Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Coupled Plasma Mass Spectrometry (ICP-MS) has emerged as a powerful analytical technique for trace element analysis, finding widespread applications across diverse fields such as pharmaceuticals, food safety, and biological sciences. This technique is known for its exceptional sensitivity and capability to measure multiple elements simultaneously. Moreover, it provides critical insights into heavy metal and trace element content in diverse matrices, making it an indispensable tool in scientific research and regulatory compliance. Also, it plays a pivotal role in ensuring compliance with regulatory standards and safeguarding human health and the environment. Its sensitivity, versatility, and ability to provide accurate elemental analysis make it an invaluable tool for researchers, regulators, and industries alike. As technological advancements continue, addressing challenges and refining methodologies will further elevate the capabilities of ICP-MS in trace element analysis. The review discussed the various research performed using ICP-MS to detect heavy metals in raw materials, APIs, excipients, packaged food, seafood, blood samples, human hair, . Further, it mentioned the impact of higher concentrations of toxic metals on human health. This article provides a concise overview of ICP-MS, encompassing its principles, applications, and challenges, and highlighting its pivotal role in various fields.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333019241114050058
2025-01-01
2025-12-13
Loading full text...

Full text loading...

References

  1. YildizU. OzkulC. Heavy metals contamination and ecological risks in agricultural soils of Uşak, western Türkiye: A geostatistical and multivariate analysis.Environ. Geochem. Health20244625810.1007/s10653‑024‑01856‑0 38277072
    [Google Scholar]
  2. MishraS. BharagavaR.N. MoreN. YadavA. ZainithS. ManiS. ChowdharyP. Heavy metal contamination: An alarming threat to environment and human health.Environ. Biotechnol. Sustain. Fut.20192019103125
    [Google Scholar]
  3. HembromS. SinghB. GuptaS.K. NemaA.K. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective.Contemp. Environ. Issues Clim. Change.202020203363
    [Google Scholar]
  4. HussainS. RengelZ. QaswarM. AmirM. Zafar-ul-HyeM. Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods.Plant Hum. Heal.20192447490
    [Google Scholar]
  5. MortvedtJ.J. Heavy metal contaminants in inorganic and organic fertilizers.Fert. Res.1996431-3556110.1007/BF00747683
    [Google Scholar]
  6. LiD. YuR. ChenJ. LengX. ZhaoD. JiaH. AnS. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis.J. Clean. Prod.202233413020610.1016/j.jclepro.2021.130206
    [Google Scholar]
  7. MazarakiotiE.C. ZotosA. ThomatouA.A. KontogeorgosA. PatakasA. LadavosA. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin.Foods20221122370510.3390/foods11223705 36429296
    [Google Scholar]
  8. BalaramV. CopiaL. KumarU.S. MillerJ. ChidambaramS. Pollution of water resources and application of ICP-MS techniques for monitoring and management—A comprehensive review.Geosystems and Geoenvironment20232410021010.1016/j.geogeo.2023.100210
    [Google Scholar]
  9. LeventA. AlpŞ. EkinS. KaragözS. Trace heavy metal contents and mineral of Rosa canina l. Fruits from van region of Eastern Anatolia, Turkey.Rev. Anal. Chem.2010291132410.1515/REVAC.2010.29.1.13
    [Google Scholar]
