Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Cyanide is a toxic anion and may be discarded into the water environment, which is a serious threat to human beings and the environment. Hence, it is essential to explore a facile, sensitive method for cyanide detection. Polyaniline/Cu-vanadate nanobelts serve as electrode materials for sensitive cyanide determination.

Methods

Polyaniline/Cu-vanadate nanobelts were obtained by a simple route using polyaniline, Cu-vanadate nanobelts. The polyaniline/Cu-vanadate nanobelts were measured electron microscopy, diffraction, infrared spectrum, and electrochemical methods.

Results

Amorphous polyaniline nanoparticles with a particle size of about 100 nm were attached firmly to the surface of Cu-vanadate nanobelts. Electrochemical sensing properties for cyanide detection were analyzed using a cyclic voltammetry technique using the nanobelts-modified electrode. The cyclic voltammograms (CV) peaks centered at +0.64 V and +0.54 V were observed using the polyaniline/Cu-vanadate nanobelts in 0.1 M KCl solution with 2 mM cyanide. The proposed composite nanobelt-modified electrode possessed the detection range and detection limit of 0.001-2 mM and 0.22 μM, respectively.

Conclusion

Polyaniline greatly enhances the electro-catalytic performance of the Cu-vanadate nanobelt-modified electrode for cyanide detection.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110322886240918105204
2024-10-01
2025-10-13
Loading full text...

Full text loading...

