Skip to content
2000
image of Preparation of Photoelectrodes of Pd/Ag/TiO2 NTs and Photoelectrocatalytic Degradation of Tylosin

Abstract

Introduction

In this study, aiming to solve the problem of difficult recovery of powder catalysts in the treatment of antibiotic wastewater by photocatalytic technology, titanium dioxide nanotubes (TiO NTs) photoelectrodes were prepared on titanium sheet substrates by anodic oxidation method.

Methods

The precious metals Pd and Ag were introduced to be co-deposited, which realized the effective transfer of photogenerated electrons between the semiconductor and the precious metals and remarkably improved the photoelectrocatalytic activity of the photoelectrodes.

Results

The experimental results showed that the prepared Pd/Ag/TiO NTs composite photoelectrode achieved a removal efficiency of 79.51% for tylosin (TYL) within 240 min, which was significantly better than that of the pure TiO NTs (1.42-fold) and Ag/TiO NTs (1.05-fold) photoelectrodes. Electrochemical analyses demonstrated that the loading of Ag and Pd on the surface of TiO NTs can effectively promote the transport and separation of photogenerated charge carriers, thus improving the photoelectrocatalytic performance. In addition, the degradation process of TYL and the dynamic changes of intermediates were deeply analyzed with the help of three-dimensional fluorescence spectroscopy (3D EEMs) and two-dimensional correlation spectroscopy (2DCOS) techniques.

Conclusion

This study provides not only an expanded application of solid catalysts in photoelectrocatalytic treatment of antibiotic wastewater but also new insights for further investigation of the co-deposition of precious metals to improve photoelectrodes.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110351701241122105401
2025-01-07
2025-10-29
Loading full text...

Full text loading...

References

  1. Li X. Qiu Y. Zhu Z. Chen T. Zhang H. Yin D. Construction of magnetically separable dual Z-scheme g-C3N4/α-Fe2O3/Bi3TaO7 photocatalyst for effective degradation of ciprofloxacin under visible light. Chem. Eng. J. 2022 440 135840 10.1016/j.cej.2022.135840
    [Google Scholar]
  2. Venkateswara Raju C. Hwan Cho C. Mohana Rani G. Manju V. Umapathi R. Suk Huh Y. Pil Park J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev. 2023 476 214920 10.1016/j.ccr.2022.214920
    [Google Scholar]
  3. Pan B. Liao M. Zhao Y. Lv Y. Qin J. Sharma V.K. Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn2S4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. J. Hazard. Mater. 2023 460 132413 10.1016/j.jhazmat.2023.132413 37666167
    [Google Scholar]
  4. Zhang J. Shao C. Zhang A. Zhang Y. Zhang L. Bai H. Nitrogen-doped carbon quantum dots modified dual-vacancy Z-scheme CuFe2O4/g-C3N4 photocatalyst synergistic with Fenton technique for photothermal degradation of antibiotics. Chem. Eng. J. 2024 497 154497 10.1016/j.cej.2024.154497
    [Google Scholar]
  5. Zhang J. Shao C. Lei Z. Li Y. Bai H. Zhang L. Ren G. Wang X. Treatment of antibiotics in water by SO3H-modified Ti3C2 Mxene photocatalytic collaboration with g-C3N4. J. Mater. Sci. Technol. 2024 194 124 137 10.1016/j.jmst.2024.02.005
    [Google Scholar]
