Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Essential oils (EOs) are recognized for their potent insecticidal activity and are widely considered promising agents for pest control.

Methods

The insecticidal activity of seven commercial citrus EOs against the global phytophagous pest was evaluated using bioassays conducted under laboratory conditions. Moreover, the chemical composition of these EOs was analyzed using gas chromatography-mass spectrometry (GC-MS).

Results

Among the 45 identified compounds, the major constituents were d-limonene (23.77%–95.10%), methyl jasmonate (38.76%), and linalyl acetate (34.55%). Orange flower oil, sweet orange oil, tangerine peel oil, bergamot oil, lime oil, lemon oil, and grapefruit oil exhibited good insecticidal activity against without demonstrating significant repellent activity. Orange flower oil and sweet orange oil showed higher insecticidal toxicity, with LC values of 0.20 g/L and 0.37 g/L, respectively. In pot experiments, the higher control efficacy against was found after 7 days of treatment for orange flower oil (91.14±1.27% at 720.00 g a.i.·hm−2 and 100% at 900.00 g a.i.·hm−2), sweet orange oil (91.14±5.52% at 900.00 g a.i.·hm−2), tangerine peel oil (96.20±2.19% at 720 g a.i.·hm−2 and 100% at 900.00 g a.i.·hm−2), lemon oil (96.20±2.19% at 900 g a.i.·hm−2), and lime oil (97.47±2.53% at 900.00 g a.i.·hm−2).

Conclusion

Taken together, orange flower oil and tangerine peel oil, which were found to contain d-limonene and methyl jasmonate, demonstrated rapid and more effective insecticidal activity compared to the other EOs tested, which makes these two EOs promising alternatives to chemical insecticides.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110289423240216062120
2024-02-28
2025-10-13
Loading full text...

Full text loading...

