Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Marburg virus (MARV), which is spread by one species of fruit bats, can cause deadly Marburg virus disease (MVD, also known as Marburg hemorrhagic fever, MHF), which is a severe form of viral hemorrhagic fever with symptoms similar to Ebola. MARV is considered to be very dangerous, and there are no approved vaccines or antiviral treatments for Marburg disease.

Objective

Computational studies were conducted to comprehend the envelope glycoproteins GP1 and GP2 expressed by the Marburg virus.

Methods

Determination of the predicted intrinsic disorder predisposition of each glycoprotein sequence (PIDP) and the Polarity Index Method Profile 3.0v (PIM 3.0v) using genomics software and multiple computer algorithms, several of which have been specifically designed for this purpose.

Results

The PIM 3.0v and PIDP profiles showed different MARV envelope glycoprotein patterns. These patterns revealed structural and morphological commonalities.

Conclusions

Our computer systems were able to identify MARV envelope glycoprotein isolates using the PIM 3.0v profile, and they suggest that they can be used as a first-step filter for identifying them from databases or building synthetic proteins.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110298101240629090801
2024-07-10
2025-10-13
Loading full text...

Full text loading...

References

  1. WeissenhornW. DessenA. CalderL.J. HarrisonS.C. SkehelJ.J. WileyD.C. Structural basis for membrane fusion by enveloped viruses.Mol. Membr. Biol.19991613910.1080/096876899294706 10332732
    [Google Scholar]
  2. MariappanV. PratheeshP. ShanmugamL. RaoS.R. PillaiA.B. Viral hemorrhagic fever: Molecular pathogenesis and current trends of disease management-an update.Curr. Res. Virol. Sci.2021210000910.1016/j.crviro.2021.100009
    [Google Scholar]
  3. AllaD. ParuchuriS.S.H. TiwariA. AllaS.S.M. PillaiR.T. BandakadiS.K.R. PradeepA. ShahD.J. SabıroğluM. ChavdaS. BiziyaremyeP. The mortality, modes of infection, diagnostic tests, and treatments of Marburg virus disease: A systematic review.Health Sci. Rep.202369e154510.1002/hsr2.1545 37662539
    [Google Scholar]
  4. ZhaoF. HeY. LuH. Marburg virus disease: A deadly rare virus is coming.Biosci. Trends202216431231610.5582/bst.2022.01333 35908851
    [Google Scholar]
  5. BockarieM.J. HansonJ. AnsumanaR. Yeboah-ManuD. ZumlaA. LeeS.S. The re-emergence of Marburg virus Disease in West Africa: How prepared is the sub-region for preventing recurrent zoonotic outbreaks?Int. J. Infect. Dis.2023130283010.1016/j.ijid.2023.03.001 36870469
    [Google Scholar]
  6. TukeiP.M. Threat of Marburg and Ebola viral haemorrhagic fevers in Africa.East Afr. Med. J.19967312731 8625857
    [Google Scholar]
  7. AdepojuP. West Africa on alert for haemorrhagic fevers.Lancet20213981030165310.1016/S0140‑6736(21)01863‑8 34419193
    [Google Scholar]
  8. RomeroP. ObradovicZ. LiX. GarnerE.C. BrownC.J. DunkerA.K. Sequence complexity of disordered protein.Proteins2001421384810.1002/1097‑0134(20010101)42:1<38::AID‑PROT50>3.0.CO;2‑3 11093259
    [Google Scholar]
  9. ObradovicZ. PengK. VuceticS. RadivojacP. DunkerA.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder.Proteins200561S7Suppl. 717618210.1002/prot.20735 16187360