  6. Yu H. Dou D. Zhao J. Pang B. Zhang L. Chi Z. Yu H. The exploration of Ti/SnO2-Sb anode/air diffusion cathode/UV dual photoelectric catalytic coupling system for the biological harmless treatment of real antibiotic industrial wastewater. Chem. Eng. J. 2021 412 128581 10.1016/j.cej.2021.128581
    [Google Scholar]
  7. Zhang Q. Li Y. Li H. Zhang Y. Zhang L. Zhong S. Shu X. Multi-catalysis of glow discharge plasma coupled with FeS2 for synergistic removal of antibiotic. Chemosphere 2023 312 Pt 1 137204 10.1016/j.chemosphere.2022.137204 36368535
    [Google Scholar]
  8. Zhang J. Li Y. Liu C. Zhu C. shao C. Zhao Y. Photo-electrocatalytic degradation of tylosin by TiO2 nanotube modified photoelectrode: Synthesis, kinetics, and mechanism investigations. J. Mol. Struct. 2023 1276 134822 10.1016/j.molstruc.2022.134822
    [Google Scholar]
  9. Duan F. Wang Y. Hu B. Diao J. Shang X. Guo C. He L. Wang M. Smartphone-assisted portable amperometric immunosensor based on CoMn-LDH for the visualized detection of tylosin. Microchem. J. 2024 204 110970 10.1016/j.microc.2024.110970
    [Google Scholar]
  10. Zhang X. Zhang M. Li X. Xin B. Hao J. Li J. Li H. Zhang D. Wu Z. Xu X. Zhang J. Charge reconstruction from simultaneous Fe coordination and P/O co-doping in g-C3N4 for efficient photo-reductive recovery of uranium(VI). Chem. Eng. J. 2024 496 154319 10.1016/j.cej.2024.154319
    [Google Scholar]
  11. Kumar A. Singh P. Nguyen V.H. Van Le Q. Ahamad T. Thakur S. Huong Nguyen L. Raizada P. Rationally constructed synergy between dual-vacancies and Z-scheme heterostructured MoS2-x/g-C3N4/Ca-α-Fe2O3 for high-performance photodegradation of sulfamethoxazole antibiotic from aqueous solution. Chem. Eng. J. 2023 474 145720 10.1016/j.cej.2023.145720
    [Google Scholar]
  12. Tuna Ö. Balta Z. Simsek E.B. Quantum sized engineering of FeTiO3 perovskite for enhanced photocatalytic mineralization of antibiotics: Comprehensive exploration of roles of NCQDs and BNQDs in charge transfer dynamics. Chem. Eng. J. 2023 474 145770 10.1016/j.cej.2023.145770
    [Google Scholar]
  13. Garg T. Renu Nitansh Kumar V. Tikoo K. Singh B. Rana S. Singhal S. Intercalation of novel Ocimum Sanctum leaves derived carbon dots between g-C3N4/CoFe2O4 Z-scheme heterojunction system for boosting the radicals’ generation in photo-Fenton degradation and synchronized electrochemical sensing of sulfamethoxazole antibiotic. Process Saf. Environ. Prot. 2024 191 1059 1076 10.1016/j.psep.2024.09.026
    [Google Scholar]
  14. Du X. Zhao T. Xiu Z. Yang Z. Xing Z. Li Z. Yang S. Zhou W. Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. J. Hazard. Mater. 2019 377 330 340 10.1016/j.jhazmat.2019.05.061 31173983
    [Google Scholar]
  15. Zhu M. Li J. Chen M. Li Y. Zhang Q. Tang Y. Wang Q. Magnetically separable Cd/CdS-ZnFe2O4/α-Fe2O3 Z-scheme heterostructure for boosting the photo-Fenton removal of antibiotic. J. Alloys Compd. 2024 988 174319 10.1016/j.jallcom.2024.174319
    [Google Scholar]
  16. Hu J. Tian J. Yang Y. Li S. Lu J. Enhanced antibiotic degradation via photo-assisted peroxymonosulfate over graphitic carbon nitride nanosheets/CuBi2O4: Highly efficiency of oxygen activation and interfacial charge transfer. J. Colloid Interface Sci. 2024 661 68 82 10.1016/j.jcis.2024.01.135 38295704
    [Google Scholar]
