Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

is the primary cause of tuberculosis (TB), which accounts for over two million deaths annually and is the leading infectious illness. Because of their significant therapeutic capabilities, a number of natural compounds, such as terpenoids generated from natural sources, have attracted interest in recent decades. Terpenoids have several different structures, displaying a variety of actions and modes of action. Some natural terpenoids and their derivatives have been selected as prototype molecules for the development of new anti-tubercular medications due to their strong anti-tubercular activity against Mycobacterium tuberculosis. This study assessed the roles and mechanisms of terpenoids. In this review article, we offer recent findings about the anti-tubercular activity of terpenoids.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072290046240801140028
2024-08-16
2025-09-03
Loading full text...

Full text loading...

References

  1. Fotsing Yannick StephaneF. Kezetas Jean JulesB. Terpenoids as important bioactive constituents of essential oils; Essential oils - bioactive compounds, new perspectives and applications.IntechOpen202011510.5772/intechopen.91426
    [Google Scholar]
  2. ZwengerS. BasuC. Plant terpenoids: Applications and future potentials.Biotechnol. Mol. Biol. Rev.2008317
    [Google Scholar]
  3. ConnollyJ.D. HillR.A. Dictionary of terpenoids.LondonChapman and Hall1991Vol. 1-31215610.1007/978‑1‑4899‑4513‑6
    [Google Scholar]
  4. ChengA.X. LouY.G. MaoY.B. LuS. WangL.J. ChenX.Y. Plant terpenoids: Biosynthesis and ecological functions.J. Integr. Plant Biol.200749217918610.1111/j.1744‑7909.2007.00395.x
    [Google Scholar]
  5. MaffeiM.E. GertschJ. AppendinoG. Plant volatiles: Production, function and pharmacology.Nat. Prod. Rep.20112881359138010.1039/c1np00021g 21670801
    [Google Scholar]
  6. CroteauR. KutchanT.M. LewisN.G. Natural products (secondary metabolites).Biochem. Mol. Bio. Plant200012501318
    [Google Scholar]
  7. OldfieldE. LinF.Y. Terpene biosynthesis: Modularity rules.Angew. Chem. Int. Ed. Engl.20125151124113710.1002/anie.201103110
    [Google Scholar]
  8. PandeyA.K. KumarP. SinghP. TripathiN.N. BajpaiV.K. Essential oils: Sources of antimicrobials and food preservatives.Front. Microbiol.20177216110.3389/fmicb.2016.02161 28138324
    [Google Scholar]
  9. HyldgaardM. MygindT. MeyerR.L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.Front. Microbiol.201231210.3389/fmicb.2012.00012 22291693
    [Google Scholar]
  10. El-SherifA. El-SherifS. TaylorA.H. AyakannuT. Ovarian cancer: Lifestyle, diet and nutrition.Nutr. Cancer20217371092110710.1080/01635581.2020.1792948 32674720
    [Google Scholar]
  11. SilvaB.I.M. NascimentoE.A. SilvaC.J. SilvaT.G. AguiarJ.S. Anticancer activity of monoterpenes: A systematic review.Mol. Biol. Rep.20214875775578510.1007/s11033‑021‑06578‑5 34304392
    [Google Scholar]
  12. SheikhB.Y. SarkerM.M.R. KamarudinM.N.A. MohanG. Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines.Biomed. Pharmacother.20179683484610.1016/j.biopha.2017.10.038 29078261
    [Google Scholar]
  13. PotočnjakI. GobinI. DomitrovićR. Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK–ERK activation.Phytother. Res.20183261090109710.1002/ptr.6048 29417642
    [Google Scholar]
  14. JayakumarT. LiuC.H. WuG.Y. LeeT.Y. ManuboluM. HsiehC.Y. YangC.H. SheuJ.R. Hinokitiol inhibits migration of A549 lung cancer cells via suppression of MMPs and induction of antioxidant enzymes and apoptosis.Int. J. Mol. Sci.201819493910.3390/ijms19040939 29565268
    [Google Scholar]
  15. PromsawanN. KittakoopP. BoonphongS. NongkunsarnP. Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia pulcherrima.Planta Med.200369877677710.1055/s‑2003‑42782 14531033
