Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

Long COVID, also known as post-COVID-19 syndrome (PCS), is a condition where individuals continue to experience symptoms for weeks or months after recovering from COVID-19. The aim of this study was to evaluate the long-term effects of severe COVID-19 on promotor methylation and expression genes including CCR5, CCR6, CCR9 and CCL3 in children.

Material and Methods

Clinical data and blood samples from 94 long COVID patients and 25 healthy subjects were collected. The control group was age-matched. Promotor methylation and mRNA expression of CCR5, CCR6, CCR9 and CCL3 genes in these patients and control group were assessed through methylation-specific PCR and Real-time PCR assay.

Results

Our result indicated that promotor of CCR5 ( = 0.01) and CCL3 ( = 0.006) in long COVID children were hyper-methylated compared to healthy control group. Subsequently CCR5 and CCL3 transcript was decreased compared to control group ( = 0.01). In addition, CCL3 transcript in children with long COVID was decreased compared to control group ( = 0.008). On the other hand, we did not observe any significant modification in the transcript levels of CCR6 ( = 0.7) and CCR9 ( = 0.46) in children with long COVID in comparison to all control groups.

Conclusion

The CCR5 and CCL3 promoter region DNA methylation and the subsequent decrease in the expression of these genes were possibly correlated with long COVID occurrence in children. Our study revealed additional data on the SARS-CoV-2 mediated inflammatory response.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110322535240909080255
2024-09-30
2025-10-13
Loading full text...

Full text loading...

