Current Analytical Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 83 results
-
-
Potentiometric Ion-selective Electrode for the Determination of Antazoline in Different Formulations and Biological Fluids Using Biomimetic Receptors
Authors: Ola G. Hussein, Yasmin Rostom, Amr M. Mahmoud, Mohamed Abdelkawy, Mamdouh R. Rezk and Dina A. AhmedAvailable online: 16 January 2025More LessBackgroundTraditional analysis techniques usually involve separation and pre-treatment steps prior to analysis, resulting in time and solvent consumption. In contrast, a potentiometric ion selective electrode is a simple, environmentally friendly, and cost-effective technique that is used as an alternative analytical technique, utilizing the efficacy of potentiometric sensors used in stability research and quality control investigations.
MethodsAn innovative Antazoline selective membrane sensor was constructed and evaluated to detect Antazoline in its pure form, eye drop formulations, degradation products, and biological fluid. Sensor fabrication was achieved using potassium tetrakis borate and polyvinyl chloride polymeric matrix plasticized with 2-nitrophenyl octyl ether and using calix[8]arene (CX8) as an ionophore. A comparative potentiometric study was implemented using two sensors, one using an ionophore and the other lacking the ionophore.
ResultsLinear responses of Antazoline were obtained utilizing sensors 1 and 2 in concentration ranges of 1.0×10-2 to 1.0×10-7 mole/L and 1.0×10-2 to 1.0×10-6 mole/L, correspondingly. Nernstian slopes of 58.486 and 51.2 mV/decade over pH 8.0 were attainted using 1 and 2 sensors, respectively.
ConclusionThe proposed method was applied to determine antazoline without any need for any pretreatment or separation steps in both formulated eye drops Trillerg® sterile ophthalmic solution and Otrivine- Antistin® Eye Drops as well as in rabbit aqueous humor and the presence of its degradation products. Estimation of the method's greenness was confirmed using several assessment tools.
-
-
-
Cd2+ Mediated AuNCs for Simultaneous Detection of L-cysteine and Homocysteine
Authors: Huiru Zheng, Yi Xiao, Shengda Qi and Honglin ZhaiAvailable online: 15 January 2025More LessBackgroundL-cysteine (L-Cys) and homocysteine (Hcy) are the most representative of biothiol, which exist widely in organisms. L-Cys is one of the essential amino acids, which can be absorbed from protein-rich food and plays a considerable role in various physiological processes. Hcy is a vital intermediate in normal mammalian metabolism of methionine but does not occur in the diet. Therefore, it is significant to exploit a rapid and sensitive strategy to measure L-Cys and Hcy.
MethodsHerein, we designed an “on-on” fluorescent platform for detecting L-Cys and Hcy with gold nanoclusters (AuNCs) as probes. During the sensing process, cadmium ions (Cd2+) acted as mediating substances to connected AuNCs and L-Cys (or Hcy), and triggered aggregation-induced emission (AIE) effect.
ResultsThe linear ranges achieved with fluorimetry of L-Cys and Hcy were 0.1-10.0 μM and 0.1-20.0 μM, respectively. Moreover, this fluorescent probe was successfully used to determine the L-Cys concentration in actual samples, and showed excellent recovery.
ConclusionFurthermore, the mechanism for sensing L-Cys and Hcy has been exhaustively investigated.
-
-
-
Optimizing Pregnancy-related Nausea: Central Composite Design for Fast Relief Buccal Films
Authors: Ankita Wal, Dhruv Dev, M M Rekha, Rohit Kumawat, Manmeet Singh, M Ravi Kumar and Pranay WalAvailable online: 15 January 2025More LessBackgroundNausea and vomiting are common responses to various factors like gastrointestinal disorders, motion sickness, pregnancy, medications, infections, and severe pain. Treatment includes antiemetic medications, hydration, dietary adjustments, rest, and, in severe cases, medical intervention to address underlying causes.
ObjectiveThe present research aims at formulating buccal Promethazine with polymers like HPMCE15 and sodium alginate hence relief from the condition of nausea and vomiting in pregnancy.
MethodsA variety of PMT buccal films (PBF), comprising varying HPMC E15 and sodium alginate, incorporating PMT (25 mg) in keeping with the method recommended via Design Expert Software, have been fabricated using the solvent casting approach. The design expert software 11.0 trial version was used for statistical analysis of the responses.