References

  1. DearaújoE. de QueirozL.P. MachadoM.A. What is Citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae).Org. Divers. Evol.200331556210.1078/1439‑6092‑00058
    [Google Scholar]
  2. DosokyN. SetzerW. Biological activities and safety of Citrus spp. essential oils.Int. J. Mol. Sci.2018197196610.3390/ijms19071966 29976894
    [Google Scholar]
  3. CirmiS. NavarraM. WoodsideJ.V. CantwellM.M. Citrus fruits intake and oral cancer risk: A systematic review and meta-analysis.Pharmacol. Res.201813318719410.1016/j.phrs.2018.05.008 29753688
    [Google Scholar]
  4. MaugeriA. CirmiS. MinciulloP.L. GangemiS. CalapaiG. MollaceV. NavarraM. Citrus fruits and inflammaging: A systematic review.Phytochem. Rev.20191841025104910.1007/s11101‑019‑09613‑3
    [Google Scholar]
  5. FerlazzoN. CirmiS. CalapaiG. Ventura-SpagnoloE. GangemiS. NavarraM. Anti-inflammatory activity of Citrus bergamia derivatives: Where do we stand?Molecules20162110127310.3390/molecules21101273 27669206
    [Google Scholar]
  6. MannucciC. NavarraM. CalapaiF. SqueriR. GangemiS. CalapaiG. Clinical pharmacology of Citrus bergamia: A systematic review.Phytother. Res.2017311273910.1002/ptr.5734 27747942
    [Google Scholar]
  7. MandalariG. BisignanoC. CirmiS. NavarraM. Effectiveness of Citrus fruits on Helicobacter pylori.Evid. Based Complement. Alternat. Med.201720171810.1155/2017/8379262 28408943
    [Google Scholar]
  8. RussoC. MaugeriA. LombardoG.E. MusumeciL. BarrecaD. RapisardaA. CirmiS. NavarraM. The second life of Citrus fruit waste: A valuable source of bioactive compounds.Molecules20212619599110.3390/molecules26195991 34641535
    [Google Scholar]
  9. AnwarF. NaseerR. BhangerM.I. AshrafS. TalpurF.N. AladedunyeF.A. Physico-chemical characteristics of citrus seeds and seed oils from Pakistan.J. Am. Oil Chem. Soc.200885432133010.1007/s11746‑008‑1204‑3
    [Google Scholar]
  10. SharmaK. MahatoN. ChoM.H. LeeY.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches.Nutrition201734294610.1016/j.nut.2016.09.006 28063510
    [Google Scholar]
  11. MartínM.A. SilesJ.A. ChicaA.F. MartínA. Biomethanization of orange peel waste.Bioresour. Technol.2010101238993899910.1016/j.biortech.2010.06.133 20655741
    [Google Scholar]
  12. RezzadoriK. BenedettiS. AmanteE.R. Proposals for the residues recovery: Orange waste as raw material for new products.Food Bioprod. Process.201290460661410.1016/j.fbp.2012.06.002
    [Google Scholar]
  13. FerhatM.A. MeklatiB.Y. SmadjaJ. ChematF. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel.J. Chromatogr. A200611121-212112610.1016/j.chroma.2005.12.030 16384566
    [Google Scholar]
  14. MaqboolZ. KhalidW. AtiqH.T. KoraqiH. JavaidZ. AlhagS.K. Al-ShuraymL.A. BaderD.M.D. AlmarzuqM. AfifiM. AL-FargaA. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry.Molecules2023284163610.3390/molecules28041636 36838623
    [Google Scholar]
  15. Ben HsounaA. SadakaC. Generalić MekinićI. GarzoliS. Švarc-GajićJ. RodriguesF. MoraisS. MoreiraM.M. FerreiraE. SpignoG. Brezo-BorjanT. AkachaB.B. SaadR.B. Delerue-MatosC. MnifW. The chemical variability, nutraceutical value, and food-industry and cosmetic applications of citrus plants: A critical review.Antioxidants202312248110.3390/antiox12020481 36830039
    [Google Scholar]
  16. da CamaraC.A.G. AkhtarY. IsmanM.B. SeffrinR.C. BornF.S. Repellent activity of essential oils from two species of Citrus against Tetranychus urticae in the laboratory and greenhouse.Crop Prot.20157411011510.1016/j.cropro.2015.04.014
    [Google Scholar]
  17. BehiF. BachrouchO. Boukhris-BouhachemS. Insecticidal activities of Mentha pulegium L., and Pistacia lentiscus L., essential oils against two Citrus aphids Aphis spiraecola Patch and Aphis gossypii Glover.J. Essent. Oil-Bear. Plants201922251652510.1080/0972060X.2019.1611483
    [Google Scholar]
  18. VisakhN.U. PathroseB. NarayanankuttyA. AlfarhanA. RameshV. Utilization of pomelo (Citrus maxima) peel waste into bioactive essential oils: Chemical composition and insecticidal properties.Insects202213548010.3390/insects13050480 35621814
    [Google Scholar]
  19. de Paiva SilvaG.T. FigueiredoK.G. AlvesD.S. de OliveiraD.F. SilvaG.H. de Souza e SilvaG.T. de OliveiraM.S. BiondiA. CarvalhoG.A. Survival and demography of the tomato borer (Tuta absoluta) exposed to citrus essential oils and major compounds.Agriculture202313353810.3390/agriculture13030538
    [Google Scholar]
