011
    [Google Scholar]
  79. NovotnáR. ŠkařupováD. HanykJ. UlrichováJ. KřenV. BojarováP. BrodskyK. VostálováJ. FrankováJ. Hesperidin, hesperetin, rutinose, and rhamnose act as skin anti-aging agents.Molecules2023284172810.3390/molecules28041728 36838716
    [Google Scholar]
  80. LimK.H. KimG.R. Inhibitory effect of naringenin on LPS-induced skin senescence by SIRT1 regulation in HDFs.Biomed. Dermatol.2018212610.1186/s41702‑018‑0035‑6
    [Google Scholar]
  81. WangY.N. WuW. ChenH.C. FangH. Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation.J. Dermatol. Sci.2010581192710.1016/j.jdermsci.2010.02.002 20211546
    [Google Scholar]
  82. LimT.G. KimJ.E. LeeS.Y. ParkJ. YeomM. ChenH. BodeA. DongZ. LeeK. The daidzein metabolite, 6,7,4′-Trihydroxyisoflavone, is a novel inhibitor of PKCα in suppressing solar UV-induced matrix metalloproteinase 1.Int. J. Mol. Sci.20141511214192143210.3390/ijms151121419 25415304
    [Google Scholar]
  83. SeoG.Y. ParkS. HuhJ.S. ChoM. The protective effect of glycitin on UV-induced skin photoaging in human primary dermal fibroblast.J. Korean Soc. Appl. Biol. Chem.201457446346810.1007/s13765‑014‑4155‑4
    [Google Scholar]
  84. LiH. JiangR. LouL. JiaC. ZouL. ChenM. Formononetin improves the survival of random skin flaps through PI3K/Akt-mediated Nrf2 antioxidant defense system.Front. Pharmacol.20221390149810.3389/fphar.2022.901498 35662691
    [Google Scholar]
  85. PengZ. HuX. LiX. JiangX. DengL. HuY. BaiW. Protective effects of cyanidin‐3‐ O ‐glucoside on UVB‐induced chronic skin photodamage in mice via alleviating oxidative damage and anti‐inflammation.Food Front.20201321322310.1002/fft2.26
    [Google Scholar]
  86. PetrukG. IllianoA. Del GiudiceR. RaiolaA. AmoresanoA. RiganoM.M. PiccoliR. MontiD.M. Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts.J. Photochem. Photobiol. B2017172425110.1016/j.jphotobiol.2017.05.013 28527426
    [Google Scholar]
  87. PalH.C. ChamcheuJ.C. AdhamiV.M. WoodG.S. ElmetsC.A. MukhtarH. AfaqF. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation.Br. J. Dermatol.2015172235436410.1111/bjd.13513 25533330
    [Google Scholar]
  88. KanlayavattanakulM. LourithN. ChaikulP. Biological activity and phytochemical profiles of Dendrobium: A new source for specialty cosmetic materials.Ind. Crops Prod.2018120617010.1016/j.indcrop.2018.04.059
    [Google Scholar]
  89. RiazM. Zia-Ul-HaqM. SaadB. Anthocyanins and human health: Biomolecular and therapeutic aspects.Springer2016
    [Google Scholar]
  90. El-EllaD.M.A. BishayeeA. The epigenetic targets of berry anthocyanins in cancer prevention.In: Epigenetics of Cancer Prevention.Elsevier2019129148
    [Google Scholar]
  91. AlappatB. AlappatJ. Anthocyanin pigments: Beyond aesthetics.Molecules20202523550010.3390/molecules25235500 33255297
    [Google Scholar]
  92. dos Santos NascimentoL.B. GoriA. RaffaelliA. FerriniF. BrunettiC. Phenolic compounds from leaves and flowers of Hibiscus roseus: Potential skin cosmetic applications of an under-investigated species.Plants202110352210.3390/plants10030522 33802222
    [Google Scholar]
  93. ChenX. YangY. YangX. ZhuG. LuX. JiaF. DiaoB. YuS. AliA. ZhangH. XuP. LiaoY. SunC. ZhouH. LiuY. WangY. ZhuJ. XiangQ. WuX. Investigation of flavonoid components and their associated antioxidant capacity in different pigmented rice varieties.Food Res. Int.202216111172610.1016/j.foodres.2022.111726 36192868
    [Google Scholar]
  94. SeoH.R. ChoiM.J. ChoiJ.M. KoJ.C. KoJ.Y. ChoE.J. Malvidin protects WI-38 human fibroblast cells against stress-induced premature senescence.J. Cancer Prev.2016211324010.15430/JCP.2016.21.1.32 27051647
    [Google Scholar]
  95. MaokaT. Carotenoids as natural functional pigments.J. Nat. Med.202074111610.1007/s11418‑019‑01364‑x 31588965
    [Google Scholar]
  96. Zia-Ul-HaqM. Historical and introductory aspects of carotenoids.In: Carotenoids: Structure and Function in the Human Body.ChamSpringer2021
    [Google Scholar]
  97. SwapnilP. MeenaM. SinghS.K. DhuldhajU.P. Harish; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects.Curr. Plant Biol.20212610020310.1016/j.cpb.2021.100203
    [Google Scholar]
  98. NishidaY. BergP. ShakersainB. HechtK. TakikawaA. TaoR. KakutaY. UragamiC. HashimotoH. MisawaN. MaokaT. Astaxanthin: Past, present, and future.Mar. Drugs2023211051410.3390/md21100514 37888449
