Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Nowadays, the challenge between clean water production and promoting an eco-friendly sorbent for the simultaneous fast and efficient removal of heavy metal ions is a hot topic and has attracted much attention.

Objective

The objective of this study was to fabricate a novel material (PATP@PET) by incorporating poly-(2-aminothiophenol; PATP) into the matrix of Saudi Arabian petroleum coke (PET) for simultaneous fast and efficient removal of heavy metal ions.

Methods

The FTIR, EDX, SEM, and XRD techniques assessed the chemical structure and surface morphology of the thio-functionalized petcoke. The effects of medium pH, mass dosage of sorbent, metal ion concentration, and coexisting ions were investigated and optimized using batch sorption.

Results

The excellent sorption capacity of PATP@PET sorbent towards the divalent lead and cadmium ions (98.44% and 312.5 mg.g-1 for Pb(II) and 90.15% and 217.4 mg.g-1 for Cd(II)) was realized by strong complex formation with the sulfur atoms of green petcoke and the thiol groups of poly-2-aminothiophenol moieties. The adsorption equilibrium data was best fitted to the pseudo-second-order kinetic model and Langmuir adsorption isotherm. The reusability performance was tested for 10 cycles, and the simultaneous removal of Pb(II) and Cd(II) ions from industrial effluents was accomplished in 30 minutes with 100% removal efficiency at pH 6-7.

Conclusion

PATP@PET also demonstrated amazing performance for Cd(II) and Pb(II) removal in industrial wastewater samples. Subsequently, PATP@PET contributes to developing fast, efficient, low-cost water remediation solutions for heavy metal ions that can potentially be translated into industrial-scale applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110352819241119095835
2025-01-13
2025-12-13
Loading full text...

Full text loading...