  20. AlotaibiS.S. DarwishH. AlzahraniA.K. AlharthiS. AlghamdiA.S. Al-BartyA.M. HelalM. MaghrabiA. BaazeemA. AlamariH.A. NoureldeenA. Environment-friendly control potential of two citrus essential oils against Aphis punicae and Aphis illinoisensis (Hemiptera: Aphididae).Agronomy2022129204010.3390/agronomy12092040
    [Google Scholar]
  21. MoundL.A. AzidahA.A. Species of the genus Thrips (Thysanoptera) from Peninsular Malaysia, with a checklist of recorded Thripidae.Zootaxa202320095568
    [Google Scholar]
  22. GaoY. ShiS.S. XuM.L. CuiJ. Current research on soybean pest management in China.Oil Crop Sci.2018321522710.3969/j.issn.2096‑2428.2018.04.002
    [Google Scholar]
  23. SinghS.J. KrishnareddyM. Thrips flavus Schrank (Thysanoptera: Thripidae), a new insect vector of a tospovirus infecting watermelon in India.Pest Manage. Hortic. Ecosyst.19951115118
    [Google Scholar]
  24. GaoY. DingN. WangD. ZhaoY. CuiJ. LiW. PeiT. ShiS. Effect of temperature on the development and reproduction of Thrips flavus (Thysanoptera: Thripidae).Agric. For. Entomol.202224327928810.1111/afe.12491
    [Google Scholar]
  25. GaoY. ZhaoY. WangD. YangJ. DingN. ShiS. Effect of different plants on the growth and reproduction of Thrips flavus (Thysanoptera: Thripidae).Insects202112650210.3390/insects12060502 34071657
    [Google Scholar]
  26. GuZ. ZhangT. LongS. LiS. WangC. ChenQ. ChenJ. FengZ. CaoY. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations.J. Econ. Entomol.2023116241642510.1093/jee/toad026 36895199
    [Google Scholar]
  27. CloydR.A. GalleC.L. KeithS.R. KalscheurN.A. KempK.E. Effect of commercially available plant-derived essential oil products on arthropod pests.J. Econ. Entomol.200910241567157910.1603/029.102.0422 19736770
    [Google Scholar]
  28. ChaiebI. ZarradK. SellamR. TayebW. HammoudaA.B. LaarifA. BouhachemS. Chemical composition and aphicidal potential of Citrus aurantium peel essential oils.Entomol. Gen.2017371637510.1127/entomologia/2017/0317
    [Google Scholar]
  29. KoschierE.H. Essential oil compounds for thrips control-A review.Nat. Prod. Commun.2008371934578X080030010.1177/1934578X0800300726
    [Google Scholar]
  30. PeiT.H. ZhaoY.J. WangS.Y. LiX.F. SunC.Q. ShiS.S. XuM.L. GaoY. Preliminary study on insecticidal potential and chemical composition of five Rutaceae essential oils against Thrips flavus (Thysanoptera: Thripidae).Molecules2023287299810.3390/molecules28072998 37049761
    [Google Scholar]
  31. HuangX. GeS.Y. LiuJ.H. WangY. LiangX.Y. YuanH. Chemical composition and bioactivity of the essential oil from Artemisia lavandulaefolia (Asteraceae) on Plutella xylostella (Lepidoptera: Plutellidae).Fla. Entomol.20181011444810.1653/024.101.0109
    [Google Scholar]
  32. ZhangZ. SunX. XinZ. LuoZ. GaoY. BianL. ChenZ. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua.J. Chem. Ecol.201339101284129610.1007/s10886‑013‑0344‑6 24043430
    [Google Scholar]
  33. TangQ.Y. ZhangC.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.Insect Sci.201320225426010.1111/j.1744‑7917.2012.01519.x 23955865
    [Google Scholar]
  34. SarmaR. AdhikariK. MahantaS. KhanikorB. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae).Toxicol. Rep.201961091109610.1016/j.toxrep.2019.10.009 31687359
    [Google Scholar]
  35. SuwannayodS. SukontasonK.L. SomboonP. JunkumA. LeksomboonR. ChaiwongT. JonesM.K. SripaB. BalthaisongS. PhuyaoC. ChareonviriyaphapT. SukontasonK. Activity of kaffir lime (Citrus hystrix) essential oil against blow flies and house fly. SE.Asian J. Trop. Med. Public Health2018493245
    [Google Scholar]
  36. El-AkhalF. LalamiA.E.O. GuemmouhR. Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae).Asian Pac. J. Trop. Dis.20155645846210.1016/S2222‑1808(15)60815‑5
    [Google Scholar]
  37. RossiY.E. PalaciosS.M. Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L. adults in the absence and presence of a P450 inhibitor.Acta Trop.20131271333710.1016/j.actatropica.2013.03.009 23545130
    [Google Scholar]
  38. DinS.U. AkramW. AzharH. KhanA. HafeezF. Citrus waste-derived essential oils: Alternative larvicides for dengue fever mosquito, Aedes albopictus (Skuse) (Culicidae: Diptera).Pak. J. Zool.201143362372
    [Google Scholar]
  39. CampoloO. RomeoF.V. AlgeriG.M. LaudaniF. MalacrinòA. TimpanaroN. PalmeriV. Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae).J. Econ. Entomol.2016109136036510.1093/jee/tov270 26357845
    [Google Scholar]