References

  1. KwonS.K. KouS. KimH.N. ChenX. HwangH. NamS.W. KimS.H. SwamyK.M.K. ParkS. YoonJ. Sensing cyanide ion via fluorescent change and its application to the microfluidic system.Tetrahedron Lett.200849264102410510.1016/j.tetlet.2008.04.139
    [Google Scholar]
  2. SadyrbaevaT.Z. Gold(III) recovery from non-toxic electrolytes using hybrid electrodialysis–electrolysis process.Separ. Purif. Tech.20128626226510.1016/j.seppur.2011.10.007
    [Google Scholar]
  3. SunY. WangG. GuoW. Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives.Tetrahedron200965173480348510.1016/j.tet.2009.02.023
    [Google Scholar]
  4. VallejosS. EstévezP. GarcíaF.C. SernaF. de la PeñaJ.L. GarcíaJ.M. Putting to work organic sensing molecules in aqueous media: fluorene derivative-containing polymers as sensory materials for the colorimetric sensing of cyanide in water.Chem. Commun. (Camb.)201046427951795310.1039/c0cc02143a 20859574
    [Google Scholar]
  5. LiH. ChenT. JinL. KanY. YinB. Colorimetric and fluorometric dual-modal probes for cyanide detection based on the doubly activated Michael acceptor and their bioimaging applications.Anal. Chim. Acta201485220321110.1016/j.aca.2014.09.018 25441899
    [Google Scholar]
  6. LiS. SunJ. LiuG. ZhangS. ZhangZ. WangX. A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol.Chin. Chem. Lett.202435810914810.1016/j.cclet.2023.109148
    [Google Scholar]
  7. LiS. WangB. LiuG. LiX. SunC. ZhangZ. WangX. Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu(i)-complex-modified polyoxometalate.Inorg. Chem. Front.20241151561157210.1039/D3QI02513F
    [Google Scholar]
  8. WangX. SunZ. YuC. CaiZ. FanC. PeiL. Synthesis and efficient electrocatalytic performance of Bi 2 O 3/Dy 2 O 3 nanoflakes.Int. J. Mater. Res.2023114320721810.1515/ijmr‑2022‑0338
    [Google Scholar]
  9. HuangJ. TaoF. SunZ. LiF. CaiZ. ZhangY. FanC. PeiL. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of l-cysteine.Microchem. J.20221821110791510.1016/j.microc.2022.107915
    [Google Scholar]
  10. TaoF. YuC. HuangJ. LiF. CaiZ. FanC. PeiL. Synthesis and properties of BiDy composite electrode materials in electrochemical sensors.Mater. Chem. Front.20226192880289310.1039/D2QM00298A
    [Google Scholar]
  11. GovindharajK. GovindasamyM. GokilaN. HuangC.H. RajajiU. AlbaqamiM.D. KumarR.T.R. Green sonochemical synthesis of ZnCo2O4 decorated with carbon nanofibers for enhanced electrochemical detection of bisphenol A in food products.Mikrochim. Acta2024191846010.1007/s00604‑024‑06511‑0 38987355
    [Google Scholar]
  12. QiX. WangZ. YuanH. GaoH. RenX. ChenH. ZhangH. ChangD. PanH. A novel electrochemical sensing based on cerium oxide/nitrogen-doped reduced graphene oxide for sensitive detection of acetaminophen.J. Electrochem. Soc.2024171707751510.1149/1945‑7111/ad6296
    [Google Scholar]
  13. MaJ. DasguptaP.K. Recent developments in cyanide detection: A review.Anal. Chim. Acta2010673211712510.1016/j.aca.2010.05.042 20599024
    [Google Scholar]
  14. LangmaierJ. JanataJ. Sensitive layer for electrochemical detection of hydrogen cyanide.Anal. Chem.199264552352710.1021/ac00029a014
    [Google Scholar]
  15. AbbaspourA. AsadiM. GhaffarinejadA. SafaeiE. A selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinatocobalt(II).Talanta200566493193610.1016/j.talanta.2004.12.062 18970074
    [Google Scholar]
  16. TemboP.M. DhabardeN. SubramanianV. TiO2 nanotube-based sensor for the detection of cyanide in water.J. Electrochem. Soc.2021168505752710.1149/1945‑7111/ac0228
    [Google Scholar]
  17. WangJ. SunJ. HuangJ. FakhriA. GuptaV.K. Synthesis and its characterization of silver sulfide/nickel titanate/chitosan nanocomposites for photocatalysis and water splitting under visible light, and antibacterial studies.Mater. Chem. Phys.202127212499010.1016/j.matchemphys.2021.124990
    [Google Scholar]
  18. LiuY. ZongL. ZhangC. LiuW. FakhriA. GuptaV.K. Design and structural of Sm-doped SbFeO3 nanopowders and immobilized on poly(ethylene oxide) for efficient photocatalysis and hydrogen generation under visible light irradiation.Surf. Interfaces20212610129210.1016/j.surfin.2021.101292