    [Google Scholar]
  99. HondaM. NishidaY. In vitro evaluation of skin-related physicochemical properties and biological activities of astaxanthin isomers.ACS Omega2023822193111931910.1021/acsomega.2c08173 37305308
    [Google Scholar]
  100. PratomoI.P. TedjoA. NoorD.R. Differentially expressed genes analysis in the human small airway epithelium of healthy smokers shows potential risks of disease caused by oxidative stress and inflammation and the potentiality of astaxanthin as an anti-inflammatory agent.Int. J. Inflamm.20232023425129910.1155/2023/4251299
    [Google Scholar]
  101. Chávez-GonzálezM.L. SepúlvedaL. VermaD.K. Luna-GarcíaH.A. Rodríguez-DuránL.V. IlinaA. AguilarC.N. Conventional and emerging extraction processes of flavonoids.Processes20208443410.3390/pr8040434
    [Google Scholar]
  102. DhalariaR. VermaR. KumarD. PuriS. TapwalA. KumarV. NepovimovaE. KucaK. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life.Antioxidants2020911112310.3390/antiox9111123 33202871
    [Google Scholar]
  103. BarrecaD. TrombettaD. SmeriglioA. MandalariG. RomeoO. FeliceM.R. GattusoG. NabaviS.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities.Trends Food Sci. Technol.202111719420410.1016/j.tifs.2021.03.030
    [Google Scholar]
  104. YangY. LiY. DuX. LiuZ. ZhuC. MaoW. LiuG. JiangQ. Anti-aging effects of quercetin in cladocera Simocephalus vetulus using proteomics.ACS Omega2023820176091761910.1021/acsomega.2c08242 37251128
    [Google Scholar]
  105. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  106. BarrecaD. MandalariG. CalderaroA. SmeriglioA. TrombettaD. FeliceM.R. GattusoG. Citrus flavones: An update on sources, biological functions, and health promoting properties.Plants20209328810.3390/plants9030288 32110931
    [Google Scholar]
  107. AliF. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review.Int. J. Food Prop.20172061197123810.1080/10942912.2016.1207188
    [Google Scholar]
  108. MuchaP. SkoczyńskaA. MałeckaM. HikiszP. BudziszE. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes.Molecules20212616488610.3390/molecules26164886 34443474
    [Google Scholar]
  109. PieracciY. PistelliL. CecchiM. PistelliL. De LeoM. Phytochemical characterization of citrus-based products supporting their antioxidant effect and sensory quality.Foods20221111155010.3390/foods11111550 35681300
    [Google Scholar]
  110. SaraoL. KaurS. MalikT. SinghA. Genistein and daidzein.In: Nutraceuticals and Health Care.Elsevier202233134110.1016/B978‑0‑323‑89779‑2.00016‑8
    [Google Scholar]
  111. KimJ.G. ParkG.K. JangW. KimB.Y. KimS.K. KimY.A. ParkS.H. ParkB. Skin-whitening and antiwrinkle proprieties of maackia amurensis methanolic extract lead compounds.Processes202210585510.3390/pr10050855
    [Google Scholar]
  112. MarchiosiR. dos SantosW.D. ConstantinR.P. de LimaR.B. SoaresA.R. Finger-TeixeiraA. MotaT.R. de OliveiraD.M. Foletto-FelipeM.P. AbrahãoJ. Ferrarese-FilhoO. Biosynthesis and metabolic actions of simple phenolic acids in plants.Phytochem. Rev.202019486590610.1007/s11101‑020‑09689‑2
    [Google Scholar]
  113. ValancieneE. JonuskieneI. SyrpasM. AugustinieneE. MatulisP. SimonaviciusA. MalysN. Advances and prospects of phenolic acids production, biorefinery and analysis.Biomolecules202010687410.3390/biom10060874 32517243
    [Google Scholar]
  114. ZorodduM.A. AasethJ. CrisponiG. MediciS. PeanaM. NurchiV.M. The essential metals for humans: A brief overview.J. Inorg. Biochem.201919512012910.1016/j.jinorgbio.2019.03.013 30939379
    [Google Scholar]
  115. CabreraÁ.J.R. Zinc, aging, and immunosenescence: An overview.Pathobiol. Aging Age Relat. Dis.2015512559210.3402/pba.v5.25592 25661703
    [Google Scholar]
  116. WongC.P. MagnussonK.R. SharptonT.J. HoE. Effects of zinc status on age-related T cell dysfunction and chronic inflammation.Biometals202134229130110.1007/s10534‑020‑00279‑5 33392795
    [Google Scholar]
  117. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules27207084 36296673
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072313321240604104711
Loading
/content/journals/cbc/10.2174/0115734072313321240604104711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test