  17. Jo S. Im S. Weon S. Shin H. Lim J. Reduced TiO2 nanotube arrays as environmental catalysts that enable advanced oxidation processes: A mini review. Chem. Eng. J. 2023 477 147031 10.1016/j.cej.2023.147031
    [Google Scholar]
  18. Pan B. Feng M. Qin J. Dar A.A. Wang C. Ma X. Sharma V.K. Iron(V)/Iron(IV) species in graphitic carbon nitride-ferrate(VI)-visible light system: Enhanced oxidation of micropollutants. Chem. Eng. J. 2022 428 132610 10.1016/j.cej.2021.132610
    [Google Scholar]
  19. Yin Y. Li J. Wang Y. Wan J. Du X. Hu X. Liu E. Fan J. Constructing ZnSe and Au co-sensitized TiO 2 nanotube arrays for high-efficiency photoelectrocatalytic activities. Mater. Res. Bull. 2017 88 33 40 10.1016/j.materresbull.2016.12.017
    [Google Scholar]
  20. Wang S. Zhang Z. Huo W. Zhang X. Fang F. Xie Z. Jiang J. Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chem. Eng. J. 2021 403 126331 10.1016/j.cej.2020.126331
    [Google Scholar]
  21. Li B. Li C. Li P. Zhang Z. Zhu Y. Wang B. Qin L. Chen Q. Song Y. Zhu X. Morphology and photocurrent response of TiO2 nanotubes prepared in electrolytes containing different content of polyethylene glycol. Ceram. Int. 2024 ••• 10.1016/j.ceramint.2024.09.330
    [Google Scholar]
  22. He C. Qin L. Zhang S. Chen B. Zhu J. Lin F. Zhu X. A three-layer zirconia structure composed of nanotubes, dense layer and nanotubes: Evidence against the FADT. Ceram. Int. 2024 50 17 17, Part B 30906 30911 10.1016/j.ceramint.2024.05.396
    [Google Scholar]
  23. Zhang G. Hu S. Zhu X. Hu X. Yang F. Electro-activation of peroxymonosulfate by β-PbO2 partial filling/covering TiO2 nanotube arrays anode for alkaloid berberine degradation: Performance, mechanism and practicability. Chem. Eng. J. 2023 457 141009 10.1016/j.cej.2022.141009
    [Google Scholar]
  24. Wijerathna C.N. Tan H. Yan C.F. Bandara J. Improving light harvesting and charge carrier separation enabling enhanced photoelectrochemical hydrogen production by Sb2S3-decorated TiO2 nanotube arrays on porous Ti-photoanodes. Int. J. Hydrogen Energy 2024 82 53 63 10.1016/j.ijhydene.2024.07.349
    [Google Scholar]
  25. Mahmoud Z.H. AL-Bayati R.A. Khadom A.A. The efficacy of samarium loaded titanium dioxide (Sm:TiO2) for enhanced photocatalytic removal of rhodamine B dye in natural sunlight exposure. J. Mol. Struct. 2022 1253 132267 10.1016/j.molstruc.2021.132267
    [Google Scholar]
  26. Sherly R A. Padma C.M. Raja D.H. Davidson D.J. Photodegradation of Methyl violet using Ag modified TiO2 nanotubes by UV and UV/ H2O2. Chemical Physics Impact 2023 7 100366 10.1016/j.chphi.2023.100366
    [Google Scholar]
  27. Li S. Zhang G. Meng D. Yang F. Photoelectrocatalytic activation of sulfate for sulfamethoxazole degradation and simultaneous H2 production by bifunctional N,P co-doped black-blue TiO2 nanotube array electrode. Chem. Eng. J. 2024 485 149828 10.1016/j.cej.2024.149828
    [Google Scholar]
  28. Ayoubi-Feiz B. Soleimani D. Sheydaei M. Taguchi method for optimization of immobilized Dy2O3/graphite/TiO2/Ti nanocomposite preparation and application in visible light photoelectrocatalysis process. J. Electroanal. Chem. (Lausanne) 2019 849 113377 10.1016/j.jelechem.2019.113377
    [Google Scholar]