  10. AydinF. ÇakmakR. LeventA. SoylakM. Silica Gel‐Immobilized 5‐aminoisophthalohydrazide: A novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples.Appl. Organomet. Chem.2020344e548110.1002/aoc.5481
    [Google Scholar]
  11. WuJ. LuJ. LiL. MinX. LuoY. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau.Chemosphere201820123424210.1016/j.chemosphere.2018.02.122 29524824
    [Google Scholar]
  12. JiangY. ChaoS. LiuJ. YangY. ChenY. ZhangA. CaoH. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China.Chemosphere20171681658166810.1016/j.chemosphere.2016.11.088 27932041
    [Google Scholar]
  13. Mercury and health2017Available from: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 8-10-2024)
  14. EkinS. OtoG. YardimY. levent, A.; Ozgokce, F.; Kusman, T. Protective effect of Hypericum perforatum L. on serum and hair trace elements in rats 7,12-dimethylbenz[a]anthracene-induced oxidative stress.Environ. Toxicol. Pharmacol.201233344044510.1016/j.etap.2012.01.010 22387603
    [Google Scholar]
  15. AliS. ChaudharyA. RizwanM. AnwarH.T. AdreesM. FaridM. IrshadM.K. HayatT. AnjumS.A. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.).Environ. Sci. Pollut. Res. Int.20152214106691067810.1007/s11356‑015‑4193‑4 25752628
    [Google Scholar]
  16. FeratiF. Kerolli-MustafaM. Kraja-YlliA. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.Environ. Monit. Assess.2015187633810.1007/s10661‑015‑4524‑4 25958086
    [Google Scholar]
  17. Mercury in Drinking-waterAvailable from: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/mercury-background-document.pdf?sfvrsn=9b117325_4 (accessed on 8-10-2024)
  18. Balali-MoodM. NaseriK. TahergorabiZ. KhazdairM.R. SadeghiM. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic.Front. Pharmacol.20211264397210.3389/fphar.2021.643972 33927623
    [Google Scholar]
  19. ZhuF. WangX. FanW. QuL. QiaoM. YaoS. Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China.Environ. Monit. Assess.201318553909391610.1007/s10661‑012‑2839‑y 22983610
    [Google Scholar]
  20. FribergL. VahterM. Assessment of exposure to lead and cadmium through biological monitoring: Results of a UNEP/WHO global study.Environ. Res.19833019512810.1016/0013‑9351(83)90171‑8 6832115
    [Google Scholar]
  21. EckelmanM.J. Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry.Resour. Conserv. Recycling201054425626610.1016/j.resconrec.2009.08.008
    [Google Scholar]
  22. KanagarajG. ElangoL. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling.Chemosphere201922094395310.1016/j.chemosphere.2018.12.105 33395816
    [Google Scholar]
  23. JinM. YuanH. LiuB. PengJ. XuL. YangD. Review of the distribution and detection methods of heavy metals in the environment.Anal. Methods202012485747576610.1039/D0AY01577F 33231592
    [Google Scholar]
  24. YıldızM.B. LeventA. Highly sensitive and selective electrochemical monitoring of nickel in crude oil samples using cathodically pretreated-boron doped diamond electrode.Diamond Related Materials202414514511105810.1016/j.diamond.2024.111058
    [Google Scholar]
  25. HoukR.S. Mass spectrometry of inductively coupled plasmas.Anal. Chem.198658197A105A10.1021/ac00292a003
    [Google Scholar]
  26. ŁobińskiR. SchaumlöffelD. SzpunarJ. Mass spectrometry in bioinorganic analytical chemistry.Mass Spectrom. Rev.200625225528910.1002/mas.20069 16273552
    [Google Scholar]
  27. MozhayevaD. EngelhardC. A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization.J. Anal. At. Spectrom.20203591740178310.1039/C9JA00206E
    [Google Scholar]