  40. WangD. ZhaoY.J. DingN. GaoB.S. GaoY. ShiS.S. Biological activity tests and field trials of eight kinds of insecticides to Thrips flavus.Agrochemicals202160220222[in Chinese with English abstract].
    [Google Scholar]
  41. IsmanM.B. Bioinsecticides based on plant essential oils: A short overview.Z. Naturforsch. C2020757-817918210.1515/znc‑2020‑0038
    [Google Scholar]
  42. NaharL. El-SeediH.R. KhalifaS.A.M. MohammadhosseiniM. SarkerS.D. Ruta essential oils: Composition and bioactivities.Molecules20212616476610.3390/molecules26164766 34443352
    [Google Scholar]
  43. HadisM. LuluM. MekonnenY. AsfawT. Field trials on the repellent activity of four plant products against mainly Mansonia population in western Ethiopia.Phytother. Res.200317320220510.1002/ptr.1051 12672146
    [Google Scholar]
  44. NajemM. BammouM. BachiriL. BouiamrineE.H. IbijbijenJ. NassiriL. Ruta chalepensis L. essential oil has a biological potential for natural fight against the pest stored foodstuffs: Tribolium castaneum Herbst.Evid. Based Complement. Alternat. Med.2020202011110.1155/2020/5739786 32908563
    [Google Scholar]
  45. ContiB. LeonardiM. PistelliL. ProfetiR. OuerghemmiI. BenelliG. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector.Parasitol. Res.2013112399199910.1007/s00436‑012‑3221‑2 23224707
    [Google Scholar]
  46. BediniS. FlaminiG. AscrizziR. VenturiF. FerroniG. BaderA. GirardiJ. ContiB. Essential oils sensory quality and their bioactivity against the mosquito Aedes albopictus.Sci. Rep.2018811785710.1038/s41598‑018‑36158‑w 30552358
    [Google Scholar]
  47. MyrtsiE.D. KoulocheriS.D. EvergetisE. HaroutounianS.A. Agro-industrial co-products upcycling: Recovery of carotenoids and fine chemicals from Citrus sp. juice industry co-products.Ind. Crops Prod.202218611519010.1016/j.indcrop.2022.115190
    [Google Scholar]
  48. LabarrereB. PrinzingA. DoreyT. ChesneauE. HennionF. Variations of secondary metabolites among natural populations of sub-Antarctic ranunculus species suggest functional redundancy and versatility.Plants20198723410.3390/plants8070234 31331007
    [Google Scholar]
  49. GioffrèG. UrsinoD. LabateM.L.C. GiuffrèA.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio calabria (Italy): A review.Emir. J. Food Agric.20203283584510.9755/ejfa.2020.v32.i11.2197
    [Google Scholar]
  50. MariaG.A. RiccardoN. Citrus bergamia, Risso: The peel, the juice and the seed oil of the bergamot fruit of Reggio calabria (South Italy).Emir. J. Food Agric.20203252253210.9755/ejfa.2020.v32.i7.2128
    [Google Scholar]
  51. FahmyN.M. ElhadyS.S. BannanD.F. MalataniR.T. GadH.A. Citrus reticulata leaves essential oil as an antiaging agent: A comparative study between different cultivars and correlation with their chemical compositions.Plants202211333510.3390/plants11233335 36501374
    [Google Scholar]
  52. De PasqualeF. SiragusaM. AbbateL. TusaN. De PasqualeC. AlonzoG. Characterization of five sour orange clones through molecular markers and leaf essential oils analysis.Sci. Hortic.20061091545910.1016/j.scienta.2006.03.002
    [Google Scholar]
  53. DosokyN.S. MoriarityD.M. SetzerW.N. Phytochemical and biological investigations of Conradina canescens.Nat. Prod. Commun.20161111934578X160110010.1177/1934578X160110010926996011
    [Google Scholar]
  54. VekiariS.A. ProtopapadakisE.E. PapadopoulouP. PapanicolaouD. PanouC. VamvakiasM. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety.J. Agric. Food Chem.200250114715310.1021/jf001369a 11754559
    [Google Scholar]
  55. DosokyN.S. StewartC.D. SetzerW.N. Identification of essential oil components from Conradina canescens.Am. J. Essent. Oils Nat. Prod.201422428
    [Google Scholar]
  56. da SilvaJ. da TrindadeR. MoreiraE. MaiaJ. DosokyN. MillerR. CsekeL. SetzerW. Chemical diversity, biological activity, and genetic aspects of three Ocotea species from the Amazon.Int. J. Mol. Sci.2017185108110.3390/ijms18051081 28524091
    [Google Scholar]
  57. SulzbachM. SilvaM.A.S. GonzattoM.P. MarquesM.M.O. BöettcherG.N. SilvestreW.P. SilvaJ.C.R.L. PaulettiG.F. SchwarzS.F. Effect of distillation methods on the leaf essential oil of some Citrus cultivars.J. Essent. Oil Res.202133545246310.1080/10412905.2021.1936666
    [Google Scholar]
  58. TisserandR. YoungR. Essential oil safety.2nd edNew York, NY, USAElsevier2014
    [Google Scholar]
  59. WangD.C. QiuD.R. ShiL.N. PanH.Y. LiY.W. SunJ.Z. XueY.J. WeiD.S. LiX. ZhangY.M. QinJ.C. Identification of insecticidal constituents of the essential oils of Dahlia pinnata Cav. against Sitophilus zeamais and Sitophilus oryzae.Nat. Prod. Res.201529181748175110.1080/14786419.2014.998218 25563135