  29. Wang S. Zhang Z. Huo W. Zhu K. Zhang X. Zhou X. Fang F. Xie Z. Jiang J. Preferentially oriented Ag-TiO2 nanotube array film: An efficient visible-light-driven photocatalyst. J. Hazard. Mater. 2020 399 123016 10.1016/j.jhazmat.2020.123016 32535517
    [Google Scholar]
  30. Yu Y. Zhu L. Liu G. Qiu M. Chen P. Chang Z. Pd quantum dots loading Ti3+,N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effects. Appl. Surf. Sci. 2021 540 148239 10.1016/j.apsusc.2020.148239
    [Google Scholar]
  31. Liu C. Zhang Y. Wu J. Dai H. Ma C. Zhang Q. Zou Z. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution. J. Mater. Sci. Technol. 2022 114 81 89 10.1016/j.jmst.2021.12.003
    [Google Scholar]
  32. Ferreira V.R.A. Pereira C.M. Silva A.F. Azenha M.A. Ag-doped hollow TiO2 microspheres for the selective photo-degradation of bilirubin. Appl. Surf. Sci. 2023 641 158457 10.1016/j.apsusc.2023.158457
    [Google Scholar]
  33. Zou L. Li Z. Sun T. Zhu X. Li J. Cui Y. Zhao B. Zhang Q. Song Y. Inactivating microorganisms in water by using a novel Ag/CuS/carbon cloth composite for photo-electrocatalytic performance. Chemical Physics Impact 2024 8 100426 10.1016/j.chphi.2023.100426
    [Google Scholar]
  34. Aulakh M.K. Pal B. Solar irradiated selective nitroaromatics reduction over plasmonic Ag-TiO2: Deposition time dependent size growth and oxidation state of co-catalyst. Chem. Eng. J. 2022 429 132385 10.1016/j.cej.2021.132385
    [Google Scholar]
  35. Sun X. Ming J. Ma Q. Zhang C. Zhu Y. An G. Chen G. Yang Y. Fabrication of optimal oxygen vacancy amount in P/Ag/Ag2O/Ag3PO4/TiO2 through a green photoreduction process for sustainable H2 evolution under solar light. J. Colloid Interface Sci. 2023 645 176 187 10.1016/j.jcis.2023.04.085 37148683
    [Google Scholar]
  36. Lu M. Sun J. Li Y. Zhang J. Bai H. Ren J. Li R. Preparation of three-dimensional copper foam with Pd and Ru nanoparticles composite electrode with metal-scaffold structure and its study on tetracycline degradation. J. Alloys Compd. 2024 1002 175236 10.1016/j.jallcom.2024.175236
    [Google Scholar]
  37. Dutta A. Mondal A. Broekmann P. Datta J. Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell. J. Power Sources 2017 361 276 284 10.1016/j.jpowsour.2017.06.063
    [Google Scholar]
  38. Latif S. Khan Z.U.H. Electrochemical investigation of Pd-Au/BC nanocomposite-biochar and their photocatalytic and energy storage applications. ESTIJ 2024 54 101714 10.1016/j.jestch.2024.101714
    [Google Scholar]
  39. Chen Q. Xin Y. Zhu X. Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim. Acta 2015 186 34 42 10.1016/j.electacta.2015.10.095
    [Google Scholar]
  40. Song P. Hou S. Gong B. Zhao J. Zhu M. Liu H. Zhao H. Wu T. Zhu X. Liu Q. Fabricating of Pd and Ni bimetal modified halloysite nanotube composite and its application for photocatalytic degradation of tetracycline. Inorg. Chem. Commun. 2024 165 112508 10.1016/j.inoche.2024.112508
    [Google Scholar]
  41. Li A. Bai X. Xie Y. Xia P. Bao H. He M. Zeng X. Yang W. Li X. Preparation and characterization of PMT-TiO2-NTs@NiO-C/Sn-Sb composite electrodes by a two-step pulsed electrodeposition method for the degradation of crystalline violet. Chemosphere 2023 336 139097 10.1016/j.chemosphere.2023.139097 37302504
    [Google Scholar]