    [Google Scholar]
  10. PengK. RadivojacP. VuceticS. DunkerA.K. ObradovicZ. Length-dependent prediction of protein intrinsic disorder.BMC Bioinformat.20067120810.1186/1471‑2105‑7‑208 16618368
    [Google Scholar]
  11. XueB. DunbrackR.L. WilliamsR.W. DunkerA.K. UverskyV.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids.Biochim. Biophys. Acta. Proteins Proteom.201018044996101010.1016/j.bbapap.2010.01.011 20100603
    [Google Scholar]
  12. MészárosB. ErdősG. DosztányiZ. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding.Nucleic Acids Res.201846W1W329W33710.1093/nar/gky384 29860432
    [Google Scholar]
  13. DayhoffG.W.II UverskyV.N. Rapid prediction and analysis of protein intrinsic disorder.Protein Sci.20223112e449610.1002/pro.4496 36334049
    [Google Scholar]
  14. ZhouJ. OldfieldC.J. YanW. ShenB. DunkerA.K. Identification of intrinsic disorder in complexes from the protein data bank.ACS Omega2020529178831789110.1021/acsomega.9b03927 32743159
    [Google Scholar]
  15. GautamA. SinghH. TyagiA. ChaudharyK. KumarR. KapoorP. RaghavaG.P.S. CPPsite: A curated database of cell penetrating peptides.Database20122012bas01510.1093/database/bas015 22403286
    [Google Scholar]
  16. PolancoC. Castañón-GonzálezJ.A. UverskyV.N. BuhseT. Samaniego MendozaJ.L. CalvaJ.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins.Acta Biochim. Pol.201764199111 27824362
    [Google Scholar]
  17. PolancoC. HubermanA. Hernández-LemusE. UverskyV.N. Rios CastroM. Martínez-GarciaM. Vargas-AlarcónG. BuhseT. Pimentel HernándezC. ZazuetaC. Roldan GomezF.R. López OlivaE.J. Bioinformatics-based characterization of the variability of MPOX virus proteins.Lett. Drug Des. Discov.2023211531693185
    [Google Scholar]
  18. FeldmannH. WillC. SchikoreM. SlenczkaW. KlenkH.D. Glycosylation and oligomerization of the spike protein of marburg virus.Virology1991182135335610.1016/0042‑6822(91)90680‑A 2024471
    [Google Scholar]
  19. MarziA. GrambergT. SimmonsG. MöllerP. RennekampA.J. KrumbiegelM. GeierM. EisemannJ. TurzaN. SaunierB. SteinkassererA. BeckerS. BatesP. HofmannH. PöhlmannS. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus.J. Virol.20047821120901209510.1128/JVI.78.21.12090‑12095.2004 15479853
    [Google Scholar]
  20. BeckerS. SpiessM. KlenkH.D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus.J. Gen. Virol.199576239339910.1099/0022‑1317‑76‑2‑393 7844558
    [Google Scholar]
  21. HardenbergM. HorvathA. AmbrusV. FuxreiterM. VendruscoloM. Widespread occurrence of the droplet state of proteins in the human proteome.Proc. Natl. Acad. Sci. USA202011752332543326210.1073/pnas.2007670117 33318217
    [Google Scholar]
  22. SawnerA.S. RayS. YadavP. MukherjeeS. PanigrahiR. PoudyalM. PatelK. GhoshD. KummerantE. KumarA. RiekR. MajiS.K. Modulating α-synuclein liquid–liquid phase separation.Biochemistry202160483676369610.1021/acs.biochem.1c00434 34431665
    [Google Scholar]
  23. TownerJ.S. KhristovaM.L. SealyT.K. VincentM.J. EricksonB.R. BawiecD.A. HartmanA.L. ComerJ.A. ZakiS.R. StröherU. Gomes da SilvaF. del CastilloF. RollinP.E. KsiazekT.G. NicholS.T. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola.J. Virol.200680136497651610.1128/JVI.00069‑06 16775337