ResultsThe results showed PMT's compatibility with excipients, preserving the drug's functional groups. The films were neutral, and flexible, with uniform thickness and good swelling, especially in sodium alginate-rich films. They had consistent drug content, and mucoadhesion time and strength increased with HPMC E15 concentration. In vitro tests revealed a 40% burst release in 10 minutes, followed by varied release rates based on polymer composition.
ConclusionThe optimized buccal films showed greater flexibility and a promising balance between swelling, which is necessary for drug release, and mucoadhesion, which prolongs mucosal contact. The buccal films' optimized features suggest that controlled and prolonged release could improve Promethazine absorption and therapeutic efficacy. The ease of administration and longer mucosal retention period may improve patient compliance and experience.
-
-
-
Impact of the Extraction Method and Solvent on the Phenolic Compound Content and Antioxidant Potential of the Aerial Part of Ephedra altissima: In vitro and In silico Studies
Available online: 13 January 2025More LessBackgroundDespite the widespread use of Ephedra altissima plant in traditional Algerian medicine, the biological potential of this species has still not been well explored.
ObjectiveThis study, for the first time, focused on determining the effect of extraction methods and solvents on the phenolic content and antioxidant ability of the aerial part of Ephedra altissima.
MethodsExtraction was carried out by maceration and Soxhlet using the solvents H2O, Methanol/H2O and Petroleum ether. The chemical profile of E. altissima was determined by a qualitative HPLC/UV–Visible, and the antioxidant potential was evaluated by in vitro and in-silico studies.
ResultsThe aqueous extract obtained by maceration exhibited the greatest total phenol content, while the petroleum ether prepared by Soxhlet extraction demonstrated the highest total flavonoid and condensed tannin contents. The HPLC profile showed the presence of a variety of phenolic compounds. The in-vitro assay results indicated good antioxidant potential. Gallic acid and sinapic acid were highlighted as the most potent antioxidants in the Soxhlet hydro-methanolic and petroleum ether extracts, respectively, according to the machine learning model. Molecular docking predicted the possible antioxidant potential of E. altissima phytocompounds by the interaction with human peroxiredoxin 5, and epicatechin was the most effective ligand. Molecular dynamics simulations confirmed the stability of the epicatechin-Prdx5 complex. Multivariate analysis was used to categorize the Ephedra altissima extracts into three groups according to their phenolic compound content and in vitro antioxidant ability.
ConclusionOverall, the results of the present study revealed that the choice of solvent and extraction technique directly influence the biomolecule content and bioactivity of Ephedra altissima aerial part extracts.
-
-
-
Poly-(2-aminothiophenol) Functionalized Petroleum Coke for Fast Simultaneous Sequestration of Cd(II) and Pb(II) Ions from Industrial Effluents
Authors: Amr A. Yakout, Sultan G. Almalki and Wael H. AlshitariAvailable online: 13 January 2025More LessBackgroundNowadays, the challenge between clean water production and promoting an eco-friendly sorbent for the simultaneous fast and efficient removal of heavy metal ions is a hot topic and has attracted much attention.
ObjectiveThe objective of this study was to fabricate a novel material (PATP@PET) by incorporating poly-(2-amino thiophenol; PATP) into the matrix of Saudi Arabian petroleum coke (PET) for simultaneous fast and efficient removal of heavy metal ions.
MethodThe FTIR, EDX, SEM, and XRD techniques assessed the chemical structure and surface morphology of the thio-functionalized petcoke. The effects of medium pH, mass dosage of sorbent, metal ion concentration, and coexisting ions were investigated and optimized using batch sorption.
ResultThe excellent sorption capacity of PATP@PET sorbent towards the divalent lead and cadmium ions (98.44% and 312.5 mg.g-1 for Pb(II) and 90.15% and 217.4 mg.g-1 for Cd(II)) was realized by strong complex formation with the sulfur atoms of green petcoke and the thiol groups of poly-2-aminothiophenol moieties. The adsorption equilibrium data was best fitted to the pseudo-second-order kinetic model and Langmuir adsorption isotherm. The reusability performance was tested for 10 cycles, and the simultaneous removal of Pb(II) and Cd(II) ions from industrial effluents was accomplished in 30 minutes with 100% removal efficiency at pH 6-7.