  28. BoleaE. JimenezM.S. Perez-AranteguiJ. VidalJ.C. BakirM. Ben-JeddouK. Gimenez-IngalaturreA.C. OjedaD. TrujilloC. LabordaF. Analytical applications of single particle inductively coupled plasma mass spectrometry: A comprehensive and critical review.Anal. Methods202113252742279510.1039/D1AY00761K 34159952
    [Google Scholar]
  29. SullivanK.V. KidderJ.A. JunqueiraT.P. VanhaeckeF. LeybourneM.I. Emerging applications of high-precision Cu isotopic analysis by MC-ICP-MS.Sci. Total Environ.2022838Pt 215608410.1016/j.scitotenv.2022.156084 35605848
    [Google Scholar]
  30. LemeA.B.P. BianchiS.R. CarneiroR.L. NogueiraA.R.A. Optimization of sample preparation in the determination of minerals and trace elements in honey by ICP-MS.Food Anal. Methods2014751009101510.1007/s12161‑013‑9706‑5
    [Google Scholar]
  31. KilicS. SoylakM. Determination of trace element contaminants in herbal teas using ICP-MS by different sample preparation method.J. Food Sci. Technol.202057392793310.1007/s13197‑019‑04125‑6 32123413
    [Google Scholar]
  32. Elemental impurities in drug products guidance for industry.Available from: https://www.fda.gov/media/98847/download (accessed on 8-10-2024)
  33. Impurities in new drug substances Q3A(R2).Available from: https://database.ich.org/sites/default/files/Q3A_R2__Guideline.pdf (accessed on 8-10-2024)
  34. Impurities in new drug products Q3B(R2).Available from: https://database.ich.org/sites/default/files/Q3B_R2__Guideline.pdf (accessed on 8-10-2024)
  35. ICH Harmonised Guideline. Impurities: Guidelines for Residual Solvents Q3C(R6);2016Available from: https://database.ich.org/sites/default/files/3CR6_Guideline_ErrorCorrection_2019_0410_0.pdf (accessed Oct 8, 2024).
  36. ICH Harmonised Guideline. Guideline for Elemental Impurities Q3D(R1);2019Available from: https://database.ich.org/sites/default/files/Q3DR1EWG_Document_Step4_Guideline_2019_0322.pdf (accessed Oct 8, 2024).
  37. PatilP.P. KastureV.S. PrakashK.V. Impurity profiling emerging trends in quality control of pharmaceuticals.Int. J. Pharm. Chem.201551110
    [Google Scholar]
  38. AleluiaA.C.M. NascimentoM.S. dos SantosA.M.P. dos SantosW.N.L. de Freitas Santos JúniorA. FerreiraS.L.C. Analytical approach of elemental impurities in pharmaceutical products: A worldwide review.Spectrochim. Acta B At. Spectrosc.202320510668910.1016/j.sab.2023.106689
    [Google Scholar]
  39. BarinJ.S. MelloP.A. MeskoM.F. DuarteF.A. FloresE.M.M. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: A review.Anal. Bioanal. Chem.2016408174547456610.1007/s00216‑016‑9471‑6 27020927
    [Google Scholar]
  40. ButlerD.A. BiagiM. TanX. QasmiehS. BulmanZ.P. WenzlerE. Multidrug resistant Acinetobacter baumannii: Resistance by any other name would still be hard to treat.Curr. Infect. Dis. Rep.201921124610.1007/s11908‑019‑0706‑5 31734740
    [Google Scholar]
  41. JeongS. HongJ.S. KimJ.O. KimK.H. LeeW. BaeI.K. LeeK. JeongS.H. Identification of Acinetobacter species using matrix-assisted laser desorption ionization-time of flight mass spectrometry.Ann. Lab. Med.201636432533410.3343/alm.2016.36.4.325 27139605
    [Google Scholar]
  42. KatakamL.N.R. Aboul-EneinH.Y. Elemental impurities determination by ICP-AES/ICP-MS: A review of theory, interpretation of concentration limits, analytical method development challenges and validation criterion for pharmaceutical dosage forms.Curr. Pharm. Anal.202016439240310.2174/1573412915666190225160512
    [Google Scholar]