    [Google Scholar]
  16. KimT. SongB. ChoK.S. LeeI.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases.Int. J. Mol. Sci.2020216218710.3390/ijms21062187 32235725
    [Google Scholar]
  17. DeviK.P. NishaS.A. SakthivelR. PandianS.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane.J. Ethnopharmacol.2010130110711510.1016/j.jep.2010.04.025 20435121
    [Google Scholar]
  18. LiuX. CaiJ. ChenH. ZhongQ. HouY. ChenW. ChenW. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa.Microb. Pathog.202014110398010.1016/j.micpath.2020.103980 31962183
    [Google Scholar]
  19. HassanS.T.S. MasarčíkováR. BerchováK. Bioactive natural products with anti-herpes simplex virus properties.J. Pharm. Pharmacol.201567101325133610.1111/jphp.12436 26060043
    [Google Scholar]
  20. ArmakaM. PapanikolaouE. SivropoulouA. ArsenakisM. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1.Antiviral Res.1999432799210.1016/S0166‑3542(99)00036‑4 10517310
    [Google Scholar]
  21. CreekD.J. CharmanW.N. ChiuF.C.K. PrankerdR.J. DongY. VennerstromJ.L. CharmanS.A. Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials.Antimicrob. Agents Chemother.20085241291129610.1128/AAC.01033‑07 18268087
    [Google Scholar]
  22. MoonJ.K. ShibamotoT. Antioxidant assays for plant and food components.J. Agric. Food Chem.20095751655166610.1021/jf803537k 19182948
    [Google Scholar]
  23. HarrisonC. Patenting natural products just got harder.Nat. Biotechnol.201432540340410.1038/nbt0514‑403a 24811496
    [Google Scholar]
  24. BurtonG. Evans-IllidgeE.A. Emerging R and D law: The Nagoya Protocol and its implications for researchers.ACS Chem. Biol.20149358859110.1021/cb500045t 24650394
    [Google Scholar]
  25. SharmaS.K. MohanA. Multidrug-resistant tuberculosis.Chest2006130126127210.1016/S0012‑3692(15)50981‑1 16840411
    [Google Scholar]
  26. DyeC. Global epidemiology of tuberculosis.Lancet2006367951493894010.1016/S0140‑6736(06)68384‑0 16546542
    [Google Scholar]
  27. ButlerD. New fronts in an old war.Nature2000406679767067210.1038/35021291 10963570
    [Google Scholar]
  28. World Health Organization Global Tuberculosis control report.Available from2023 https://www.who.int/teams/global-tuberculosis-programme/tb-reports/globaltuberculosis-report-2023
    [Google Scholar]
  29. GirlingD.J. The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide.Tubercle1977591133210.1016/0041‑3879(77)90022‑8 345572
    [Google Scholar]
  30. AzharG. DOTS for TB relapse in India: A systematic review.Lung India201229214715310.4103/0970‑2113.95320 22628930
    [Google Scholar]
  31. MacNeilA. GlaziouP. SismanidisC. MaloneyS. FloydK. Global epidemiology of tuberculosis and progress toward achieving global targets - 2017.MMWR Morb. Mortal. Wkly. Rep.2019681126326610.15585/mmwr.mm6811a3 30897077
    [Google Scholar]
  32. CanettiD. RiccardiN. MartiniM. VillaS. Di BiagioA. CodecasaL. CastagnaA. BarberisI. GazzanigaV. BesozziG. HIV and tuberculosis: The paradox of dual illnesses and the challenges of their fighting in the history.Tuberculosis (Edinb.)202012210192110.1016/j.tube.2020.101921 32501257
    [Google Scholar]
  33. IgarashiM. TakahashiY. Developmental status of new antituberculous drugs.Jpn. J. Clin. Med.201169814821488 21838051
    [Google Scholar]
  34. DevS. Impact of natural products in modern drug development.Indian J. Exp. Biol.2010483191198 21046971
    [Google Scholar]
  35. GautamR. SaklaniA. JachakS.M. Indian medicinal plants as a source of antimycobacterial agents.J. Ethnopharmacol.2007110220023410.1016/j.jep.2006.12.031 17276637
    [Google Scholar]
  36. MaridassM. John de BrittoA. Origins of plant derived medicines.Ethnobotanical Leaflets200812373387
    [Google Scholar]
  37. WinslowL.C. KrollD.J. Herbs as medicines.Arch. Intern. Med.1998158202192219910.1001/archinte.158.20.2192 9818799