    [Google Scholar]
  60. HenniaA. NemmicheS. DandlenS. MiguelM.G. Myrtus communis essential oils: Insecticidal, antioxidant and antimicrobial activities: A review.J. Essent. Oil Res.201931648754510.1080/10412905.2019.1611672
    [Google Scholar]
  61. SongH.J. YongS.H. KimH.G. KimD.H. ParkK.B. ShinK.C. ChoiM.S. Insecticidal activity against Myzus persicae of terpinyl acetate and bornyl acetate in Thuja occidentalis essential oil.Horticulturae202281096910.3390/horticulturae8100969
    [Google Scholar]
  62. FengY.X. WangY. ChenZ.Y. GuoS.S. YouC.X. DuS.S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects.Environ. Sci. Pollut. Res. Int.20192616161571616510.1007/s11356‑019‑05035‑y 30972667
    [Google Scholar]
  63. Regnault-RogerC. HamraouiA. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.).J. Stored Prod. Res.199531429129910.1016/0022‑474X(95)00025‑3
    [Google Scholar]
  64. AhmedQ. AgarwalM. Al-ObaidiR. WangP. RenY. Evaluation of aphicidal effect of essential oils and their synergistic effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae).Molecules20212610305510.3390/molecules26103055 34065463
    [Google Scholar]
  65. Cantó-TejeroM. CasasJ.L. Marcos-GarcíaM.Á. Pascual-VillalobosM.J. Florencio-OrtizV. GuiraoP. Essential oils-based repellents for the management of Myzus persicae and Macrosiphum euphorbiae.J. Pest Sci.202295136537910.1007/s10340‑021‑01380‑5
    [Google Scholar]
  66. PavelaR. BenelliG. Essential oils as ecofriendly biopesticides? challenges and constraints.Trends Plant Sci.201621121000100710.1016/j.tplants.2016.10.005 27789158
    [Google Scholar]
  67. GaoY. LeiZ. ReitzS.R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies.Pest Manag. Sci.20126881111112110.1002/ps.3305 22566175
    [Google Scholar]
  68. YoonJ. TakJ.H. Synergistic modes of interaction between the plant essential oils and the respiratory blocker chlorfenapyr.Pestic. Biochem. Physiol.202218810527410.1016/j.pestbp.2022.105274 36464379
    [Google Scholar]
  69. FaraoneN. HillierN.K. CutlerG.C. Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae).PLoS One2015105e012777410.1371/journal.pone.0127774 26010088
    [Google Scholar]
  70. BoraH. KamleM. MahatoD.K. TiwariP. KumarP. Citrus essential oils (CEOS) and their applications in food: An overview.Plants20209335710.3390/plants9030357 32168877
    [Google Scholar]
  71. WuP. TangX. JianR. LiJ. LinM. DaiH. WangK. ShengZ. ChenB. XuX. LiC. LinZ. ZhangQ. ZhengX. ZhangK. LiD. HongW.D. Chemical composition, antimicrobial and insecticidal activities of essential oils of discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) as possible sources of functional botanical agents.Front Chem.2021967911610.3389/fchem.2021.679116 34109157
    [Google Scholar]
  72. El KasimiR. DouiriF. HaddiK. BoughdadA. Bioactivity of essential oil from citrus aurantium peel against the pulse beetle Callosbruchus maculatus F. on chickpea.Agriculture202313223210.3390/agriculture13020232
    [Google Scholar]
  73. FeitosaB.S. FerreiraO.O. MaliS.N. AnandA. CruzJ.N. FrancoC.J.P. MahawerS.K. KumarR. CascaesM.M. OliveiraM.S. AndradeE.H.A. Chemical composition, preliminary toxicity, and antioxidant potential of Piper marginatum sensu lato essential oils and molecular modeling study.Molecules20232815581410.3390/molecules28155814 37570784
    [Google Scholar]
  74. CrișanI. OnaA. VârbanD. MunteanL. VârbanR. StoieA. MihăiescuT. MoreaA. Current trends for lavender (Lavandula angustifolia Mill.) crops and products with emphasis on essential oil quality.Plants202312235710.3390/plants12020357 36679071
    [Google Scholar]
  75. BiS. LiuL. JiaM. FengB. WanJ. ZhouY. LiuY. LiuJ. ZhuQ. Exploring insecticidal properties and acetylcholinesterase inhibition by three plant essential oils against the cheese skipper Piophila casei (Diptera: Piophilidae).Ind. Crops Prod.202320311719810.1016/j.indcrop.2023.117198
    [Google Scholar]
/content/journals/cac/10.2174/0115734110289423240216062120
Loading
/content/journals/cac/10.2174/0115734110289423240216062120
Loading

Data & Media loading...

Supplements

Fig. () Schematic diagram of pot experiments. Fig. () GC–MS chromatogram of the identified chemical compounds of the seven Citrus essential oils. Table . Control efficacy of seven essential oils against adult . Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test