ConclusionPTAP-PET also demonstrated amazing performance for Cd(II) and Pb(II) removal in industrial wastewater samples. Subsequently, PTAP-PET contributes to developing fast, efficient, low-cost water remediation solutions for heavy metal ions that can potentially be translated into industrial-scale applications.
-
-
-
Assessment of the Physicochemical, Microbial Quality, and Consumer’s Perceptions Regarding Packaged Milk Available in the Local Markets of Karachi, Pakistan
Authors: Rafat Amin, Haadia Tauseef, Arooba Aziz, Sadaf Khan, Tehseen Fatima and Hira Fatima WaseemAvailable online: 10 January 2025More LessBackgroundMilk, an essential part of diet is comprised of all indispensable nutrients. However, it proves to be beneficial only if it is available in its pure form.
ObjectiveThe current study aimed to evaluate packaged milk samples collected from local markets of Karachi and to assess level of consumer awareness about health risks associated with substandard milk consumption.
MethodsPackage milk samples were assessed collectively for physical parameters, and microbial load. Seventeen colour-based chemical tests were also conducted to detect different dyes, preservatives, and other added chemicals as adulterants in milk. A household-based community survey was conducted to evaluate consumer’s preferences regarding packaged milk consumption.
Results97% of tested milk samples were observed to have added solids and water in them. Chemical adulterants in tetra packaged milk were detected in order of Glucose > cane sugar, Vegetable fat > Formalin, >Artificial colour > Neutralizer > Detergent >Urea, Annatto dye > starch. For the household-based survey, a total of 266 respondents were interviewed. Although 61.7% of respondents preferred pasteurized milk, potential customer satisfaction with the quality of pasteurized milk was 74.4%. Multivariate analysis showed that customer satisfaction regarding pasteurized milk was significantly associated with the preference of customer [Odds Ratio (OR)=4.18, p=0.004], buying factors like price, offers, and discounts (OR=6.92, p=0.014), quality and availability (OR=4.81, p=0.003), and experienced negative health effects (OR=0.26, p=0.002).
ConclusionThe study concluded that more than 70% of the packaged milk samples were adulterated with detergents, artificial flavors and glucose which signify the compromised quality of the packaged milk and their products. Strict regular quality checks should be established and closely monitored by regulatory authorities and the government.
-
-
-
Colorimetric Determination of Ascorbic Acid Using Peroxidase Activity of Allium Sativum (Garlic) Extract
Authors: Maryam Saadat, Jamal Hallajzadeh, Elhameh Nikkhah and Sadegh SeidiAvailable online: 10 January 2025More LessBackgroundDetection and determination of ascorbic acid (AA) or vitamin C as a potent antioxidant substrate in commercial samples have an emerging significance. In relation to the colorimetry of ascorbic acid, the use of organometallic networks as enzyme peroxidase mimics has been reported many times, which is not cost-effective for commercialization. Therefore, this research, for the first time, examined the peroxidase behavior using garlic extract without additional extraction and purification steps. Peroxidase behavior was examined to measure ascorbic acid.
MethodsIn this research work, firstly, allium sativum (AS) extract was prepared simply by crushing, stirring, and sonicating garlic bulbs in water. It exhibited peroxidase activity, which enabled the oxidation of 3, 30, 5, and 50-tetramethylbenzidine (TMB) in the presence of H2O2 to generate blue-colored oxidized TMB (ox-TMB) with a sharp absorption peak at 6526 nm. In continuation, the ox-TMB could be reduced by the addition of AA to the TMB+H2O2 system, leading to a decrease in absorbance and the fading of the blue color. Determination performance was accomplished after optimization of several factors, such as pH, time, TMB, and AS concentration.
ResultsThe results showed that the decrease in absorbance (ΔA) after AA addition was in a good linear relationship with AA concentration in the range of 9.46-155.24 µM, with a low detection limit of 0.0223 µM. The feasibility of this approach was also assayed in commercial orange drinks and effervescent tablets of vitamin C with a 97.70%-110.17% recovery.
ConclusionFinally, a sensitive and simple colorimetric sensor for the detection of AA using AS extract as a biocatalyst was developed.