    [Google Scholar]
  38. PatwardhanB. VaidyaA.D.B. ChorghadeM. Ayurveda and natural products drug discovery.Curr. Sci.2004866789799
    [Google Scholar]
  39. GraulA.I. RevelL. BarrionuevoM. CrucesE. RosaE. VergesC. LuponeB. DiazN. CastanerR. The year’s new drugs & biologics - 2008.Drug News Perspect.200922172910.1358/dnp.2009.22.1.1303754 19209296
    [Google Scholar]
  40. PanS.Y. GaoS.H. ZhouS.F. TangM.K. YuZ.L. KoK.M. New perspectives on complementary and alternative medicine: An overview and alternative therapy.Altern. Ther. Health Med.20121842036 22875591
    [Google Scholar]
  41. HeinrichM. GibbonsS. Ethnopharmacology in drug discovery: an analysis of its role and potential contribution.J. Pharm. Pharmacol.201053442543210.1211/0022357011775712 11341358
    [Google Scholar]
  42. BalunasM.J. KinghornA.D. Drug discovery from medicinal plants.Life Sci.200578543144110.1016/j.lfs.2005.09.012 16198377
    [Google Scholar]
  43. BrookK. BennettJ. DesaiS.P. The chemical history of morphine: An 8000-year journey, from resin to de-novo synthesis.J. Anesth. Hist.201732505510.1016/j.janh.2017.02.001 28641826
    [Google Scholar]
  44. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  45. KongJ-M. GohN-K. ChiaL-S. ChiaT-F. Recent advances in traditional plant drugs and orchids.Acta Pharmacol. Sin.2003241721 12511224
    [Google Scholar]
  46. KatiyarC. KanjilalS. GuptaA. KatiyarS. Drug discovery from plant sources: An integrated approach.Ayu2012331101910.4103/0974‑8520.100295 23049178
    [Google Scholar]
  47. RatesS.M.K. Plants as source of drugs.Toxicon200139560361310.1016/S0041‑0101(00)00154‑9 11072038
    [Google Scholar]
  48. ShakyaA.K. Medicinal plants: Future source of new drugs.Int. J. Herb. Med.201645964
    [Google Scholar]
  49. SalimA.A. ChinY-W. KinghornA.D. Drug discovery from plants.Bioactive Molecules and Medicinal Plants.Berlin/Heidelberg, GermanySpringer200812410.1007/978‑3‑540‑74603‑4_1
    [Google Scholar]
  50. ChinY.W. BalunasM.J. ChaiH.B. KinghornA.D. Drug discovery from natural sources.AAPS J.200682E239E25310.1007/BF02854894 16796374
    [Google Scholar]
  51. MohrC. Plant made pharmaceuticals (PMPs) as medicinal products for human use-a review of current regulatory issues and challenges to achieve a marketing authorisation in the EU.In: Master Drug Regulatory Affairs.Deutsche Gesellschaft für Regulatory Affairs2015154
    [Google Scholar]
  52. National Advisory Cancer Council Report, “Progress Against Cancer.Washington, D. C.U. S. Department of Health, Education, and Welfare1969
    [Google Scholar]
  53. GuzmanJ.D. GuptaA. BucarF. GibbonsS. BhaktaS. Antimycobacterials from natural sources: Ancient times, antibiotic era and novel scaffolds.Front. Biosci.20121711861188110.2741/4024 22201841
    [Google Scholar]
  54. DashtiY. GrkovicT. QuinnR.J. Predicting natural product value, an exploration of anti-TB drug space.Nat. Prod. Rep.201431899099810.1039/C4NP00021H 24881816
    [Google Scholar]
  55. SanthoshRS SuriyanarayananB Plants: A source for new antimycobacterial drugs.Planta Med,2014800921
    [Google Scholar]
  56. ChinsembuK.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents.Acta Trop.2016153465610.1016/j.actatropica.2015.10.004 26464047
    [Google Scholar]
  57. SieniawskaE. Targeting mycobacterial enzymes with natural products.Chem Biol,2015a221288130010.1016/j.chembiol.2015.08.012
    [Google Scholar]
  58. HannanA. Ikram UllahM. UsmanM. HussainS. AbsarM. JavedK. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant mycobacterium tuberculosis.Pak. J. Pharm. Sci.20112418185 21190924
    [Google Scholar]
  59. KiritikarK.R. BasuB.D. Indian Medicinal Plants.International Book Distributors: Dehradun1999814201423
    [Google Scholar]