    [Google Scholar]
  19. BahadoranA. LiuQ. LiuB. GuJ. ZhangD. FakhriA. GuptaV.K. Fabrication and structural of gold/cerium nanoparticles on tin disulfide nanostructures and decorated on hyperbranched polyethyleneimine for photocatalysis, reduction, hydrogen production and antifungal activities.J. Photochem. Photobiol. Chem.202141611331610.1016/j.jphotochem.2021.113316
    [Google Scholar]
  20. MahdiA.A. ObeidR.A. AbdullahK. MohammedS. KadhimA.J. RamadanM.F. HussienB.M. AlkahtaniA. AliF.A. AlkhathamiA.G. Al-FatolahiL. FakhriA. A facile construction of NiV2O6/CeO2 nano-heterojunction for photo-operated process in water remediation reaction, antibacterial studies, and detection of D-Amino acid in peroxidase system.Surf. Interfaces20234010297010.1016/j.surfin.2023.102970
    [Google Scholar]
  21. ZhangY. XuW. LiuY. HuangW. YangW. A novel electrochemical ion imprinting sensor modified with carbon nanocomposites and its high selectivity for cadmium ion detection in real samples.Polym. Int.202372121096110310.1002/pi.6558
    [Google Scholar]
  22. BhuvaneswariC. Ganesh BabuS. Review of 2-D support-based nanocomposites for electrocatalytic detection of pharmaceutical drugs.J. Mater. Sci.20245926116871171710.1007/s10853‑024‑09900‑1
    [Google Scholar]
  23. TanF. ZhaoQ. TengF. SunD. GaoJ. QuanX. ChenJ. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin.Mater. Lett.2014129959710.1016/j.matlet.2014.05.039
    [Google Scholar]
  24. YuvashreeS. BalavijayalakshmiJ. Polymer functionalized carbon/metal nanohybrids as a versatile electrochemical sensor for the detection of p-Aminophenol.Mater. Res. Express20196707560410.1088/2053‑1591/ab11fa
    [Google Scholar]
  25. ChenH.J. LinF.F. YuC.H. XueZ.Y. WangZ. PeiL.Z. WuH. WangP.X. CongQ.M. FanC.G. LingX.Z. Polyaniline/Ba bismuthate nanobelts for sensitive electrochemical detection of tartaric acid.Int. J. Electrochem. Sci.20201521742175610.20964/2020.02.55
    [Google Scholar]
  26. DeshmukhM.A. KangB.C. HaT.J. Non-enzymatic electrochemical glucose sensors based on polyaniline/reduced-graphene-oxide nanocomposites functionalized with silver nanoparticles. J. Mater. Chem. C Mater.Opt. Electron. Dev.20208155112512310.1039/C9TC06836H
    [Google Scholar]
  27. HeC. YanR. XueQ. LiS. WangH. Electrochemical malathion sensors based on phytic acid-doped polyaniline and overoxidized polyaniline nanorods.J. Mater. Sci.20235831200121310.1007/s10853‑022‑08052‑4
    [Google Scholar]
  28. KhadievaA.I. GorbachukV.V. EvtugynG.A. BelyakovaS.V. LatypovR.R. DrobyshevS.V. StoikovI.I. Phenyliminophenothiazine based self-organization of polyaniline nanowires and application as redox probe in electrochemical sensors.Sci. Rep.20199141710.1038/s41598‑018‑36937‑5 30674972
    [Google Scholar]
  29. JiaoW. DingG. WangL. LiuY. ZhanT. Polyaniline functionalized CoAl-layered double hydroxide nanosheets as a platform for the electrochemical detection of carbaryl and isoprocarb.Mikrochim. Acta202218927810.1007/s00604‑022‑05183‑y 35094165
    [Google Scholar]
  30. PeiL. LinN. WeiT. LiuH. YuH. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid.J. Mater. Chem. A Mater. Energy Sustain.2015362690270010.1039/C4TA05946H
    [Google Scholar]
  31. LinN. PeiL. WeiT. LiuH. CaiZ. Electrochemical sensor based on glassy carbon electrode modified with copper vanadate nanobelts for detection of benzoic acid.IET Sci. Measur. Technol.201610424725210.1049/iet‑smt.2015.0089
    [Google Scholar]
  32. MonsefR. Salavati-NiasariM. Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples.Biosens. Bioelectron.202117811301710.1016/j.bios.2021.113017 33493895
    [Google Scholar]
  33. HanG. YangS. HuangY. YangJ. ChaiW. ZhangR. ChenD. Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies.Trans. Nonferrous Met. Soc. China20172751105111610.1016/S1003‑6326(17)60129‑8
    [Google Scholar]
  34. GaoH. WangF. WangS. WangX. YiZ. YangH. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism.Mater. Res. Bull.201911514014910.1016/j.materresbull.2019.03.021