References

  1. ZandiM. BehboudiE. SoltaniS. Role of Glycoprotein Hemagglutinin-Esterase in COVID-19 Pathophysiology?Stem Cell Rev. Rep.20211762359236010.1007/s12015‑021‑10210‑1
    [Google Scholar]
  2. AbdelrahmanM.M. Abd-ElrahmanN.M. BakheetT.M. Persistence of symptoms after improvement of acute COVID19 infection, A longitudinal study.J. Med. Virol.202193105942594610.1002/jmv.27156 34171139
    [Google Scholar]
  3. EmadiM. S. SoltaniS. NooriB. ZandiM. ShateriZ. TabibzadehA. BehboudiE. ErfaniY. TabaeianS. P. PourhosseinB. DidehdarM. Highly Conserved Sequences in Envelope, Nucleoprotein, and RNA-Dependent RNA Polymerase of SARSCoV-2 in Nasopharyngeal Samples of COVID-19 Patients: A Diagnostic Target for Further Studies.J. Cell. Mol. Anesth.202272e14970710.22037/jcma.v7i2.36963
    [Google Scholar]
  4. AlomariM.A. AlzoubiK.H. KhabourO.F. HendawiM. Negative emotional symptoms during COVID19 confinement: The relationship with reading habits.Inform. Med. Unlocked20223110096210.1016/j.imu.2022.100962
    [Google Scholar]
  5. SubramanianA. NirantharakumarK. HughesS. MylesP. WilliamsT. GokhaleK.M. TavernerT. ChandanJ.S. BrownK. Simms-WilliamsN. ShahA.D. SinghM. KidyF. OkothK. HothamR. BashirN. CockburnN. LeeS.I. TurnerG.M. GkoutosG.V. AiyegbusiO.L. McMullanC. DennistonA.K. SapeyE. LordJ.M. WraithD.C. LeggettE. IlesC. MarshallT. PriceM.J. MarwahaS. DaviesE.H. JacksonL.J. MatthewsK.L. CamaradouJ. CalvertM. HaroonS. Symptoms and risk factors for long COVID in non-hospitalized adults.Nat. Med.20222881706171410.1038/s41591‑022‑01909‑w 35879616
    [Google Scholar]
  6. TsampasianV. ElghazalyH. ChattopadhyayR. DebskiM. NaingT.K.P. GargP. ClarkA. NtatsakiE. VassiliouV.S. Risk factors associated with Post−COVID-19 condition.JAMA Intern. Med.2023183656658010.1001/jamainternmed.2023.0750 36951832
    [Google Scholar]
  7. MorelloR. MarianiF. MastrantoniL. De RoseC. ZampinoG. MunblitD. SigfridL. ValentiniP. BuonsensoD. Risk factors for post-COVID-19 condition (Long Covid) in children: A prospective cohort study.EClinicalMedicine20235910196110.1016/j.eclinm.2023.101961 37073325
    [Google Scholar]
  8. PillayJ. RahmanS. GuitardS. WingertA. HartlingL. Risk factors and preventive interventions for post Covid-19 condition: Systematic review.Emerg. Microbes Infect.20221112762278010.1080/22221751.2022.2140612 36302216
    [Google Scholar]
  9. KocH.C. XiaoJ. LiuW. LiY. ChenG. Long COVID and its management.Int. J. Biol. Sci.202218124768478010.7150/ijbs.75056 35874958
    [Google Scholar]
  10. WangG.C. CasolaroV. Immunologic changes in frail older adults.Transl. Med. UniSa2014916
    [Google Scholar]
  11. FacciM.R. AurayG. BuchananR. Van KesselJ. ThompsonD.R. Mackenzie-DyckS. BabiukL.A. GerdtsV. A comparison between isolated blood dendritic cells and monocyte‐derived dendritic cells in pigs.Immunology2010129339640510.1111/j.1365‑2567.2009.03192.x 19922422
    [Google Scholar]
  12. DentonA.E. RobertsE.W. LintermanM.A. FearonD.T. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8 + T cells.Proc. Natl. Acad. Sci. USA201411133121391214410.1073/pnas.1412910111 25092322
    [Google Scholar]
  13. RusskampN.F. RuemmlerR. RoeweJ. MooreB.B. WardP.A. BosmannM. Experimental design of complement component 5a-induced acute lung injury (C5a-ALI): A role of CC-chemokine receptor type 5 during immune activation by anaphylatoxin.FASEB J.20152993762377210.1096/fj.15‑271635 25999468
    [Google Scholar]
  14. HubacekJ. DusekL. MajekO. AdamekV. CervinkovaT. DlouhaD. PavelJ. AdamkovaV. CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects.Physiol. Res.202170111111510.33549/physiolres.934647 33728925
    [Google Scholar]
  15. MeiteiH.T. JadhavN. LalG. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases.Autoimmun. Rev.202120710284610.1016/j.autrev.2021.102846 33971346
    [Google Scholar]