    [Google Scholar]
  24. NasrullahI. ButtA.M. TahirS. IdreesM. TongY. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.BMC Evol. Biol.201515117410.1186/s12862‑015‑0456‑4 26306510
    [Google Scholar]
  25. CarrollS.A. TownerJ.S. SealyT.K. McMullanL.K. KhristovaM.L. BurtF.J. SwanepoelR. RollinP.E. NicholS.T. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences.J. Virol.20138752608261610.1128/JVI.03118‑12 23255795
    [Google Scholar]
  26. KolesnikovaL. MühlbergerE. RyabchikovaE. BeckerS. Ultrastructural organization of recombinant Marburg virus nucleoprotein: Comparison with Marburg virus inclusions.J. Virol.20007483899390410.1128/JVI.74.8.3899‑3904.2000 10729166
    [Google Scholar]
  27. MohamadzadehM. ChenL. SchmaljohnA.L. How Ebola and Marburg viruses battle the immune system.Nat. Rev. Immunol.20077755656710.1038/nri2098 17589545
    [Google Scholar]
  28. SherwoodL.J. OsbornL.E.Jr CarrionR.Jr PattersonJ.L. HayhurstA. Rapid assembly of sensitive antigen-capture assays for Marburg virus, using in vitro selection of llama single-domain antibodies, at biosafety level 4.J. Infect. Dis.2007196s2Suppl. 2S213S21910.1086/520586 17940952
    [Google Scholar]
  29. HasanM. AzimK.F. BegumA. KhanN.A. ShammiT.S. ImranA.S. ChowdhuryI.M. UrmeS.R.A. Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus.Infect. Genet. Evol.20197014015710.1016/j.meegid.2019.03.003 30849525
    [Google Scholar]
  30. ManicassamyB. WangJ. RumschlagE. TymenS. VolchkovaV. VolchkovV. RongL. Characterization of Marburg virus glycoprotein in viral entry.Virology20073581798810.1016/j.virol.2006.06.041 16989883
    [Google Scholar]
  31. YousafH. NazA. ZamanN. HassanM. ObaidA. AwanF.M. AzamS.S. Immunoinformatic and reverse vaccinology-based designing of potent multi-epitope vaccine against Marburgvirus targeting the glycoprotein.Heliyon202398e1805910.1016/j.heliyon.2023.e18059 37534001
    [Google Scholar]
  32. SoltanM.A. AbdulsahibW.K. AmerM. RefaatA.M. BagalagelA.A. DiriR.M. AlbogamiS. FayadE. EidR.A. SharafS.M.A. ElhadyS.S. DarwishK.M. EldeenM.A. Mining of Marburg virus proteome for designing an epitope-based vaccine.Front. Immunol.20221390748110.3389/fimmu.2022.907481 35911751
    [Google Scholar]
  33. KortepeterM.G. DierbergK. ShenoyE.S. CieslakT.J. Marburg virus disease: A summary for clinicians.Int. J. Infect. Dis.20209923324210.1016/j.ijid.2020.07.042 32758690
    [Google Scholar]
  34. SchochC.L. CiufoS. DomrachevM. HottonC.L. KannanS. KhovanskayaR. LeipeD. McveighR. O’NeillK. RobbertseB. SharmaS. SoussovV. SullivanJ.P. SunL. TurnerS. Karsch-MizrachiI. NCBI Taxonomy: A comprehensive update on curation, resources and tools.Database20202020baaa06210.1093/database/baaa062 32761142
    [Google Scholar]
  35. VendruscoloM. FuxreiterM. Sequence determinants of the aggregation of proteins within condensates generated by liquid-liquid phase separation.J. Mol. Biol.202120216720116721210.1016/j.jmb.2021.167201 34391803
    [Google Scholar]
  36. KajiharaM. NakayamaE. MarziA. IgarashiM. FeldmannH. TakadaA. Novel mutations in Marburg virus glycoprotein associated with viral evasion from antibody mediated immune pressure.J. Gen. Virol.201394487688310.1099/vir.0.049114‑0 23288419
    [Google Scholar]