  60. GuptaR. ThakurB. SinghP. SinghH.B. SharmaV.D. KatochV.M. ChauhanS.V. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates.Indian J. Med. Res.2010131809813 20571171
    [Google Scholar]
  61. (a KhareC.P. Indian Medicinal Plants, 1st Edn.; Springer verlang: Berlin/Heidlburg2007
    [Google Scholar]
  62. (b NadkarniK.M. NadkarniA.K. Indian Materia Medica.3rd EdMumbaiPopular Prakashan2005
    [Google Scholar]
  63. JeongI. ParkJ.S. ChoY.J. YoonH.I. SongJ. LeeC.T. LeeJ.H. Drug-induced hepatotoxicity of anti-tuberculosis drugs and their serum levels.J. Korean Med. Sci.201530216717210.3346/jkms.2015.30.2.167 25653488
    [Google Scholar]
  64. YeeD. ValiquetteC. PelletierM. ParisienI. RocherI. MenziesD. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis.Am. J. Respir. Crit. Care Med.2003167111472147710.1164/rccm.200206‑626OC 12569078
    [Google Scholar]
  65. TandonV.R. KhajuriaV. KapoorB. KourD. GuptaS. Hepatoprotective activity of Vitex negundo leaf extract against anti-tubercular drugs induced hepatotoxicity.Fitoterapia2008797-853353810.1016/j.fitote.2008.05.005 18621114
    [Google Scholar]
  66. UbaidR.S. AnantraoK.M. JajuJ.B. MateenuddinM. Effect of Ocimum sanctum (OS) leaf extract on hepatotoxicity induced by antitubercular drugs in rats.Indian J. Physiol. Pharmacol.2003474465470 15266961
    [Google Scholar]
  67. RatnakarP. MurthyP.S. Preliminary studies in the anti-tubercular activity and the mechanism of action of water extract of garlic and its two partially purified proteins.Indian J. Clin. Biochem.199611374110.1007/BF02868409
    [Google Scholar]
  68. GrangeJ.M. SnellN.J.C. Activity of bromhexine and ambroxol, semi-synthetic derivatives of vasicine from the Indian shrub Adhatoda vasica, against Mycobacterium tuberculosis in vitro.J. Ethnopharmacol.1996501495310.1016/0378‑8741(95)01331‑8 8778507
    [Google Scholar]
  69. JainRC Anti-tubercular activity of garlic oil Indian drugs1993307375
    [Google Scholar]
  70. LeiteC.Q.F. BerettaA.L.R.Z. AnnoI.S. TellesM.A.S. Standartization of broth microdilution method for Mycobacterium tuberculosis.Mem. Inst. Oswaldo Cruz200095112712910.1590/S0074‑02762000000100021 10656718
    [Google Scholar]
  71. WallaceR.J.Jr NashD.R. SteeleL.C. SteingrubeV. Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth.J. Clin. Microbiol.198624697698110.1128/jcm.24.6.976‑981.1986 3097069
    [Google Scholar]
  72. GuptaV.K. ShuklaC. BishtG.R.S. SaikiaD. KumarS. ThakurR.L. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay.Lett. Appl. Microbiol.2011521334010.1111/j.1472‑765X.2010.02963.x 21114505
    [Google Scholar]
  73. AktharM.S. DegagaB. AzamT. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issue.Biol. Sci. Pharma. Res.201423501588
    [Google Scholar]
  74. MahizanN.A. YangS.K. MooC.L. SongA.A.L. ChongC.M. ChongC.W. AbushelaibiA. LimS.H.E. LaiK.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens.Molecules20192414263110.3390/molecules24142631 31330955
    [Google Scholar]
  75. Gutiérrez-del-RíoI. FernándezJ. LombóF. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols.Int. J. Antimicrob. Agents201852330931510.1016/j.ijantimicag.2018.04.024 29777759
    [Google Scholar]
  76. SinghE. KhanR.J. JhaR.K. AmeraG.M. JainM. SinghR.P. MuthukumaranJ. SinghA.K. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods.J. Genet. Eng. Biotechnol.20201816910.1186/s43141‑020‑00085‑z 33141358
    [Google Scholar]
  77. ShokerR.M.H. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes.Int. J. Res. Appl. Sci. Biotech.20207535435810.31033/ijrasb.7.5.47
    [Google Scholar]
  78. KuttanG. PratheeshkumarP. ManuK.A. KuttanR. Inhibition of tumor progression by naturally occurring terpenoids.Pharm. Biol.20114910995100710.3109/13880209.2011.559476 21936626
    [Google Scholar]