  16. SarisA. ReijndersT.D.Y. ReijmM. HollanderJ.C. de BuckK. SchuurmanA.R. DuitmanJ. HeunksL. AmanJ. BogaardH.J. NossentE.J. van der PollT. BontkesH.J. Enrichment of CCR6+ CD8+ T cells and CCL20 in the lungs of mechanically ventilated patients with COVID-19.Eur. J. Immunol.20215161535153810.1002/eji.202049046
    [Google Scholar]
  17. AndersonE. The role of the CCX-CKR chemokine receptor in immunity and tolerance.Institute of Infection, Immunity and Inflammation, University of Glasgow2011
    [Google Scholar]
  18. BajoghliB. Evolution and function of chemokine receptors in the immune system of lower vertebrates.Eur. J. Immunol.20134371686169210.1002/eji.201343557 23719857
    [Google Scholar]
  19. YaoY. YeF. LiK. XuP. TanW. FengQ. RaoS. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19.Signal Transduct. Target. Ther.2021618510.1038/s41392‑021‑00519‑1 33619245
    [Google Scholar]
  20. CoperchiniF. ChiovatoL. RicciG. CroceL. MagriF. RotondiM. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved.Cytokine Growth Factor Rev.202158829110.1016/j.cytogfr.2020.12.005 33573850
    [Google Scholar]
  21. BalnisJ. MadridA. HoganK.J. DrakeL.A. ChiengH.C. TiwariA. VincentC.E. ChopraA. VincentP.A. RobekM.D. SingerH.A. AlischR.S. JaitovichA. Blood DNA methylation and COVID-19 outcomes.Clin. Epigenetics202113111810.1186/s13148‑021‑01102‑9 34034806
    [Google Scholar]
  22. LiL.C. DahiyaR. MethPrimer: Designing primers for methylation PCRs.Bioinformatics200218111427143110.1093/bioinformatics/18.11.1427 12424112
    [Google Scholar]
  23. ZandiM. BehboudiE. ShojaeiM.R. SoltaniS. KaramiH. Letter to the editor regarding “An overview on serology and molecular tests for COVID-19: An important challenge of the current century”.Iran. J. Immunol.2022193337337
    [Google Scholar]
  24. DaniM. DirksenA. TaraborrelliP. TorocastroM. PanagopoulosD. SuttonR. LimP.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies.Clin. Med. (Lond.)2021211e63e6710.7861/clinmed.2020‑0896 33243837
    [Google Scholar]
  25. BinnieA. WalshC.J. HuP. DwivediD.J. Fox-RobichaudA. LiawP.C. TsangJ.L.Y. BattJ. CarrasqueiroG. GuptaS. MarshallJ.C. Castelo-BrancoP. Dos SantosC.C. Epigenetic profiling in severe sepsis: A pilot study of DNA methylation profiles in critical illness.Crit. Care Med.202048214215010.1097/CCM.0000000000004097
    [Google Scholar]
  26. FanZ. ChenL. LiJ. ChengX. YangJ. TianC. ZhangY. HuangS. LiuZ. ChengJ. Clinical features of COVID-19-related liver functional abnormality.Clin. Gastroenterol. Hepatol.20201871561156610.1016/j.cgh.2020.04.002 32283325
    [Google Scholar]
  27. AgrestiN. LalezariJ.P. AmodeoP.P. ModyK. MosherS.F. SeethamrajuH. KellyS.A. PourhassanN.Z. SudduthC.D. BovinetC. ElSharkawiA.E. PattersonB.K. StephenR. SachaJ.B. WuH.L. GrossS.A. DhodyK. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab.J. Transl. Autoimmun.2021410008310.1016/j.jtauto.2021.100083 33521616
    [Google Scholar]
  28. ZengZ. LanT. WeiY. WeiX. CCL5/CCR5 axis in human diseases and related treatments.Genes Dis.202291122710.1016/j.gendis.2021.08.004 34514075
    [Google Scholar]
  29. PattersonB.K. SeethamrajuH. DhodyK. CorleyM.J. KazempourK. LalezariJ. PangA.P.S. SugaiC. MahyariE. FranciscoE.B. PiseA. RodriguesH. WuH.L. WebbG.M. ParkB.S. KellyS. PourhassanN. LelicA. KdouhL. HerreraM. HallE. BimberB.N. PlassmeyerM. GuptaR. AlpanO. O’HalloranJ.A. MuddP.A. AkalinE. NdhlovuL.C. SachaJ.B. CCR5 inhibition in critical COVID-19 patients decreases inflammatory cytokines, increases CD8 T-cells, and decreases SARS-CoV2 RNA in plasma by day 14.Int. J. Infect. Dis.2021103253210.1016/j.ijid.2020.10.101 33186704
    [Google Scholar]
  30. KorobovaZ.R. ArsentievaN.A. LiubimovaN.E. DedkovV.G. GladkikhA.S. SharovaA.A. ChernykhE.I. KashchenkoV.A. RatnikovV.A. GorelovV.P. StanevichO.V. KulikovA.N. PevtsovD.E. TotolianA.A. A comparative study of the plasma chemokine profile in COVID-19 patients infected with different SARS-CoV-2 variants.Int. J. Mol. Sci.20222316905810.3390/ijms23169058 36012323
