Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Research on yellow garnets of different shades regarding their varieties, colors, as well as chemical states, and contents of coloring ions is somewhat lacking. Spectroscopic analyses are expected to enrich the research methods and data on yellow garnets and explore a scientific path for enhancing their colors.

Methods

A series of analyses, such as X-ray diffraction, infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and electron microprobe analyses, have been performed on the garnet crystal samples.

Results

X-ray diffraction analysis and infrared spectral analysis have shown yellow and tawny garnets to be spessartite garnets; UV-visible spectral analysis has shown the yellow sample to have stronger absorption peaks at 408, 421, and 430 nm than the tawny sample. Electron microprobe and X-ray photoelectron spectroscopy analyses have shown both spessartite garnet samples to contain the same elements, including Si, O, Al, Ca, Mn, and Fe. Among them, the coloring elements, Mn and Fe, have been found to be identical in terms of type, chemical state, lattice occupancy, and coordination environment, but with different mass percentages.

Conclusion

The color differences between yellow-shaded spessartite garnets from Nigeria have not been found to arise from differences in the types of coloring elements, their valance states, or coordination environments. Instead, the concentration of coloring ions Mn2+ and Fe2+ has been identified as the crucial factor. Controlling the concentrations is the key scientific direction for improving the colors of these yellow-toned spessartite garnets.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110316779240902115912
2024-09-10
2025-10-13
Loading full text...

Full text loading...

References

  1. GrewE.S. LocockA.J. MillsS.J. GaluskinaI.O. GaluskinE.V. HaleniusU. Nomenclature of the garnet supergroup.Am. Mineral.201398478581110.2138/am.2013.4201
    [Google Scholar]
  2. ShtukenbergA.G. PuninY.O. Frank-KamenetskayaO.V. KovalevO.G. SokolovP.B. On the origin of anomalous birefringence in grandite garnets.Mineral. Mag.200165344545910.1180/002646101300119538
    [Google Scholar]
  3. OttonelloG. BokretaM. SciutoP.F. Parameterization of energy and interactions in garnets; end-member properties.Am. Mineral.1996813-442944710.2138/am‑1996‑3‑417
    [Google Scholar]
  4. BridgesC.R. Green grissularite garnets (tsavorites) in East Africa.Gems Gemol.197414290296
    [Google Scholar]
  5. LocockA.J. MitchellR.H. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup.Comput. Geosci.201811310611410.1016/j.cageo.2018.01.012
    [Google Scholar]
  6. WhiteJ.S. Spessartine from the Navegadora Mine • Minas Gerais, Brazil.Rocks Miner.2009841424510.3200/RMIN.84.1.42‑45
    [Google Scholar]
  7. DiellaV. BocchioR. MarinoniN. LangoneA. AdamoI. RotirotiN. The spessartine-almandine garnet from Val Codera pegmatite, Central Alps, Italy: A new insight on the crystallochemistry and a 3D image analysis of its inclusions.Rend. Lincei Sci. Fis. Nat.201829369970710.1007/s12210‑018‑0697‑4
    [Google Scholar]
  8. PengW.S. LiuG.K. Mineral infrared spectral atlas.BeijingSciencePress1982
    [Google Scholar]
  9. GeigerC.A. StahlA. RossmanG.R. Single-crystal IR- and UV/VIS-spectroscopic measurements on transition-metal-bearing pyrope: The incorporation of hydroxide in garnet.Eur. J. Mineral.200012225927110.1127/0935‑1221/2000/0012‑0259
    [Google Scholar]
  10. HofmeisterA.M. CampbellK.R. Infrared spectroscopy of yttrium iron, yttrium gallium, andyttrium aluminum garnets.J. Appl. Phys.19927263864610.1063/1.351846
    [Google Scholar]
  11. HofmeisterA.M. ChopelasA. Vibrational spectroscopy of end-member silicate garnets.Phys. Chem. Miner.199117650352610.1007/BF00202230
    [Google Scholar]
  12. McAloonB.P. HofmeisterA.M. Single-crystal IR spectroscopy of grossular-andradite garnets.Am. Mineral.19958011-121145115610.2138/am‑1995‑11‑1205
    [Google Scholar]
  13. LiW. ZhengJ. PeiJ. XuX. ChenT. Correlations between garnet species and vibration spectroscopy: Isomorphous substitution implications.Crystals (Basel)202212110410.3390/cryst12010104
    [Google Scholar]
  14. XuJ.H. YuX.Y. ShenM. YanY. WangG.Y. Explaining color change in gem-quality andradite garnet.Crystals (Basel)202414218010.3390/cryst14020180
    [Google Scholar]
  15. QiuY. GuoY. Explaining colour change in pyrope-spessartine garnets.Minerals (Basel)202111886510.3390/min11080865
    [Google Scholar]
  16. LaursB.M. KnoxK. Spessartine garnet from Ramona, San Diego County, California.Gems Gemol.200137427829510.5741/GEMS.37.4.278
    [Google Scholar]
  17. StocktonC.M. MansonD.V. A proposed new classification for gem-quality garnets.Gems Gemol.198521420521810.5741/GEMS.21.4.205
    [Google Scholar]
  18. ManningP.G. The optical absorption spectra of the garnets almandine-pyrope, pyrope, and spessartine and some structural interpretations of mineralogical significance.Cancer Mineral.196792237251
    [Google Scholar]
  19. BaldwinJ.R. von KnorringO.V. Compositional range of Mn-garnet in zoned granitic pegmatites.Cancer Mineral.1983198321683688
    [Google Scholar]
  20. BurnsR.G. Mineralogical Applications of Crystal Field Theory.UKCambridgy University Press2005
    [Google Scholar]
  21. BiesingerM.C. PayneB.P. GrosvenorA.P. LauL.W.M. GersonA.R. SmartR.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni.Appl. Surf. Sci.201125772717273010.1016/j.apsusc.2010.10.051
    [Google Scholar]
  22. MillsP. SullivanJ.L. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy.J. Phys. D Appl. Phys.198316572373210.1088/0022‑3727/16/5/005
    [Google Scholar]
  23. TanB.J. KlabundeK.J. SherwoodP.M.A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica.J. Am. Chem. Soc.1991113385586110.1021/ja00003a019
    [Google Scholar]
  24. LiM. Spectroscopic study on the species and color differences of gem-quality red garnets from Malawi.J. Spectrosc.20222022111910.1155/2022/1638042
    [Google Scholar]
  25. ParabH. SirviR. KadamS. SenguptaP. KumarS.D. BhuiU.K. Sorption efficacy of weathered basalt rock for metal ions of nuclear importance.Curr. Anal. Chem.202420535536510.2174/0115734110295747240305061230
    [Google Scholar]
  26. JadonN. KourB. BhatB.A. SharmaH.K. Green Synthesis Derived NovelS. Green synthesis derived novel Fe2O3/ZnO nanocomposite for efficient photocatalytic degradation of methyl orange dye.Curr. Anal. Chem.202420316217410.2174/0115734110297844240119062857
    [Google Scholar]
/content/journals/cac/10.2174/0115734110316779240902115912
Loading
/content/journals/cac/10.2174/0115734110316779240902115912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test