  79. SharmaS.H. ThulasingamS. NagarajanS. Terpenoids as anti-colon cancer agents – A comprehensive review on its mechanistic perspectives.Eur. J. Pharmacol.201779516917810.1016/j.ejphar.2016.12.008 27940056
    [Google Scholar]
  80. RezankaT. SiristovaL. SiglerK. Sterols and triterpenoids with antiviral activity.Antiinfect. Agents Med. Chem.20098319321010.2174/187152109788680207
    [Google Scholar]
  81. FlechasM.C. OcazionezR.E. StashenkoE.E. Evaluation of in vitro antiviral activity of essential oil compounds against dengue virus.Pharmacogn. J.2017101555910.5530/pj.2018.1.11
    [Google Scholar]
  82. PanigrahyS.K. BhattR. KumarA. Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics.Biologia (Bratisl.)202176124125410.2478/s11756‑020‑00575‑y
    [Google Scholar]
  83. KaurK.K. AllahbadiaG. SinghM. Monoterpenes-a class of terpenoid group of natural products as a source of natural antidiabetic agents in the future-A review.CPQ Nutrition201934121
    [Google Scholar]
  84. PrakashV. Terpenoids as source of anti-inflammatory compounds.Asian J. Pharm. Clin. Res.2017103687610.22159/ajpcr.2017.v10i3.16435
    [Google Scholar]
  85. VegaR.J. XolalpaN.C. CastroA.J. Pérez GonzálezC. Pérez RamosJ. PérezG.S. Terpenes from natural products with potential anti-inflammatory activity.Terpenes Terpenoids.201855985
    [Google Scholar]
  86. SaitoA.Y. Marin RodriguezA.A. Menchaca VegaD.S. SussmannR.A.C. KimuraE.A. KatzinA.M. Antimalarial activity of the terpene nerolidol.Int. J. Antimicrob. Agents201648664164610.1016/j.ijantimicag.2016.08.017 27742206
    [Google Scholar]
  87. SilvaG.N.S. RezendeL.C.D. EmeryF.S. GosmannG. GnoattoS.C.B. Natural and semi synthetic antimalarial compounds: Emphasis on the terpene class.Mini Rev. Med. Chem.2015151080983610.2174/1389557515666150101101519 25553426
    [Google Scholar]
  88. MahomoodallyF. RamjuttunP. Terpenoids Against Cardiovascular Diseases. Terpenoids Against Human Diseases.London, New YorkCRC Press201920923110.1201/9781351026703‑9
    [Google Scholar]
  89. SilvaE.A.P. CarvalhoJ.S. GuimarãesA.G. BarretoR.S.S. SantosM.R.V. BarretoA.S. Quintans-JúniorL.J. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: A patent review (2008–2018).Expert Opin. Ther. Pat.2019291435310.1080/13543776.2019.1558211 30583706
    [Google Scholar]
  90. KataevV.E. KhaybullinR.N. GarifullinB.F. SharipovaR.R. New targets for growth inhibition of Mycobacterium tuberculosis: Why do natural terpenoids exhibit antitubercular activity?Russ. J. Bioorganic Chem.201844443845210.1134/S1068162018040106
    [Google Scholar]
  91. TakJ.H. IsmanM.B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni.Sci. Rep.2017714243210.1038/srep42432 28127051
    [Google Scholar]
  92. SarmaR. AdhikariK. MahantaS. KhanikorB. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae).Sci. Rep.201991947110.1038/s41598‑019‑45908‑3 31263222
    [Google Scholar]
  93. TripathiAK UpadhyayS BhuiyanM BhattacharyaPR A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacog. phytother.,200915052063
    [Google Scholar]
  94. SansineneaE. OrtizA. Antitubercular natural terpenoids: Recent developments and syntheses.Curr. Org. Synth.201411454559110.2174/1570179411666140321180629
    [Google Scholar]
  95. CantrellC. FranzblauS. FischerN. Antimycobacterial plant terpenoids.Planta Med.200167868569410.1055/s‑2001‑18365 11731906
    [Google Scholar]
  96. CantrellC.L. Antimycobacterial natural products from higher plants. Department of Chemistry.Baton Rouge, LALouisiana State University1998173
    [Google Scholar]
  97. RajabM. CantrellC. FranzblauS. FischerN. Antimycobacterial activity of (E)-phytol and derivatives: A preliminary structure-activity study.Planta Med.19986412410.1055/s‑2006‑957354 9491760
    [Google Scholar]