    [Google Scholar]
  31. Mirończuk-ChodakowskaI. KujawowiczK. WitkowskaA.M. Beta-Glucans from fungi: Biological and health-promoting potential in the COVID-19 pandemic era.Nutrients20211311396010.3390/nu13113960 34836215
    [Google Scholar]
  32. WechslerJ.B. ButuciM. WongA. KambojA.P. YoungbloodB.A. Mast cell activation is associated with post-acute COVID-19 syndrome.Allergy20227441288129110.1111/all.15188
    [Google Scholar]
  33. SoyM. KeserG. AtagündüzP. TabakF. AtagündüzI. KayhanS. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment.Clin. Rheumatol.20203972085209410.1007/s10067‑020‑05190‑5 32474885
    [Google Scholar]
  34. Gómez-MeleroS. Caballero-VillarrasoJ. CCR6 as a potential target for therapeutic antibodies for the treatment of inflammatory diseases.Antibodies (Basel)20231223010.3390/antib12020030 37092451
    [Google Scholar]
  35. LiaoS.Y. LinderholmA. ShowalterM.R. ChenC.H. FiehnO. KenyonN.J. L‐arginine as a potential GLP‐1‐mediated immunomodulator of Th17‐related cytokines in people with obesity and asthma.Obes. Sci. Pract.20217333934510.1002/osp4.500 34123401
    [Google Scholar]
  36. ZuoT. ZhangF. LuiG.C.Y. YeohY.K. LiA.Y.L. ZhanH. WanY. ChungA.C.K. CheungC.P. ChenN. LaiC.K.C. ChenZ. TsoE.Y.K. FungK.S.C. ChanV. LingL. JoyntG. HuiD.S.C. ChanF.K.L. ChanP.K.S. NgS.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization.Gastroenterology20201593944955.e810.1053/j.gastro.2020.05.048 32442562
    [Google Scholar]
  37. EllinghausD. DegenhardtF. BujandaL. ButiM. AlbillosA. InvernizziP. FernándezJ. PratiD. BaselliG. AsseltaR. GrimsrudM.M. MilaniC. AzizF. KässensJ. MayS. WendorffM. WienbrandtL. Uellendahl-WerthF. ZhengT. YiX. de PabloR. ChercolesA.G. PalomA. Garcia-FernandezA.E. Rodriguez-FriasF. ZanellaA. BanderaA. ProttiA. AghemoA. LleoA. BiondiA. Caballero-GarraldaA. GoriA. TanckA. Carreras NollaA. LatianoA. FracanzaniA.L. PeschuckA. JuliàA. PesentiA. VozaA. JiménezD. MateosB. Nafria JimenezB. QueredaC. PaccapeloC. GassnerC. AngeliniC. CeaC. SolierA. PestañaD. Muñiz-DiazE. SandovalE. ParaboschiE.M. NavasE. García SánchezF. CeriottiF. Martinelli-BoneschiF. PeyvandiF. BlasiF. TéllezL. Blanco-GrauA. Hemmrich-StanisakG. GrasselliG. CostantinoG. CardamoneG. FotiG. AneliS. KuriharaH. ElAbdH. MyI. Galván-FemeniaI. MartínJ. ErdmannJ. Ferrusquía-AcostaJ. Garcia-EtxebarriaK. Izquierdo-SanchezL. BettiniL.R. SumoyL. TerranovaL. MoreiraL. SantoroL. ScudellerL. MesoneroF. RoadeL. RühlemannM.C. SchaeferM. CarrabbaM. Riveiro-BarcielaM. Figuera BassoM.E. ValsecchiM.G. Hernandez-TejeroM. Acosta-HerreraM. D’AngiòM. BaldiniM. CazzanigaM. SchulzkyM. CecconiM. WittigM. CiccarelliM. Rodríguez-GandíaM. BoccioloneM. MiozzoM. MontanoN. BraunN. SacchiN. MartínezN. ÖzerO. PalmieriO. FaverioP. PreatoniP. BonfantiP. OmodeiP. TentorioP. CastroP. RodriguesP.M. Blandino OrtizA. de CidR. FerrerR. GualtierottiR. NietoR. GoergS. BadalamentiS. MarsalS. MatulloG. PelusiS. JuzenasS. AlibertiS. MonzaniV. MorenoV. WesseT. LenzT.L. PumarolaT. RimoldiV. BosariS. AlbrechtW. PeterW. Romero-GómezM. D’AmatoM. DugaS. BanalesJ.M. HovJ.R. FolseraasT. ValentiL. FrankeA. KarlsenT.H. Genomewide association study of severe Covid-19 with respiratory failure.N. Engl. J. Med.2020383161522153410.1056/NEJMoa2020283 32558485
    [Google Scholar]
  38. SvenssonM. AgaceW.W. Role of CCL25/CCR9 in immune homeostasis and disease.Expert Rev. Clin. Immunol.20062575977310.1586/1744666X.2.5.759 20477631
    [Google Scholar]
/content/journals/cac/10.2174/0115734110322535240909080255
Loading
/content/journals/cac/10.2174/0115734110322535240909080255
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CCL3; CCR5; CCR6; CCR9; long COVID; Methylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test