  37. WangD. SchmaljohnA.L. RajaN.U. TrubeyC.M. JuompanL.Y. LuoM. DeitzS.B. YuH. WoraratanadharmJ. HolmanD.H. MooreK.M. SwainB.M. PrattW.D. DongJ.Y. De novo syntheses of Marburg virus antigens from adenovirus vectors induce potent humoral and cellular immune responses.Vaccine200624152975298610.1016/j.vaccine.2005.11.046 16530297
    [Google Scholar]
  38. EtiborT. YamauchiY. AmorimM. Liquid biomolecular condensates and viral lifecycles: Review and perspectives.Viruses202113336610.3390/v13030366 33669141
    [Google Scholar]
  39. Fernández de CastroI. TenorioR. RiscoC. 2021
  40. DolnikO. StevermannL. KolesnikovaL. BeckerS. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment.Eur. J. Cell Biol.2015947-932333110.1016/j.ejcb.2015.05.006 26070789
    [Google Scholar]
  41. BrauburgerK. HumeA.J. MühlbergerE. OlejnikJ. Forty-five years of Marburg virus research.Viruses20124101878192710.3390/v4101878 23202446
    [Google Scholar]
  42. RougeronV. FeldmannH. GrardG. BeckerS. LeroyE.M. Ebola and Marburg haemorrhagic fever.J. Clin. Virol.20156411111910.1016/j.jcv.2015.01.014 25660265
    [Google Scholar]
  43. BauerM.P. TimenA. VossenA.C.T.M. Van DisselJ.T. Marburg haemorrhagic fever in returning travellers: An overview aimed at clinicians.Clin. Microbiol. Infect.201921Se28e3110.1111/1469‑0691.12673
    [Google Scholar]
  44. BorchertM. MulanguS. SwanepoelR. LibandeM.L. TshombaA. KulidriA. Muyembe-TamfumJ.J. Van der StuyftP. Serosurvey on household contacts of Marburg hemorrhagic fever patients.Emerg. Infect. Dis.200612343343910.3201/eid1203.050622 16704781
    [Google Scholar]
  45. KunzC. HofmannH. KovacW. StockingerL. Biologische und morphologische Charakteristika des Virus des in Deutschland aufgetretenen “Hämorrhagischen Fiebers”.Wien. Klin. Wochenschr.1968809161162, passim 5688605
    [Google Scholar]
  46. IlinykhP.A. HuangK. SantosR.I. GilchukP. GunnB.M. KarimM.M. LiangJ. FouchM.E. DavidsonE. ParekhD.V. KimbleJ.B. PietzschC.A. MeyerM. KuzminaN.A. ZeitlinL. SaphireE.O. AlterG. CroweJ.E.Jr BukreyevA. Non-neutralizing antibodies from a marburg infection survivor mediate protection by Fc-Effector functions and by enhancing efficacy of other antibodies.Cell Host Microbe2020276976991.e1110.1016/j.chom.2020.03.025 32320678
    [Google Scholar]
  47. FlyakA.I. IlinykhP.A. MurinC.D. GarronT. ShenX. FuscoM.L. HashiguchiT. BornholdtZ.A. SlaughterJ.C. SapparapuG. KlagesC. KsiazekT.G. WardA.B. SaphireE.O. BukreyevA. CroweJ.E. Mechanism of human antibody-mediated neutralization of Marburg virus.Cell20151605893903
    [Google Scholar]
  48. MurinC.D. WilsonI.A. WardA.B. Antibody responses to viral infections: A structural perspective across three different enveloped viruses.Nat. Microbiol.20194573474710.1038/s41564‑019‑0392‑y 30886356
    [Google Scholar]
  49. GeisbertT.W. Marburg and Ebola Hemorrhagic Fevers (Filoviruses).Med. Monatsschr. Pharm.2014379324330
    [Google Scholar]
  50. ReynoldsP. MarziA. Ebola and Marburg virus vaccines.Virus Genes201753450151510.1007/s11262‑017‑1455‑x 28447193
    [Google Scholar]
/content/journals/cac/10.2174/0115734110298101240629090801
Loading
/content/journals/cac/10.2174/0115734110298101240629090801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test