    [Google Scholar]
  35. DąbrowskaG. TaberoP. KurzawaM. Phase relations in the Al2O3-V2O5-MoO3 system in the solid state. The crystal structure of AlVO4.J. Phase Equilibria Diffus.200930322022910.1007/s11669‑009‑9503‑4
    [Google Scholar]
  36. Blonska-TaberoA. Phases in the subsolidus area of the system CuO–V2O5–Fe2O3.J. Therm. Anal. Calorim.2012109268569110.1007/s10973‑012‑2210‑0
    [Google Scholar]
  37. PalaniappanS. Chemical and electrochemical polymerization of aniline using tartaric acid.Eur. Polym. J.200137597598110.1016/S0014‑3057(00)00207‑X
    [Google Scholar]
  38. TrchováM. ŠeděnkováI. StejskalJ. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation.Synth. Met.20051541-31410.1016/j.synthmet.2005.07.001
    [Google Scholar]
  39. ShamsipurM. KarimiZ. Amouzadeh TabriziM. A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode.Microchem. J.201713348548910.1016/j.microc.2017.04.017
    [Google Scholar]
  40. IbrahimA.M.A. Construction of supramolecular copper architecture via tetrahedral Cu(CN)4 building blocks and trigonal bipyramidal [R3Sn] connecting units.J. Organomet. Chem.19985561-21910.1016/S0022‑328X(97)00703‑1
    [Google Scholar]
  41. BaiY.H. XuJ.J. ChenH.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes.Biosens. Bioelectron.200924102985299010.1016/j.bios.2009.03.008 19345085
    [Google Scholar]
  42. PeiL.Z. WeiT. LinN. CaiZ.Y. FanC.G. YangZ. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine.J. Electrochem. Soc.20161632H1H810.1149/2.0041602jes
    [Google Scholar]
  43. SafaviA. MalekiN. ShahbaaziH.R. Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode.Anal. Chim. Acta2004503221322110.1016/j.aca.2003.10.032
    [Google Scholar]
  44. LindsayA.E. O’HareD. The development of an electrochemical sensor for the determination of cyanide in physiological solutions.Anal. Chim. Acta20065581-215816310.1016/j.aca.2005.11.036
    [Google Scholar]
  45. BohrerD. do NascimentoP.C. Garcia PomblumS. SeibertE. Machado de CarvalhoL. Polarographic determination of cyanide as nickelcyano complex in blood plasma after selective extraction in a methylene blue impregnated polyethylene column.Fresenius J. Anal. Chem.1998361878078310.1007/s002160051015
    [Google Scholar]
  46. TaheriA. NoroozifarM. Khorasani-MotlaghM. Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol–gel.J. Electroanal. Chem. (Lausanne)20096281-2485410.1016/j.jelechem.2009.01.003
    [Google Scholar]
  47. GhalkhaniM. BakirhanN.K. OzkanS.A. Combination of efficiency with easiness, speed, and cheapness in development of sensitive electrochemical sensors.Crit. Rev. Anal. Chem.202050653855310.1080/10408347.2019.1664281 31559831
    [Google Scholar]
  48. GhalkhaniM. Ghorbani-BidkorbehF. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis.Iran. J. Pharm. Res.201918265866910.22037/IJPR.2019.1100645 31531049
    [Google Scholar]
  49. XiaX. DuolihongB. MaX. YueS. LiuR. Peroxidase-modified Au @sulfur-doped graphene was constructed for the electrochemical determination of trans-resveratrol.J. Solid State Electrochem.20242882669267710.1007/s10008‑024‑05824‑7
    [Google Scholar]
  50. FandeS. AmreenK. SriramD. GoelS. Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli.Anal. Chim. Acta2023123734059110.1016/j.aca.2022.340591 36442949
    [Google Scholar]
  51. PutraB.R. NisaU. HeryantoR. RohaetiE. KhalilM. IzzataddiniA. WahyuniW.T. A facile electrochemical sensor based on a composite of electrochemically reduced graphene oxide and a PEDOT: PSS modified glassy carbon electrode for uric acid detection.Anal. Sci.202238115716610.2116/analsci.21P214 35287218
    [Google Scholar]
  52. PeiL. MaY. QiuF. LinF. FanC. LingX. Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde.Curr. Anal. Chem.202016449349810.2174/1573411014666181115125050
    [Google Scholar]
/content/journals/cac/10.2174/0115734110322886240918105204
Loading
/content/journals/cac/10.2174/0115734110322886240918105204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test