-
-
-
FRET-based Ratiometric Fluorescent Probes for Enzyme Detection: Current Insight
Authors: Janhavi Rathod and Atul SherjeAvailable online: 10 January 2025More LessOver the decade many types of fluorescent sensors have been developed for detecting diverse types of analyte. The sensors developed using the phenomenon of fluorescence provide high sensitivity, selectivity, for the analyte that they are being developed for. This has led to a huge increase in development of sensors for biomarkers that are particularly of importance for early detection or diagnosis of life threatening diseases. In addition to the advantages of Fluorimetry there is continuous research going on to create sensors that are easy to construct, reproducible, cost and time efficient, along with maintaining sensitivity enough for accurate determination of the analyte of interest. As the research advanced, the dyes used as simple sensors were replaced with other molecules as a substrate for biomarker or other analyte sensing. Additionally, early scientists used single emission sensors for detection of analyte. Further, the single emission sensors were evolved to dual emission and then further advancement led to innovation of ratiometric sensors. These ratiometric sensors provide good internal standard referencing system which gives them good sensitivity as compared to other luminescent sensors. Through this review we aim to provide useful information on the subject of FRET, ratiometric fluorescence analysis, the types of materials used for developing the sensors and examples of biosensors used for enzyme detection.
-
-
-
Modeling for Copper Recovery from E-Waste by Using Machine Learning Technique: An Approach for the Circular Economy
Authors: Sunil Kumar Srivastava and Rahul ShrivastavaAvailable online: 07 January 2025More LessBackgroundCopper, a precious metal in e-waste, presents a substantial economic opportunity. The study estimates that ~322000 tons of copper are discarded annually worldwide as e-waste. Given the significant financial value of copper, its recovery from e-waste is beneficial and crucial. This process also plays a pivotal role in waste management and recycling hazardous waste. The potential reduction in e-waste in landfills is a direct result of this strategic approach to waste management, offering a more sustainable and optimistic outlook for the future. This research paves the way for a future where e-waste is no longer a burden on our environment.
MethodologyThis study is structured around a robust two-step process. It begins with an experiment focused on copper recovery using hydrometallurgical methods. The modeling leverages the power of artificial intelligence (AI) and machine learning techniques to predict copper recovery from e-waste. This innovative approach not only promises but also has the potential to revolutionize the field of copper recovery, inspiring further innovation and progress.
ResultsThe model was developed using an Artificial Neural Network (ANN) and a Boosting Algorithm (BA). Based on four crucial variables (H2SO4, H2O2, Solid/Liquid ratio, and Reaction Time), this model provides a comprehensive understanding of Cu recovery. H2SO4 is a crucial component during the leaching process; H2O2 facilitates Cu oxidation, the Solid/Liquid ratio affects the efficiency, and Reaction Time determines the completion of the process. The ANN and BA-based models yield satisfactory results in Cu recovery, achieving over 94% yield under optimized conditions.
ConclusionThe model developed in this study can potentially revolutionize copper recovery. By automating the process, we can significantly reduce the stress of copper mining, which relieves the environment. We can also promote a circular economy, offering a promising future for sustainable copper recovery. This could be a game-changer in the field of waste management and recycling.
-
-
-
Preparation of Photoelectrodes of Pd/Ag/TiO2 NTs and Photoelectrocatalytic Degradation of Tylosin
Authors: Haina Bai, Guangqin Ren, Congze Liu, Xinyan Wang, Jian Zhang and Rui LiAvailable online: 07 January 2025More LessIntroductionIn this study, aiming to solve the problem of difficult recovery of powder catalysts in the treatment of antibiotic wastewater by photocatalytic technology, titanium dioxide nanotubes (TiO2 NTs) photoelectrodes were prepared on titanium sheet substrates by anodic oxidation method.
MethodsThe precious metals Pd and Ag were introduced to be co-deposited, which realized the effective transfer of photogenerated electrons between the semiconductor and the precious metals and remarkably improved the photoelectrocatalytic activity of the photoelectrodes.
ResultsThe experimental results showed that the prepared Pd/Ag/TiO2 NTs composite photoelectrode achieved a removal efficiency of 79.51% for tylosin (TYL) within 240 min, which was significantly better than that of the pure TiO2 NTs (1.42-fold) and Ag/TiO2 NTs (1.05-fold) photoelectrodes. Electrochemical analyses demonstrated that the loading of Ag and Pd on the surface of TiO2 NTs can effectively promote the transport and separation of photogenerated charge carriers, thus improving the photoelectrocatalytic performance. In addition, the degradation process of TYL and the dynamic changes of intermediates were deeply analyzed with the help of three-dimensional fluorescence spectroscopy (3D EEMs) and two-dimensional correlation spectroscopy (2DCOS) techniques.