  42. Kumar A. Rana A. Guo C. Sharma G. M Katubi K.M. Alzahrani F.M. Naushad M. Sillanpää M. Dhiman P. Stadler F.J. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin. Chem. Eng. J. 2021 423 130173 10.1016/j.cej.2021.130173
    [Google Scholar]
  43. Sucharita Singh S. Jena B. Roy S. Nayak S. Behera S.K. Chakrabortty S. Tripathy S.K. Ali Khan M. Kumar R. Jeon B.H. Stålsby Lundborg C. Mishra A. Sprayable biogenic Ag-collagen nanocomposites with potent antibacterial and antibiofilm activity for Acinetobacter baumannii infected wound healing under hyperglycemic condition. Chem. Eng. J. 2024 490 151788 10.1016/j.cej.2024.151788
    [Google Scholar]
  44. Rabell G.O. Cruz M.R.A. Juárez-Ramírez I. Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis. Mater. Sci. Semicond. Process. 2021 134 105985 10.1016/j.mssp.2021.105985
    [Google Scholar]
  45. Li Y. Cheng C. Bai S. Jing L. Zhao Z. Liu L. The performance of Pd-rGO electro-deposited PVDF/carbon fiber cloth composite membrane in MBR/MFC coupled system. Chem. Eng. J. 2019 365 317 324 10.1016/j.cej.2019.02.048
    [Google Scholar]
  46. Zhang X. Zeng Y. Shi W. Tao Z. Liao J. Ai C. Si H. Wang Z. Fisher A.C. Lin S. S-scheme heterojunction of core–shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide. Chem. Eng. J. 2022 429 131312 10.1016/j.cej.2021.131312
    [Google Scholar]
  47. Li J. Li J. Ma N. Guan L. Tan C. Xia Z. Xu J. Zuo J. Preparation of ZnO/TiO2 NTs-loaded materials and their photocatalytic performance. Chem. Phys. Lett. 2024 838 141084 10.1016/j.cplett.2024.141084
    [Google Scholar]
  48. Wang Q. Zhao Y. Zhang Z. Liao S. Deng Y. Wang X. Ye Q. Wang K. The construction of TiO2 NTs/Ag3PO4–AgBr by SILAR deposition as promising photocatalysts for hydrogen production and pollutant treatment. Ceram. Int. 2023 49 18 29870 29878 10.1016/j.ceramint.2023.06.244
    [Google Scholar]
  49. Wang J. Wan Y. He Q. Zhou X. Song Q. Chen Z. Wang P. Wang J. Wang T. Chen P. Yang H. Enhanced photoelectrocatalytic performance of ZnO/Co3O4 nanoflowers modified TiO2 nanotube array under visible light. J. Environ. Chem. Eng. 2023 11 6 111604 10.1016/j.jece.2023.111604
    [Google Scholar]
  50. Jia J. Liang Y. Yang G. Yang J. Zhang X. Zeng Z. Yang Z. Xu S. Han C. Reinforced AgFeO2-Bi4TaO8Cl p-n heterojunction with facet-assisted photocarrier separation for boosting photocatalytic degradation of ofloxacin. Separ. Purif. Tech. 2023 322 124333 10.1016/j.seppur.2023.124333
    [Google Scholar]
  51. Mafa P.J. Malefane M.E. Opoku F. Mamba B.B. Kuvarega A.T. Visible light responsive MoS2/Ag@WO3/EG photoanode with highly stable Z-scheme induced circular electron motion pioneered by Exfoliated graphite for bisphenol a photoelectrodegradation. Chem. Eng. J. 2023 464 142462 10.1016/j.cej.2023.142462
    [Google Scholar]
  52. Ma J. Yin X. Cheng Y. Wang C. Wu Q. Zhang Q. Zhao L. Zhou J. Wang J. Zhang D. Metal self-reducing triggered green etching for the CuO@Ag composite synthesis and its application in high-sensitive lateral flow immunoassay. Chem. Eng. J. 2024 498 155341 10.1016/j.cej.2024.155341
    [Google Scholar]
  53. Ji Y. Cui M. Wei J. Shi Y. Bao L. Tian Z. Hu X. Zhang X. Li C. Interfacial oxygen vacancy engineering and built-in electric field mediated Z-scheme In2O3/Ag3PO4 heterojunction for boosted photocatalytic doxycycline degradation. Chem. Eng. J. 2024 489 151216 10.1016/j.cej.2024.151216