References

  1. TangC.Y. YuP. TangL.S. WangQ.Y. BaoR.Y. LiuZ.Y. YangM.B. YangW. Tannic acid functionalized graphene hydrogel for organic dye adsorption.Ecotoxicol. Environ. Saf.201816529930610.1016/j.ecoenv.2018.09.009 30205332
    [Google Scholar]
  2. MekonnenM.M. HoekstraA.Y. Four billion people facing severe water scarcity.Sci. Adv.201622e150032310.1126/sciadv.1500323
    [Google Scholar]
  3. RodellM. FamigliettiJ.S. WieseD.N. ReagerJ.T. BeaudoingH.K. LandererF.W. LoM.H. Emerging trends in global freshwater availability.Nature2018557770765165910.1038/s41586‑018‑0123‑1 29769728
    [Google Scholar]
  4. SinghA. PalD.B. MohammadA. AlhazmiA. HaqueS. YoonT. SrivastavaN. GuptaV.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight.Bioresour. Technol.202234312615410.1016/j.biortech.2021.126154 34673196
    [Google Scholar]
  5. ThasneemaK.K. DipinT. ThayyilM.S. SahuP.K. MessaliM. RosalinT. ElyasK.K. SaharubaP.M. AnjithaT. HaddaT.B. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids.J. Mol. Liq.202132311464510.1016/j.molliq.2020.114645
    [Google Scholar]
  6. YakoutA.A. AlshitariW. AkhdharA. Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics.Carbohydr. Polym.202127311852810.1016/j.carbpol.2021.118528 34560942
    [Google Scholar]
  7. LiuH. LiangS. GaoJ. NgoH.H. GuoW. GuoZ. WangJ. LiY. Enhancement of Cr(VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation.Chem. Eng. J.201424616817410.1016/j.cej.2014.02.046
    [Google Scholar]
  8. NguyenT.C. LoganathanP. NguyenT.V. VigneswaranS. KandasamyJ. NaiduR. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies.Chem. Eng. J.201527039340410.1016/j.cej.2015.02.047
    [Google Scholar]
  9. ChengS. LiuY. XingB. QinX. ZhangC. XiaH. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust.J. Clean. Prod.202131412807410.1016/j.jclepro.2021.128074
    [Google Scholar]
  10. MukherjeeR. BhuniaP. DeS. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane.Chem. Eng. J.201629228429710.1016/j.cej.2016.02.015
    [Google Scholar]
  11. ShakerM.A. AlshitariW.H. BashaM.T. AlyN.A. AsimM. AlbishriH.M. BhawaniS.A. YakoutA.A. Synergetic impact of copper nanoparticles and polyaniline reinforced graphene oxide nanocomposite on the sequestration of tetracycline antibiotic from milk and wastewaters samples.Mater. Today Commun.20243810786910.1016/j.mtcomm.2023.107869
    [Google Scholar]
  12. ZhuangS. ZhangQ. WangJ. Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA.J. Mol. Liq.202132511519710.1016/j.molliq.2020.115197
    [Google Scholar]
  13. BashaM.T. ShahatA. YakoutA.A. Tailoring the structure of Fe-based NH2-MIL-88 via 2-hydroxyacetophenone for arsenic removal from aqueous solutions: Kinetics, adsorption isotherms studies, and optimization through Box-Behnken design.Sens. Actuators A Phys.202437311539810.1016/j.sna.2024.115398
    [Google Scholar]
  14. BashaM.T. ShahatA. YakoutA.A. Innovative covalently modified Al‐MOF as a highly selective fluorescent sensor for Al (III) detection in tap water, human serum, and tea samples.Appl. Organomet. Chem.2024381e730410.1002/aoc.7304
    [Google Scholar]
  15. YakoutA.A. BashaM.T. ShahatA. Robust and ultrasensitive Chemosensor based on Bifunctionalized MIL-101(Al) for fluorescent detection of Ferric Ions in Serum and pharmaceutical tablets.ChemistrySelect202220220211017
    [Google Scholar]
  16. BeallG. The use of organo-clays in water treatment.Appl. Clay Sci.2003241-2112010.1016/j.clay.2003.07.006
    [Google Scholar]
  17. DengC. HouL. ZhangC. Eco-friendly ferrimagnetic-humic acid nanocomposites as superior magnetic adsorbents.Materials (Basel)20211418512510.3390/ma14185125 34576348
    [Google Scholar]
  18. KarićN. MaiaA.S. TeodorovićA. AtanasovaN. LangergraberG. CriniG. RibeiroA.R.L. ĐolićM. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment.Chem. Eng. J. Adv.2022910023910.1016/j.ceja.2021.100239
    [Google Scholar]
  19. WibowoY.G. SafitriH. RamadanB.S. Sudibyo, Adsorption test using ultra-fine materials on heavy metals removal.Bioresour. Technol. Rep.20221910114910.1016/j.biteb.2022.101149
    [Google Scholar]
  20. GuptaV.K. AgarwalS. SalehT.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes.Water Res.20114562207221210.1016/j.watres.2011.01.012 21303713
    [Google Scholar]
  21. GonzálezA. MorenoN. NaviaR. QuerolX. Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal.Fuel201089103012302110.1016/j.fuel.2010.04.032
    [Google Scholar]
  22. SwainE.J. US petroleum coke production expected to increase.Oil Gas J.199795
    [Google Scholar]
  23. CórdobaP. AyoraC. QuerolX. Evaluation of chemical stabilisation methods of coal-petcoke fly ash to reduce the mobility of Mo and Ni against environmental concerns.Ecotoxicol. Environ. Saf.202120811148810.1016/j.ecoenv.2020.111488 33120274
    [Google Scholar]