ConclusionThis study provides not only an expanded application of solid catalysts in photoelectrocatalytic treatment of antibiotic wastewater but also new insights for further investigation of the co-deposition of precious metals to improve photoelectrodes.
-
-
-
Jellyfish Collagen as a Promising Source for Nutraceutical and Biomedical Applications
Authors: Saira James and Supriya TilviAvailable online: 07 January 2025More LessJellyfish blooms have become increasingly common worldwide, driven by climate change, eutrophication, and the jellyfish’s unique life cycle. The rich protein derived from these resources notably, jellyfish collagen (JFC) and its hydrolysates (JFCH) peptides stands out as promising, sustainable alternatives to traditional collagen sources like bovine and rat tail collagen. Notably, JFC carries a reduced risk of prion and viral contamination, making it a safer option for diverse applications. As a fundamental collagen form, JFC is compatible with various cell types, enhancing its utility across multiple domains. Furthermore, JFCH peptides act as potent bioactive ingredients, especially in the food industry, where their high antioxidant properties are valued in nutraceutical formulations. Immunological research also suggests that JFC can promote immunoglobulin production and stimulate cytokine synthesis, revealing its potential for immune system support. Due to its versatility, JFC can facilitate the growth of various human cell types, positioning it as an effective biomaterial for wound care, tissue engineering, cartilage regeneration, drug delivery, and cell culture applications. This review highlights recent advancements in JFC and JFCH applications across nutraceuticals, immunology, wound healing, tissue engineering, and regenerative medicine in —those not extensively covered in previous literature.
-
-
-
Next Generation Diagnostics: Exploring the Potential of Microfluidic Devices
Available online: 06 January 2025More LessIn recent years, microfluidics systems have emerged as powerful tools for biological analysis, integrating entire analytics protocols into a single chip platform. This article aims to review recent developments in microfluidics systems for diagnostics applications, focusing on genes, proteins, and cells. By categorizing fluids- manipulating mechanisms and biological detection approaches, the articles provide an in-depth discussion of microfluidics-based diagnostics systems, including materials and manufacturing techniques. The integration of microfluidics systems with diagnostics shows promise for the development of practical point- of-care devices. The identification and monitoring of Variants of Concern (VOCs) and Variants of Interest (VOIs) by WHO have significant implications for diagnostics, public health measures, and vaccine development. Continuous, sequencing and adaptation of diagnostic tests are essential for managing the impact of variants on diagnostics and public health measures while advancing vaccine research and development.
-
-
-
Brewing Industry By-products: An Innovative Alternative to Hyaluronic Acid Biosynthesis
Available online: 06 January 2025More LessAs beer malt bagasse, agro-industrial by-products have raised significant environmental and economic concerns due to their improper disposal and negative impact on process efficiency. Often regarded as waste, these by-products contribute to environmental degradation and resource inefficiency. However, when viewed as potential resources, they offer new opportunities. Beer malt bagasse shows excellent potential as a substrate for cultivating Streptococcus zooepidemicus, a bacterium that produces hyaluronic acid. Hyaluronic acid is a high-value biopolymer with wide applications in medicine, biomedicine, food, and cosmetics. Its distinctive properties—such as biocompatibility, viscoelasticity, and moisture retention—make it highly desirable across industries. As a result, the demand for hyaluronic acid has grown significantly in recent years, emphasizing the need for sustainable production methods that meet market demands while reducing environmental impact. Traditional production methods often depend on animal-derived sources or synthetic processes, both of which pose sustainability challenges. This review presents a sustainable alternative: utilizing brewing industry by-products as an eco-friendly and cost-effective source for hyaluronic acid production. This approach aims to create a more sustainable and economically viable production process by harnessing beer malt bagasse, a readily available and low-cost substrate.
-
-
-
Investigation of the Essential and Non-essential Element Contents of Some Aromatic Coffees and Effect of Sugar Addition
Authors: Deniz Uygunoz, Melek Merve Fercan, Azmi Seyhun Kipcak and Emek Moroydor DerunAvailable online: 06 January 2025More LessIntroductionIn this study, the contents of essential and non-essential elements in the sugary and sugar-free varieties of aromatic coffees produced in Turkey were decided, and the effect of sugar addition was examined.