    [Google Scholar]
  54. Zhao J. Chen J. Tang J. Dai Y. Wang S. Fan W. Pang B. Jiang J. Gu C. Jiang T. Wu K. Artificial intelligence assisted label-free surface-enhanced Raman scattering detection of early-stage cancer-derived exosomes based on g-C3N4/Ag hybrid substrate prepared by electro-synthesis. Chem. Eng. J. 2024 498 155526 10.1016/j.cej.2024.155526
    [Google Scholar]
  55. Wang G. Li Y. Zhu W. Shao F. Cao Q. Wang J. Efficient electrocatalytic alkyne Semi-Hydrogenation and deuteration using Pd/PANI catalysts supported on nickel foam. Chem. Eng. J. 2024 489 151271 10.1016/j.cej.2024.151271
    [Google Scholar]
  56. Lu M. Sun J. Cui B. Zhang J. Ren J. Li R. Construction of Pd, Ru/2D MXene nanosheets/3D self-supporting nickel foam composite electrode and its electrocatalytic synergistic degradation of antibiotics. Separ. Purif. Tech. 2024 340 126736 10.1016/j.seppur.2024.126736
    [Google Scholar]
  57. Zhu Z. Liu C. Jiang F. Liu J. Ma X. Liu P. Xu J. Wang L. Huang R. Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 2020 399 123054 10.1016/j.jhazmat.2020.123054 32526430
    [Google Scholar]
  58. Gao W. Zhang X. Su X. Wang F. Liu Z. Liu B. Zhan J. Liu H. Sang Y. Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs. Chem. Eng. J. 2018 346 77 84 10.1016/j.cej.2018.04.017
    [Google Scholar]
  59. Xie J. Liu Q. Huang L. Chen X. Zhao C. Wu X. Lin T. Wu Y. Gao M. Lin C. Piezo-Fenton catalysis in Fe3O4-BaTiO3 nanocomposites: A low-cost and highly efficient degradation method without the additive of H2O2 or Fe(II) ions. Chem. Eng. J. 2024 487 150685 10.1016/j.cej.2024.150685
    [Google Scholar]
  60. Ai M. Peng Z. Li X. Idrees F. Zhang X. Zou J.J. Pan L. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis. Green Energy & Environment 2024 9 9 1466 1476 10.1016/j.gee.2023.12.001
    [Google Scholar]
  61. Wang S. Zhang D. Hu W. Li Y. Efficient generation of singlet oxygen on Fe2O3/MoO3 Z-type heterojunction for removal of ciprofloxacin from water via photo-electro-Fenton-like system. Chem. Eng. J. 2024 497 154400 10.1016/j.cej.2024.154400
    [Google Scholar]
  62. Pan B. Wu Y. Rhimi B. Qin J. Huang Y. Yuan M. Wang C. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. J. Energy Chem. 2021 57 1 9 10.1016/j.jechem.2020.08.024
    [Google Scholar]
  63. Liu Y. Gao C. Liu L. Wang H. T-mode adsorption and photoelectrocatalysis degradation for acyclovir on CuMn2O4@WO3/g-C3N4 electrode. Chem. Eng. J. 2023 464 142577 10.1016/j.cej.2023.142577
    [Google Scholar]
  64. Wang Y. Yu N. Xing M. Xu Z. Shen K. Wu J. Feng Y. Photoelectrocatalysis degradation of P-aminophenol using PbO2-TiO2 heterojunction electrode: Catalytic, theoretical calculating and mechanism. J. Environ. Chem. Eng. 2024 12 5 113304 10.1016/j.jece.2024.113304
    [Google Scholar]
  65. Zhang B. Li X. Ma Y. Jiang T. Zhu Y. Ren H. Visible-light photoelectrocatalysis/H2O2 synergistic degradation of organic pollutants by a magnetic Fe3O4@SiO2@mesoporous TiO2 catalyst-loaded photoelectrode. RSC Advances 2022 12 47 30577 30587 10.1039/D2RA05183D 36337955
    [Google Scholar]
  66. Jiang J. Wang X. Yue C. Li T. Li M. Li C. Dong S. Nitrogen vacancies induce sustainable redox of iron-cobalt bimetals for efficient peroxymonosulfate activation: Dual-path electron transfer. Chem. Eng. J. 2022 427 131702 10.1016/j.cej.2021.131702