  43. USP 42–NF 37 Commentary.2019Available from: https://www.uspnf.com/official-text/proposal-statuscommentary/usp42-nf37 (accessed on 8-10-2024)
  44. ChaurasiaG.A. review on pharmaceutical preformulation studies in formulation and development of new drug molecules.Int. J. Pharm. Sci. Res.20167623132320
    [Google Scholar]
  45. HassanN.M. RasmussenP.E. Dabek-ZlotorzynskaE. CeloV. ChenH. Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: Maximizing total element recoveries.Water Air Soil Pollut.20071781-432333410.1007/s11270‑006‑9201‑3
    [Google Scholar]
  46. ChahrourO. MaloneJ. CollinsM. SalmonV. GreenanC. BombardierA. MaZ. DunwoodyN. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉.J. Pharm. Biomed. Anal.2017145849010.1016/j.jpba.2017.06.045 28654780
    [Google Scholar]
  47. ZhouJ. GuoW. JinL. HuS. Elemental analysis of solid food materials using a reliable laser ablation inductively coupled plasma mass spectrometry method.J. Agric. Food Chem.202270154765477310.1021/acs.jafc.1c06262 35385276
    [Google Scholar]
  48. RudovicaV. ViksnaA. ActinsA. Application of LA-ICP-MS as a rapid tool for analysis of elemental impurities in active pharmaceutical ingredients.J. Pharm. Biomed. Anal.20149111912210.1016/j.jpba.2013.12.025 24440826
    [Google Scholar]
  49. PluháčekT. RučkaM. MaierV. A direct LA-ICP-MS screening of elemental impurities in pharmaceutical products in compliance with USP and ICH-Q3D.Anal. Chim. Acta201910781710.1016/j.aca.2019.06.004 31358206
    [Google Scholar]
  50. Araujo-BarbosaU. Peña-VazquezE. Barciela-AlonsoM.C. Costa FerreiraS.L. Pinto dos SantosA.M. Bermejo-BarreraP. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS.Talanta201717052352910.1016/j.talanta.2017.04.034 28501206
    [Google Scholar]
  51. KangL. TianY. XuS. ChenH. Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment.J. Neurol.202126893269328210.1007/s00415‑020‑09942‑w 32474658
    [Google Scholar]
  52. ŠvecováP. BaronD. SchugK.A. PluháčekT. PetrJ. Ultra-trace determination of oxaliplatin impurities by sweeping-MEKC-ICP-MS.Microchem. J.202217210696710.1016/j.microc.2021.106967
    [Google Scholar]
  53. MildeD. PluháčekT. KubaM. SoučkováJ. Bettencourt da SilvaR.J.N. Measurement uncertainty evaluation from correlated validation data: Determination of elemental impurities in pharmaceutical products by ICP-MS.Talanta202022012138610.1016/j.talanta.2020.121386 32928409
    [Google Scholar]
  54. GantaS. RaoT.S. SrinivasK.R. SumanP. Determination of elemental impurities in valproic acid an epilepsy drug by using ICP-MS.J. Trace Elem. Med. Biol.20222100036
    [Google Scholar]
  55. GuX. ZhuS. YanL. ChengL. ZhuP. ZhengJ. Development of a sample preparation method for accurate analysis of 24 elemental impurities in oral drug products by ICP-MS according to USP/ICH guidelines.J. Anal. At. Spectrom.202136351251710.1039/D0JA00519C
    [Google Scholar]
  56. PinheiroF.C. BabosD.V. BarrosA.I. Pereira-FilhoE.R. NóbregaJ.A. Microwave-assisted digestion using dilute nitric acid solution and investigation of calibration strategies for determination of As, Cd, Hg and Pb in dietary supplements using ICP-MS.J. Pharm. Biomed. Anal.201917447147810.1016/j.jpba.2019.06.018 31228850
    [Google Scholar]
  57. ShchukinV.M. ZhigileiE.S. ErinaA.A. ShvetsovaY.N. Kuz’minaN.E. LuttsevaA.I. Validation of an ICP-MS method for the determination of mercury, lead, cadmium, and arsenic in medicinal plants and related drug preparations.Pharm. Chem. J.202054996897610.1007/s11094‑020‑02306‑8