MethodFor this purpose, essential (Mg, Se, B, Na, Ca, K, Co, Cr, Fe, Cu, Mn, Mo, P and Zn) and non-essential (As, Ba, Al, Cd, Ti, Ni, Sb and Pb) element contents of the aromatic coffees (sugary and sugar-free) (Classic, Gum Mastic, Gum Mastic Turkish Coffee, Hazelnut, Caramel and Turkish Coffee) supplied from a single brand were detected by using ICP-OES. The effects of the elements taken into the body by the consumption of coffee varieties on health and how much of an individual’s daily requirements are met were investigated. Thus, the place and importance of coffee consumption in nutrition have been determined. For coffee consumption of 3 cups, the intake amounts of selected elements were calculated. Furthermore, a risk assessment study was performed by utilizing the non-essential element concentrations of selected coffees.
ResultsExperimental results showed that K is the most ample essential element in all types of coffee, and it has been proven that K ingestion encounters the daily requirement of 1% to 2% for adults.
ConclusionAccording to the risk assessment results, the hazard index was calculated for 3 cups of each coffee type intake as less than 1, and these coffees may be classified in the low-risk group.
-
-
-
Determination of Flavonoid Content in Brazilian Propolis Extracts by UV-Vis Spectroscopy and PLS Regression
Available online: 03 January 2025More LessBackgroundThe determination of flavonoid content in propolis is very important because these substances are assigned various biological properties present in propolis and their content is regulated by Brazilian legislation. The spectrophotometric method, based on the formation of a yellow complex between Al(III) and carbonyl and hydroxyl groups of flavonoids, is the most used to determine flavonoid content but is time-consuming (only after one hour the absorbance of the solutions can be read) and reagents.
ObjectiveThis work proposes a simple method to determine flavonoid content using UV-Vis and Partial Least Squares (PLS) regression.
MethodsA robust PLS spectrophotometric method for the quantification of flavonoids in propolis, based on spectra of ethanol-diluted samples, was developed and a complete validation was done in this model, estimating several figures of merit.
ResultsThe model built proved to be very effective, showing good results for flavonoid content, with a range of 0.06 to 1.50%mass, providing root mean square error of prediction (RMSEP) of 0.05%mass.
ConclusionThis proposed model has the advantage of being less laborious and faster, involves a small amount of solvents, is an alternative to routine analysis, and can be used as a screening method.
-
-
-
Identification, Isolation, Structure Characterization, and Chromatographic Separation of a New Highly Analogous Impurity of the Ubrogepant
Authors: Kumarswamy Ummiti and Nagavardhana Reddy VangaAvailable online: 01 January 2025More LessBackgroundUbrogepant is a regulated peptide receptor antagonist associated with the calcitonin gene, granted approval in the United States for the specific treatment of migraine headaches.
ObjectiveAn impurity found in the alkali hydrolysis of drug dosage forms has a structure very similar to that of ubrogepant. This research aims to characterize this analogous impurity utilizing NMR and LC-MS spectroscopy tools. Moreover, it is critical to develop an extremely sensitive and superior resolution analytical procedure for identifying and determining the amount of analogous impurity in pharmaceutical products.
MethodThe ubrogepant impurity was identified using an optimized chromatographic method that relies on reversed-phase HPLC with UV detection. This technique utilized a charged surface hybrid (CSH) technology column operating in gradient elution mode. A mixture of A-channel (0.1% trifluoroacetic acid) and B-channel (acetonitrile and water, 80:20% v/v) constituted the eluent. The analogous impurity was isolated through fraction collection, purified using flash chromatography, and characterized using NMR (1D and 2D) and LC-MS.
ResultsThe analogous impurity was successfully separated from the ubrogepant peak with a resolution above 2.0. The concentration of the impurity was approximately 10% compared to the ubrogepant peak after alkaline stressing at room temperature for 30 minutes. NMR (1D 13C NMR and 1H, 2D HMBC, HSQC, NOESY, and COSY) and LC-MS analysis characterized the ubrogepant impurity, revealing it to be an epimer of ubrogepant. The developed approach was highly sensitive, allowing for the quantification of the ubrogepant impurity even at a concentration of 0.2 µg/mL.