  98. ShkurupiyV.A. MostovayaG.V. KazarinovaN.V. OgirenkoA.P. NikonovS.D. Tkachev. A.V. and T kachenko, K.G. Efficiency of the use of peppermint (Mentha piperita L) essential oil inhalationin the combined multi-drug therapy for pulmonary tuberculosis. Treatment of Pulmonary Tuberculosis.Probl. Tuberk.200243639
    [Google Scholar]
  99. ShkurupiyV.A. OdintsovaO.A. KazarinovaN.V. TkachenkoK.G. Use of essential oil ofpeppermint (Mentha piperita) in the complex treatment of patients with infiltrative pulmonary tuberculosis.Probl. Tuberk.200694345
    [Google Scholar]
  100. Ramos AlvarengaR.F. WanB. InuiT. FranzblauS.G. PauliG.F. JakiB.U. Airborne antituberculosis activity of Eucalyptus citriodora essential oil.J. Nat. Prod.201477360361010.1021/np400872m 24641242
    [Google Scholar]
  101. FischerN.H. LuT. CantrellC.L. Castañeda-AcostaJ. QuijanoL. FranzblauS.G. Antimycobacterial evaluation of germacranolides in honour of professor G.H. Neil Towers 75th birthday.Phytochemistry199849255956410.1016/S0031‑9422(98)00253‑2 9747541
    [Google Scholar]
  102. LuT. FischerN.H. Spectral data of chemical modification products of costunolide.Spectrosc. Lett.199629343744810.1080/00387019608006662
    [Google Scholar]
  103. CantrellC.L. NuñezI.S. Castañeda-AcostaJ. ForoozeshM. FronczekF.R. FischerN.H. FranzblauS.G. Antimycobacterial activities of dehydrocostus lactone and its oxidation products.J. Nat. Prod.199861101181118610.1021/np970333i 9784148
    [Google Scholar]
  104. YangF.Q. LiS.P. ChenY. LaoS.C. WangY.T. DongT.T.X. TsimK.W.K. Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography–mass spectrometry.J. Pharm. Biomed. Anal.2005393-455255810.1016/j.jpba.2005.05.001 15946818
    [Google Scholar]
  105. Bueno-SánchezJ.G. Martínez-MoralesJ.R. StashenkoE.E. RibónW. Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia.Biomédica20092915160 19753839
    [Google Scholar]
  106. Borg-KarlsonA-K. NorinT. TalvitieA. Configurations and conformations of torreyol (δ-cadinol), α-cadinol, T-muurolol and T-cadinol.Tetrahedron198137242543010.1016/S0040‑4020(01)92031‑9
    [Google Scholar]
  107. BuenoJ. EscobarP. MartínezJ.R. LealS.M. StashenkoE.E. Composition of three essential oils, and their mammalian cell toxicity and antimycobacterial activity against drug resistant-tuberculosis and nontuberculous mycobacteria strains.Nat. Prod. Commun.,20116111934578X110060110.1177/1934578X1100601143 22224302
    [Google Scholar]
  108. SharmaA. BajpaiV.K. BaekK.H. Determination of antibacterial mode of action of Allium sativum essential oil against food borne pathogens using membrane permeability and surface characteristic parameters.J. Food Saf.201333219720810.1111/jfs.12040
    [Google Scholar]
  109. UlubelenA. TopcuG. JohanssonC.B. Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity.J. Nat. Prod.199760121275128010.1021/np9700681 9428161
    [Google Scholar]
  110. SinghS. KumarJ.K. SaikiaD. ShankerK. ThakurJ.P. NegiA.S. BanerjeeS. A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents.Eur. J. Med. Chem.20104594379438210.1016/j.ejmech.2010.06.006 20584563
    [Google Scholar]
  111. CantrellC.L. RajabM.S. FranzblauS.G. FronczekF.R. FischerN.H. Antimycobacterial Ergosterol-5,8-endoperoxide from Ajuga remota.Planta Med.199965873273410.1055/s‑1999‑14053 10630115
    [Google Scholar]
  112. NetscherT. Synthesis of Vitamin E.Vitam. Horm.20077615520210.1016/S0083‑6729(07)76007‑7 17628175
    [Google Scholar]
  113. DainesA. PayneR. HumphriesM. AbellA. The synthesis of naturally occurring vitamin K and vitamin K analogues.Curr. Org. Chem.20037161625163410.2174/1385272033486279
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072290046240801140028
Loading
/content/journals/cbc/10.2174/0115734072290046240801140028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test