  24. AnthonyE. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology.Pror. Energy Combust. Sci.199521323926810.1016/0360‑1285(95)00005‑3
    [Google Scholar]
  25. WangJ. AnthonyE.J. AbanadesJ.C. Clean and efficient use of petroleum coke for combustion and power generation.Fuel200483101341134810.1016/j.fuel.2004.01.002
    [Google Scholar]
  26. Al-Haj-IbrahimH. MorsiB.I. Desulfurization of petroleum coke: A review.Ind. Eng. Chem. Res.19923181835184010.1021/ie00008a001
    [Google Scholar]
  27. LiT. LiJ. ZhangH. SunK. XiaoJ. DFT research on benzothiophene pyrolysis reaction mechanism.J. Phys. Chem. A2019123479681010.1021/acs.jpca.8b09882 30601656
    [Google Scholar]
  28. LiuH. XuH. HuaM. ChenL. WeiY. WangC. WuP. ZhuF. ChuX. LiH. ZhuW. Extraction combined catalytic oxidation desulfurization of petcoke in ionic liquid under mild conditions.Fuel202026011620010.1016/j.fuel.2019.116200
    [Google Scholar]
  29. ZhaoP. MaC. WangJ. QiaoW. LingL. Almost total desulfurization of high-sulfur petroleum coke by Na2CO3-promoted calcination combined with ultrasonic-assisted chemical oxidation.N. Carbon Mater.201833658759410.1016/S1872‑5805(18)60359‑2
    [Google Scholar]
  30. ZhongQ. XiaoJ. DuH. YaoZ. Thiophenic sulfur transformation in a carbon anode during the aluminum electrolysis process.Energy Fuels20173144539454710.1021/acs.energyfuels.6b03018
    [Google Scholar]
  31. BoomiP. RajJ.A. PalaniappanS.P. PooraniG. SelvamS PrabuH.G. ManisankarP. JeyakanthanJ. LangeswaranV.K. Improved conductivity and antibacterial activity of poly(2-aminothiophenol)-silver nanocomposite against human pathogens.J. Photochem. Photobiol. B2018178323329
    [Google Scholar]
  32. Abd El-SalamH.M. AzzamEMS. AboadR.S. Synthesis and characterization of poly(2-aminothiophenol-co-2-methylaniline)/silver nanoparticles as antisulfate-reducing bacteria.Int J. Polym Mater. Polym Biomater2020678501508
    [Google Scholar]
  33. AbdallahS.M. MohamedG.G. ZayedM.A. El-ElaM.S.A. Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.200973583384010.1016/j.saa.2009.04.005 19505840
    [Google Scholar]
  34. SedghiR. ShojaeeM. BehbahaniM. NabidM.R. Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper, and silver ions in food matrices.RSC Adv20155836741867426
    [Google Scholar]
  35. NabidM.R. SedghiR. BagheriA. BehbahaniM. TaghizadehM. Abdi OskooieH. HeraviM.M. Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction.J. Hazard. Mater.2012203-2049310010.1016/j.jhazmat.2011.11.096 22206975
    [Google Scholar]
  36. WuS. LiuZ. LiuN. MaZ. Oligomeric 2-aminothiophenol decorated carboxyl graphene: A new surface enhanced Raman reporter and its application in immunosensing.Sens. Actuators B Chem.201520650250710.1016/j.snb.2014.09.088
    [Google Scholar]
  37. KamelE.M. AhmedO.M. Abd El-SalamH.M. Fabrication of facile polymeric nanocomposites based on chitosan-gr-P2-aminothiophenol for biomedical applications.Int. J. Biol. Macromol.2020165Pt B2649265910.1016/j.ijbiomac.2020.09.14032991898
    [Google Scholar]
  38. ChenY. WangM. HuY. HanJ. Poly(2-aminothiophenol)/MnO2 hierarchical nanocables as efficient adsorbents towards heavy metal ions.Mater. Chem. Phys.201821417217910.1016/j.matchemphys.2018.04.076
    [Google Scholar]
  39. FuY. SunY. ZhengY. JiangJ. YangC. WangJ. HuJ. New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst.Sep. Purif Technol.202125911811210.1016/j.seppur.2020.118112
    [Google Scholar]
  40. FuY. JiangJ. ChenZ. YingS. WangJ. HuJ. Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m-aminothiophenol) nanocomposite.J Mol Liq201928611074610.1016/j.molliq.2019.04.023
    [Google Scholar]
  41. Shahabi NejadM. SheibaniH. Super-efficient removal of arsenic and mercury ions from wastewater by nanoporous biochar-supported poly 2-aminothiophenol.J. Environ. Chem. Eng.202210310736310.1016/j.jece.2022.107363
    [Google Scholar]
  42. Alama, Md Removal of organic acids from water using biochar and petroleum coke.Environ. Technol. Innov.20166141151
    [Google Scholar]
  43. Arcibar-OrozcoJ.A. Zili-TomitaH.E. Suárez-TorielloV.A. Saucedo-LuceroJ.O. Petcoke revalorization as support for ZnO-based Photocatalyst.Waste Biomass Valoriz.20221331681169410.1007/s12649‑021‑01585‑w
    [Google Scholar]
  44. NiasarH.S. LiH. DasS. KasanneniT.V.R. RayM.B. XuC.C. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.J. Environ. Manage.2018211637210.1016/j.jenvman.2018.01.051 29408084
    [Google Scholar]
  45. ZhangY. ChenX. ChuW. CuiH. WangM. Removal of vanadium from petroleum coke by microwave and ultrasonic-assisted leaching.Hydrometallurgy202019110516810.1016/j.hydromet.2019.105168
    [Google Scholar]
  46. EnsafiA.A. FazelR. RezaeiB. HuJ.S. Electrochemical properties of modified poly(4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors.Fuel202232412472410.1016/j.fuel.2022.124724