    [Google Scholar]
  58. InfanteV.H.P. CalixtoL.S. CamposP.M.B.G.M. Cosmetics consumption behaviour among men and women and the importance in products indication and treatment adherence.Surgical & Cosmetic Dermatology20168223124110.5935/scd1984‑8773.201682817
    [Google Scholar]
  59. KilicS. KilicM. SoylakM. The determination of toxic metals in some traditional cosmetic products and health risk assessment.Biol. Trace Elem. Res.202119962272227710.1007/s12011‑020‑02357‑8 32888120
    [Google Scholar]
  60. BobakerA.M. AlakiliI. SarmaniS.B. Al-AnsariN. YaseenZ.M. Determination and assessment of the toxic heavy metal elements abstracted from the traditional plant cosmetics and medical remedies: Case study of Libya.Int. J. Environ. Res. Public Health20191611195710.3390/ijerph16111957 31159472
    [Google Scholar]
  61. CubaddaF. Inductively coupled plasma-mass spectrometry for the determination of elements and elemental species in food: a review.J. AOAC Int.200487117320410.1093/jaoac/87.1.173 15084102
    [Google Scholar]
  62. WilschefskiS. BaxterM. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects.Clin. Biochem. Rev.201940311513310.33176/AACB‑19‑00024 31530963
    [Google Scholar]
  63. KhanA. KhanS. KhanM.A. QamarZ. WaqasM. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review.Environ. Sci. Pollut. Res. Int.20152218137721379910.1007/s11356‑015‑4881‑0 26194234
    [Google Scholar]
  64. SononeS.S. JadhavS. SankhlaM.S. KumarR. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl.NanoBioScience202010221482166
    [Google Scholar]
  65. van RompayT.J.L. DeterinkF. FenkoA. Healthy package, healthy product? Effects of packaging design as a function of purchase setting.Food Qual. Prefer.201653848910.1016/j.foodqual.2016.06.001
    [Google Scholar]
  66. EmbuscadoM.E. Spices and herbs: Natural sources of antioxidants – A mini review.J. Funct. Foods20151881181910.1016/j.jff.2015.03.005
    [Google Scholar]
  67. ShimJ. ChoT. LeemD. ChoY. LeeC. Heavy metals in spices commonly consumed in Republic of Korea.Food Addit. Contam. Part B Surveill.2019121525810.1080/19393210.2018.1546772 30466367
    [Google Scholar]
  68. TokalıoğluŞ. ÇiçekB. İnançN. ZararsızG. ÖztürkA. Multivariate statistical analysis of data and ICP-MS determination of heavy metals in different brands of spices consumed in Kayseri, Turkey.Food Anal. Methods20181192407241810.1007/s12161‑018‑1209‑y
    [Google Scholar]
  69. HassanS. MazharW. FarooqS. AliA. MusharrafS.G. Assessment of heavy metals in calcium carbide treated mangoes by inductively coupled plasma-mass spectrometry (ICP-MS).Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201936121769177610.1080/19440049.2019.1671990 31603735
    [Google Scholar]
  70. TsenangM. Pheko-ofitlhileT. MokgadiJ. MasambaW. PhokediG.N. A validated ICP-MS method for the screening and quantitative analysis of heavy metal contaminants in home-brewed alcoholic beverages of Botswana.Food Hum.2023111251133
    [Google Scholar]
  71. HusákováL. UrbanováI. ŠrámkováJ. ČernohorskýT. KrejčováA. BednaříkováM. FrýdováE. NedělkováI. PilařováL. Analytical capabilities of inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) for multi-element analysis of food and beverages.Food Chem.201112931287129610.1016/j.foodchem.2011.05.047 25212369
    [Google Scholar]
  72. SekarR. SelvasekaranP. KarA. VaralwarT. GodliC. ChidambaramR. Lactose-free food products for lactose intolerant children.Food Sci. Technol. Nutr. Babies Children2020202014316810.1007/978‑3‑030‑35997‑3_7