ConclusionThe approach demonstrated a remarkable degree of precision, linearity, specificity, and accuracy. This new impurity deserves special attention because of its striking similarity to the active ingredient, ubrogepant.
-
-
-
Recent Advancements in Inductively Coupled Plasma Mass Spectrometry in Trace Element Analysis
Authors: Pallavi Barik, Ashish Mehta, Rahul Makhija, Moumita Saha and Vivek AsatiAvailable online: 01 January 2025More LessCoupled Plasma Mass Spectrometry (ICP-MS) has emerged as a powerful analytical technique for trace element analysis, finding widespread applications across diverse fields such as pharmaceuticals, food safety, and biological sciences. This technique is known for its exceptional sensitivity and capability to measure multiple elements simultaneously. Moreover, it provides critical insights into heavy metal and trace element content in diverse matrices, making it an indispensable tool in scientific research and regulatory compliance. Also, it plays a pivotal role in ensuring compliance with regulatory standards and safeguarding human health and the environment. Its sensitivity, versatility, and ability to provide accurate elemental analysis make it an invaluable tool for researchers, regulators, and industries alike. As technological advancements continue, addressing challenges and refining methodologies will further elevate the capabilities of ICP-MS in trace element analysis. The review discussed the various research performed using ICP-MS to detect heavy metals in raw materials, APIs, excipients, packaged food, seafood, blood samples, human hair, etc. Further, it mentioned the impact of higher concentrations of toxic metals on human health. This article provides a concise overview of ICP-MS, encompassing its principles, applications, and challenges, and highlighting its pivotal role in various fields.
-
-
-
Detection of Anti-drug Antibodies (ADAs) to an Antibody-drug Conjugate (ADC) PYX-201 in Human Plasma Using a Novel Electrochemiluminescence (ECL) Immunoassay
Available online: 01 January 2025More LessBackgroundPYX-201 is an Antibody-Drug Conjugate (ADC) composed of a fully human IgG1 antibody, a cleavable linker mcValCitPABC, and toxic auristatin payloads Aur0101, with a drug antibody ratio (DAR) of approximately 4. PYX-201 is a promising candidate for oncology treatment because it targets the extra domain B splice variant of fibronectin (EDB + FN), which is expressed at low levels in normal adult tissues while at moderate or high levels in various human solid tumors.
MethodsAn electrochemiluminescence (ECL) immunoassay was developed and validated for the detection (screening, confirmatory, and titration) of antibodies to an ADC PYX-201 in human plasma. Anti-PYX-201 antibodies were captured by biotinylated PYX-201 (Bio-PYX-201) and detected by ruthenylated PYX-201 (Ru-PYX-201) on a Meso Sector imager S 600 or 6000 reader.
ResultsThe screening cut-point factor (SCPF), confirmatory cut-point (CCP), and titration cut-point factor (TCPF) were found to be 1.11, 20.7%, and 1.23, respectively. Sensitivity was determined to be 2.25 ng/mL in the screening assay and 5.34 ng/mL in the confirmatory assay for anti-PYX-201 antibodies. Sensitivity was determined to be 7.70 ng/mL in the confirmatory assay for anti-PYX-201 monoclonal antibody (mAb) antibodies. The positive controls (PCs) were set at the following levels: low positive control (LPC) at 14.0 ng/mL, medium positive control (MPC) at 100 ng/mL, and high positive control (HPC) at 5,000 ng/mL. The drug tolerance was up to 200 µg/mL at the HPC level, up to 100 µg/mL at the MPC level, and 0 µg/mL at the LPC level. The intra-assay percent coefficient of variation (%CV) was ≤ 4.5% for PCs in the screening assay and ≤ 11.5% for PCs in the confirmatory assay. The inter-assay %CV was ≤ 13.6% for PCs in the screening assay and ≤ 19.2% for PCs in the confirmatory assay. No hook effect, hemolysis effect, or lipemia effect was found in this ADA method. Anti-PYX-201 antibodies were found stable in human plasma for at least 24 hours at room temperature or after six freeze/thaw cycles.
ConclusionAnti-PYX-201 ADA bioanalytical method validation was reported for the first time in any biological matrix. This ADA method has been successfully applied to human sample analysis to support a clinical study.