    [Google Scholar]
  67. Teng C. Zhou K. Yang W. Zhang X. Peng C. Chen W. Unveiling the degradation of membrane concentrated landfill leachate during enhanced photocatalysis using spectroscopic approaches. J. Water Process Eng. 2021 43 102220 10.1016/j.jwpe.2021.102220
    [Google Scholar]
  68. Zhang M. Du M. Ren Y. Zhu Y. Dong Y. Liao J. Chen X. Zheng Q. Yin H. One-step synthesis N, O co-doped ZnIn2S4 for efficient photocatalytic H2 production and Cr(VI) reduction. J. Environ. Chem. Eng. 2024 12 4 113261 10.1016/j.jece.2024.113261
    [Google Scholar]
  69. Liu J. Liang R. Hu Z. Zhang X. Zhou M. Photoelectrocatalysis/photoelectro-Fenton system based on cone-like TiO2/nickel foam photoanode for efficient degradation of carbamazepine: Comparison with DSA. Chem. Eng. J. 2024 491 152088 10.1016/j.cej.2024.152088
    [Google Scholar]
  70. Ren G. Zhang J. Li S. Zhang L. Shao C. Wang X. Bai H. Z-scheme heterojunction composed of Fe-doped g-C3N4 and Bi2MoO6 for photo-fenton degradation of antibiotics over a wide pH range: Activity and toxicity assessment. Environ. Res. 2024 252 Pt 2 118886 10.1016/j.envres.2024.118886 38583659
    [Google Scholar]
  71. Shao C. Zhang J. Wang Z. Zhang L. Wang B. Ren J. Zhang X. He W. Photo-Fenton degradation of tetracycline on nitrogen vacancy and potassium-doped Z-scheme FeOCl/NvCN heterojunction with low H2O2 consumption: Activity and mechanism. J. Alloys Compd. 2024 970 172532 10.1016/j.jallcom.2023.172532
    [Google Scholar]
  72. Huo S. Deng J. Zhao Q. Wang Y. Fu W. Wu X. Gao M. Xie H. Partially amorphization induced S-scheme charge migration in g-C3N4/Mn1.1Fe1.9O4 defective heterojunction for boosting fenton-like degradation of tetracycline under visible light. Chem. Eng. J. 2024 494 153088 10.1016/j.cej.2024.153088
    [Google Scholar]
  73. Zamora V. Aranda-Aguirre A. Valdivia-Alvarez D. Corzo A. Garcia-Segura S. Cerrón-Calle G.A. Alarcon H. Synthesis and evaluation of a self-standing CuBi2O4/CuO/Fe2O3 electrode for arsenic removal via photoelectrocatalysis. J. Environ. Chem. Eng. 2024 12 5 113397 10.1016/j.jece.2024.113397
    [Google Scholar]
  74. Candia-Onfray C. Irikura K. Calzadilla W. Rojas S. Boldrin Zanoni M.V. Salazar R. Degradation of contaminants of emerging concern in a secondary effluent using synthesized MOF-derived photoanodes: A comparative study between photo-, electro- and photoelectrocatalysis. Chemosphere 2023 315 137683 10.1016/j.chemosphere.2022.137683 36586445
    [Google Scholar]
  75. Feitosa M.H.A. Santos A.M. Wong A. Moraes C.A.F. Grosseli G.M. Nascimento O.R. Fadini P.S. Moraes F.C. Photoelectrocatalytic removal of antibiotic ciprofloxacin using a photoanode based on Z-scheme heterojunction. Chem. Eng. J. 2024 493 152291 10.1016/j.cej.2024.152291
    [Google Scholar]
  76. Muchen Lu J.S. Liu X. Zhang J. Zhang L. Wang Y. He W. MXene/TiO2 NAs on CC flexible electrode for electrocatalytic antibiotic degradation: Performance, Mechanistic insights, and Toxicological assessment. Chem. Eng. J. 2024
    [Google Scholar]
/content/journals/cac/10.2174/0115734110351701241122105401
Loading
/content/journals/cac/10.2174/0115734110351701241122105401
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test