    [Google Scholar]
  73. GoonathilakaP.D. AbeysundaraP.D. JayasingheM.A. Development of a value-added rice milk by utilizing selected traditional and improved rice varieties in Sri Lanka.Food Chem. Advances20232100319
    [Google Scholar]
  74. da RosaF.C. NunesM.A.G. DuarteF.A. FloresÉ.M.M. HanzelF.B. VazA.S. PozebonD. DresslerV.L. Arsenic speciation analysis in rice milk using LC-ICP-MS.Food Chem. X2019210002810.1016/j.fochx.2019.100028 31432014
    [Google Scholar]
  75. DruzianG.T. NascimentoM.S. CerqueiraU.M.F.M. NovaesC.G. BezerraM.A. DuarteF.A. FloresE.M.M. Determination of Cl, Br and I in granola: Development of an accurate analytical method using ICP-MS.Food Chem.202134412867710.1016/j.foodchem.2020.128677 33261993
    [Google Scholar]
  76. LeeJ. ParkY.S. LeeD.Y. Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES.Lebensm. Wiss. Technol.202317311435110.1016/j.lwt.2022.114351
    [Google Scholar]
  77. MohamedR. ZainudinB.H. YaakobA.S. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry.Food Chem.202030312539210.1016/j.foodchem.2019.125392 31446362
    [Google Scholar]
  78. AlbalsD. Al-MomaniI.F. IssaR. YehyaA. Multi-element determination of essential and toxic metals in green and roasted coffee beans: A comparative study among different origins using ICP-MS.Sci. Prog.202110420036850421102616210.1177/00368504211026162 34152891
    [Google Scholar]
  79. TelloliC. TagliaviniS. PassariniF. SalviS. RizzoA. ICP-MS triple quadrupole as analytical technique to define trace and ultra-trace fingerprint of extra virgin olive oil.Food Chem.202340213424710.1016/j.foodchem.2022.134247 36152560
    [Google Scholar]
  80. JiangL. ZhouJ. GuoW. JinL. HuS. Multi-element analysis of solid food materials via mixed standards pellet laser ablation inductively coupled plasma mass spectrometry.J. Food Compos. Anal.202312310553910.1016/j.jfca.2023.105539
    [Google Scholar]
  81. LangeK.W. NakamuraY. Edible insects as future food: Chances and challenges.Journal of Future Foods202111384610.1016/j.jfutfo.2021.10.001
    [Google Scholar]
  82. AnJ.M. HurS.H. KimH. LeeJ.H. KimY.K. SimK.S. LeeS.E. KimH.J. Determination of the geographical origin of chicken (breast and drumstick) using ICP-OES and ICP-MS: Chemometric analysis.Food Chem.2024437Pt 113783610.1016/j.foodchem.2023.137836 37924759
    [Google Scholar]
  83. HabteG. ChoiJ.Y. NhoE.Y. OhS.Y. KhanN. ChoiH. ParkK.S. KimK.S. Determination of toxic heavy metal levels in commonly consumed species of shrimp and shellfish using ICP-MS/OES.Food Sci. Biotechnol.201524137337810.1007/s10068‑015‑0049‑4
    [Google Scholar]
  84. HwangI.M. LeeH.M. LeeH.W. JungJ.H. MoonE.W. KhanN. KimS.H. Determination of toxic elements and arsenic species in salted foods and sea salt by ICP–MS and HPLC–ICP–MS.ACS Omega2021630194271943410.1021/acsomega.1c01273 34368530
    [Google Scholar]
  85. JamilaN. KhanN. HwangI.M. ParkY.M. Hyun LeeG. ChoiJ.Y. ChoM.J. ParkK.S. KimK.S. Elemental analysis of crustaceans by inductively coupled plasma–mass spectrometry (ICP-MS) and direct mercury analysis.Anal. Lett.202255115917310.1080/00032719.2021.1895188
    [Google Scholar]
  86. ZhaoH. XiaB. FanC. ZhaoP. ShenS. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China.Sci. Total Environ.2012417-418455410.1016/j.scitotenv.2011.12.047 22257507
    [Google Scholar]