-
-
-
Bempedoic Acid's Chemistry, Pharmacological Characteristics and Bioanalytical Techniques: An Updated Review
Available online: 22 November 2024More LessBackgroundElevated blood cholesterol has been established as a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Adults with hyperlipidemia have a significantly increased risk of developing cardiovascular diseases (CVD). First-line treatments for hyperlipidemia include statins, which help raise HDL-C levels in cases of severe and familial hypercholesterolemia and decrease LDL-C and TG levels. Numerous adverse effects on muscles have been associated with statins, such as asymptomatic elevations in blood creatine kinase activity and potentially fatal rhabdomyolysis. Non-statin drugs are advised for people whose very high cardiovascular risk or heterozygous familial hypercholesterolemia make statin therapy insufficient. A novel lipid-lowering medication with a distinct mode of action is bempedoic acid.
Elevated blood cholesterol is a significant risk factor for atherosclerotic cardiovascular disease (ASCVD). Individuals with hyperlipidemia are at a higher risk for developing cardiovascular diseases. Statins are the primary treatment for hyperlipidemia, raising HDL-C levels and lowering LDL-C and TG levels. However, statins can adversely affect muscles, including muscle-related complications like increased blood creatine kinase activity and rhabdomyolysis. Therefore, non-statin drugs may be recommended for individuals. Bempedoic acid is a brand-new, first-in-class, oral small molecule that inhibits cholesterol manufacturing like statins, consequently reducing low-density lipoprotein cholesterol (LDL-C) through activating LDL receptors.
MethodsThis study offers helpful information on how to utilize bempedoic acid to decrease LDL-C, as well as recommendations for which individuals could benefit and safety monitoring tips during therapy. A novel family of drugs called bempedoic acid is identified as a prodrug that becomes bempedoyl-CoA in the liver via an enzyme called very longchain consisting of acyl-CoA synthetase 1. Bempedoic acid can control cholesterol metabolism. Low-density lipoprotein cholesterol levels appeared to be dramatically reduced by bempedoic acid, according to clinical investigations. The toleration of bempedoic acid was good.
ResultsA cardiovascular outcomes trial is now evaluating bempedoic acid to determine its impact on major cardiovascular events in patients with or at high risk for cardiovascular disease and statin intolerance.
ConclusionThis review describes the chemistry, mechanism of action, pharmacokinetics, analytical potential, and safety of bempedoic acid. Bempedoic acid is an effective and often well-tolerated drug used to further reduce LDL-C levels in patients taking the maximum dosage of tolerated statins or to control LDL-C levels in persons who can not take statins. The results of the clear Outcomes research, which is looking into whether bempedoic acid might reduce the frequency of serious cardiovascular events, are expected in 2025.
-
-
-
Box-bhenken Design Combined with 3D Surface Methodology for Optimization of an Eco-friendly HPLC Method to Determine Venetoclax in Human Plasma, and its Bioanalytical Method Validation According to ICH M10 Guideline
Authors: Saniye Özcan, Abeer Elriş, Mazlum Akif Altun, Serkan Levent and Nafiz Öncü CanAvailable online: 21 November 2024More LessAimsVenetoclax is a selective inhibitor of the prosurvival protein BCL-2 approved by the Food Drug Administration in 2016, restoring the apoptic ability of malignant cells. In this study, a fast, highly accurate and precise HPLC method was developed for the analysis of Venetoclax in human plasma.
MethodsThe optimization of the method was investigated according to Box-Bhenken Design combined with 3D surface methodology. The chromatographic separation was performed in gradient mode with an Ascentis Express C8 column (2.7 μm, 4.6 mm × 10 cm). Agomelatine was used as an internal standard to increase accuracy. The method was completely validated according to ICH guideline M10 bioanalytical method validation. Additionally, the greenness of the method was scaled with NEMI, Analytical Ecoscale, AGREE, and GAPI greenness metrics.
ResultsThe method was linear in the range of 1.67-12.50 µg/mL with a calculated R2 of 0.99; LOD and LOQ were 0.34 µg/mL and 1.02 µg/mL, respectively. The recovery was in the range of 102.6% to 99.08%, and with an RSD% of less than 1.00%. The analytical eco scale and AGREE score of the current method were 85 and 0.55, respectively.
ConclusionThe approach that was developed herein exhibits green, rapidity, high levels of accuracy and precision, cost-effectiveness, and ease of use in the context of clinical and pharmacokinetic investigations.
-