    [Google Scholar]
  47. FuY. YangC. ZhengY. JiangJ. SunY. ChenF. HuJ. Sulfur crosslinked poly(m-aminothiophenol)/potato starch on mesoporous silica for efficient Hg(II) removal and reutilization of waste adsorbent as a catalyst.J. Mol. Liq.202132811542010.1016/j.molliq.2021.115420
    [Google Scholar]
  48. Yuh-ShanH. Citation review of Lagergren kinetic rate equation on adsorption reactions.Scientometrics200459117117710.1023/B:SCIE.0000013305.99473.cf
    [Google Scholar]
  49. HoY.S. McKayG. Pseudo-second order model for sorption processes.Process Biochem.199934545146510.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  50. HoY.S. PorterJ.F. McKayG. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems.Water Air Soil Pollut.20021411/413310.1023/A:1021304828010
    [Google Scholar]
  51. YakoutA.A. AlbishriH.M. Solvothermal synthesis of EDTA-functionalized magnetite-carboxylated graphene oxide nanocomposite as a potential magnetic solid phase extractor of p-phenylenediamine from environmental samples.J. Dispers. Sci. Technol.201940336937710.1080/01932691.2018.1469415
    [Google Scholar]
  52. YakoutA.A. KhanZ.A. High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples.J. Mol. Liq.202133411642710.1016/j.molliq.2021.116427
    [Google Scholar]
  53. YoonS.J. DienerL.M. BloomP.R. NaterE.A. BleamW.F. X-ray absorption studies of CH3Hg+-binding sites in humic substances.Geochim. Cosmochim. Acta20056951111112110.1016/j.gca.2004.07.036
    [Google Scholar]
  54. ManfrinJ. GonçalvesA.C.Jr SchwantesD. ConradiE.Jr ZimmermannJ. ZiemerG.L. Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption.J. Environ. Chem. Eng.20219210498010.1016/j.jece.2020.104980
    [Google Scholar]
  55. BhatA. MegeriG.B. ThomasC. BhargavaH. JeevithaC. ChandrashekarS. MadhuG.M. Adsorption and optimization studies of lead from aqueous solution using γ-Alumina.J. Environ. Chem. Eng.201531303910.1016/j.jece.2014.11.014
    [Google Scholar]
  56. MediciF. PattererM.S. PelusoM.A. SambethJ.E. Lead adsorption from aqueous solution using manganese oxides recovered from spent alkaline batteries.J. Solid Waste Technol. Manag.202046320621210.5276/JSWTM/2020.206
    [Google Scholar]
  57. LiY. HeJ. ZhangK. LiuT. HuY. ChenX. WangC. HuangX. KongL. LiuJ. Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel.RSC Advances20199139740710.1039/C8RA08638A 35521596
    [Google Scholar]
  58. RickardD. LutherG.W.III Metal sulfide complexes and clusters.Rev. Mineral. Geochem.200661142150410.2138/rmg.2006.61.8
    [Google Scholar]
  59. ZhengH. XuR. ZhangJ. DaghaghelehO. SchenkJ. LiC. WangW. A comprehensive review of characterization methods for metallurgical coke structures.Materials (Basel)202115117410.3390/ma15010174 35009320
    [Google Scholar]
  60. LemosV. BalizaP. Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper.Talanta200567356457010.1016/j.talanta.2005.03.012 18970207
    [Google Scholar]
  61. BaghkumehA.M. FaghihianH. MokhtariS.H. Functionalized nano magnetic Fe3O4–SiO2 core–shell as efficient adsorbent for removal of Pb2+ from aqueous solutions.Desalination Water Treat.20177816617110.5004/dwt.2017.20413
    [Google Scholar]
  62. ChiH. YangC. LiuG. An electrochemical sensor based on electrochemically activated carbon cloth and poly (o-aminothiophenol) cross-linked nanogold imprinted layer for the determination of tert-butylhydroquinone.Food Chem.202445213954810.1016/j.foodchem.2024.139548 38728894
    [Google Scholar]
  63. FuY. SunY. ChenZ. YingS. WangJ. HuJ. Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent.Sci. Total Environ.201969166467410.1016/j.scitotenv.2019.07.153 31325865
    [Google Scholar]
  64. AkhdharA. YakoutA.A. Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide.J. Dispers. Sci. Technol.202344142700271010.1080/01932691.2022.2122495
    [Google Scholar]
  65. YakoutA.A. AlshitariW. Selective and efficient solid phase extraction of cadmium (II) in sub-trace limits based on alizarin red-S cross-linked-2-mercapto-N-(3-(triethoxysilyl) propyl) acetamide bi-functionalized graphene oxide nanocomposite from different environmental water samples.J. Dispers. Sci. Technol.202345114015010.1080/01932691.2022.2135525
    [Google Scholar]
  66. ZhangX. LinX. HeY. ChenY. LuoX. ShangR. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment.Int. J. Biol. Macromol.201912441842810.1016/j.ijbiomac.2018.11.218 30496862
    [Google Scholar]
  67. ZhuangY. YuF. MaJ. ChenJ. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel.J. Colloid Interface Sci.201750725025910.1016/j.jcis.2017.07.033 28800449
    [Google Scholar]
/content/journals/cac/10.2174/0115734110352819241119095835
Loading
/content/journals/cac/10.2174/0115734110352819241119095835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test