  87. Kılıç AltunS. DinçH. TemamoğullarıF.K. PaksoyN. Analyses of essential elements and heavy metals by using ICP-MS in maternal breast milk from Şanlıurfa, Turkey.Int. J. Anal. Chem.2018201811784073 29849639
    [Google Scholar]
  88. RahmanZ. SinghV.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview.Environ. Monit. Assess.2019191741910.1007/s10661‑019‑7528‑7 31177337
    [Google Scholar]
  89. MagniL.F. CastroL.N. RendinaA.E. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina.Environ. Res.202119711097910.1016/j.envres.2021.110979 33711323
    [Google Scholar]
  90. KowaE. TelkA. WieczorekM. Flow techniques in the analysis of biological samples by inductively coupled plasma mass spectrometry – a review.J. Anal. At. Spectrom.20243941004102310.1039/D3JA00412K
    [Google Scholar]
  91. AricaE. YukselB. YenerI. DolakI. GokE. YilmazE. ICP-MS determination of lead levels in autopsy liver samples: An application in forensic medicine.Spectroscopy (Springf.)20183926266
    [Google Scholar]
  92. RiisomM. GammelgaardB. LambertI.H. StürupS. Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods.J. Pharm. Biomed. Anal.201815814415010.1016/j.jpba.2018.05.038 29870891
    [Google Scholar]
  93. McGeehanS. BaszlerT. GaskillC. JohnsonJ. SmithL. RaisbeckM. SchrierN. HarrisH. TalcottP. Interlaboratory comparison of heavy metal testing in animal diagnostic specimens and feed using inductively coupled plasma–mass spectrometry.J. Vet. Diagn. Invest.202032229130010.1177/1040638720903115 32052705
    [Google Scholar]
  94. FeisalN.A. HashimZ. JalaludinJ. HowV. HashimJ.H. The determination of heavy metals concentration in hair by inductively coupled plasma mass spectrometry (ICP-MS).J. Environ. Anal. Toxicol.20199114
    [Google Scholar]
  95. BertramJ. EsserA. Thoröe-BovelethS. FohnN. SchettgenT. KrausT. Quantification of 26 metals in human urine samples using ICP-MSMS in a random sample collective of an occupational and environmental health care center in Aachen, Germany.J. Trace Elem. Med. Biol.20237812716110.1016/j.jtemb.2023.127161 37001205
    [Google Scholar]
  96. Montoro-LealP. García-MesaJ.C. Morales-BenítezI. García de TorresA. Vereda AlonsoE. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination.Talanta202123512276910.1016/j.talanta.2021.122769 34517627
    [Google Scholar]
  97. Grassin-DelyleS. MartinM. HamzaouiO. LamyE. JayleC. SageE. EttingI. DevillierP. AlvarezJ.C. A high-resolution ICP-MS method for the determination of 38 inorganic elements in human whole blood, urine, hair and tissues after microwave digestion.Talanta201919922823710.1016/j.talanta.2019.02.068 30952251
    [Google Scholar]
  98. AbduljabbarT.N. SharpB.L. ReidH.J. Barzegar-BefroeidN. PetoT. LengyelI. Determination of Zn, Cu and Fe in human patients’ serum using micro-sampling ICP-MS and sample dilution.Talanta201920466366910.1016/j.talanta.2019.05.098 31357350
    [Google Scholar]
  99. PechancováR. GalloJ. MildeD. PluháčekT. Ion-exchange HPLC-ICP-MS: A new window to chromium speciation in biological tissues.Talanta202021812115010.1016/j.talanta.2020.121150 32797905
    [Google Scholar]
  100. ProcópioV.A. PereiraR.M. LangeC.N. FreireB.M. BatistaB.L. Chromium speciation by HPLC-DAD/ICP-MS: Simultaneous hyphenation of analytical techniques for studies of biomolecules.Int. J. Environ. Res. Public Health2023206491210.3390/ijerph20064912 36981823
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333019241114050058
Loading
/content/journals/cac/10.2174/0115734110333019241114050058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test