Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

In this study, we reported on developing a susceptible, accurate, simple, and economical electrochemical sensor for gabapentin determination in capsules.

Methods

The ITO electrode was modified with a layer of Prussian blue nanoparticles and then used as the working electrode. Gabapentin was extracted from commercial capsules, and a series of concentrations of gabapentin were prepared for studying the efficacy of the proposed sensor. The electrochemical measurements were performed using cyclic voltammetry and square wave voltammetry techniques.

Results

The sensitivity and selectivity of the developed electrode toward gabapentin in different interferences, including citric acid, glucose, and urea, were investigated. The modified electrode showed detection and quantification limits of 31.58 and 94.74 nM, respectively, over a dynamic range of concentrations from 100 nM to 3 µM.

Conclusion

The proposed sensor displayed a high sensitivity and selectivity for monitoring gabapentin in pharmaceutical drugs without a noticeable interference. Hence, the modified electrodes are great candidates for gabapentin routine analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110334449240925064834
2024-10-07
2025-11-03
Loading full text...

Full text loading...

References

  1. PerryM. LiQ. KennedyR.T. Review of recent advances in analytical techniques for the determination of neurotransmitters.Anal. Chim. Acta2009653112210.1016/j.aca.2009.08.038 19800472
    [Google Scholar]
  2. BaseltR.C. Analytical procedures for therapeutic drug monitoring and emergency toxicology.2nd edLittleton, MA, USAPSG Pub Co.1987
    [Google Scholar]
  3. UsluB. OzkanS. Electroanalytical application of carbon based electrodes to the pharmaceuticals.Anal. Lett.200740581785310.1080/00032710701242121
    [Google Scholar]
  4. UsluB. OzkanS.A. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments.Anal. Lett.201144162644270210.1080/00032719.2011.553010
    [Google Scholar]
  5. GuptaV.K. JainR. RadhapyariK. JadonN. AgarwalS. Voltammetric techniques for the assay of pharmaceuticals — A review.Anal. Biochem.2011408217919610.1016/j.ab.2010.09.027 20869940
    [Google Scholar]
  6. JackowskaK. KrysinskiP. New trends in the electrochemical sensing of dopamine.Anal. Bioanal. Chem.2013405113753377110.1007/s00216‑012‑6578‑2 23241816
    [Google Scholar]
  7. AttaN.F. GalalA. AzabS.M. Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode.Analyst (Lond.)2011136224682469110.1039/c1an15423k 21879032
    [Google Scholar]
  8. LeventA. ÖnalG. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples.Turk. J. Chem.20184222110.3906/kim‑1708‑14
    [Google Scholar]
  9. LeventA. GünayÖ. Simultaneous electrochemical evaluation of ascorbic acid, epinephrine and uric acid at disposable pencil graphite electrode: Highly sensitive determination in pharmaceuticals and biological liquids by differential pulse voltammetry.J. Comb. Chem. High. T. Scr.201821751652510.2174/1386207321666180914120839
    [Google Scholar]
  10. OzkanS.A. DoganB. UsluB. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine.Mikrochim. Acta20061531-2273510.1007/s00604‑005‑0457‑x
    [Google Scholar]
  11. ÖzkanS.A. UsluB. SentürkZ. Electroanalytical characteristics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media.Electroanalysis200416323123710.1002/elan.200402828
    [Google Scholar]
  12. ÖzkanS.A. UsluB. Aboul-EneinH.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques.Crit. Rev. Anal. Chem.200333315518110.1080/713609162
    [Google Scholar]
  13. LeventA. Voltammetric behavior of acebutolol on pencil graphite electrode: Highly sensitive determination in real samples by square-wave anodic stripping voltammetry.J. Indian Chem. Soc.201714122495250210.1007/s13738‑017‑1184‑z
    [Google Scholar]
  14. AltunkaynakY. YavuzÖ. LeventA. Firstly electrochemical examination of vildagliptin at disposable graphite sensor: Sensitive determination in drugs and human urine by square-wave voltammetry.Microchem. J.202117010665310.1016/j.microc.2021.106653
    [Google Scholar]
  15. AttalN. CruccuG. BaronR. HaanpääM. HanssonP. JensenT.S. NurmikkoT. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision.Eur. J. Neurol.20101791113e8810.1111/j.1468‑1331.2010.02999.x 20402746
    [Google Scholar]
  16. WijemanneS. JankovicJ. Restless legs syndrome: Clinical presentation diagnosis and treatment.Sleep Med.201516667869010.1016/j.sleep.2015.03.002 25979181
    [Google Scholar]
  17. GoaK.L. SorkinE.M. Gabapentin.Drugs199346340942710.2165/00003495‑199346030‑00007 7693432
    [Google Scholar]
  18. HonarmandA. SafaviM. ZareM. Gabapentin: An update of its pharmacological properties and therapeutic use in epilepsy.J. Res. Med. Sci.201116810621069 22279483
    [Google Scholar]
  19. BodaliaP.N. GrossoA.M. SofatR. MacAllisterR.J. SmeethL. DhillonS. CasasJ.P. WonderlingD. HingoraniA.D. Comparative efficacy and tolerability of anti‐epileptic drugs for refractory focal epilepsy: Systematic review and network meta‐analysis reveals the need for long term comparator trials.Br. J. Clin. Pharmacol.201376564966710.1111/bcp.12083 23351090
    [Google Scholar]
  20. TaipaleH. GommW. BroichK. MaierW. TolppanenA.M. TanskanenA. TiihonenJ. HartikainenS. HaenischB. Use of antiepileptic drugs and dementia risk - An analysis of Finnish health register and German health insurance data.J. Am. Geriatr. Soc.20186661123112910.1111/jgs.15358 29566430
    [Google Scholar]
  21. OhG.Y. MogaD.C. FardoD.W. AbnerE.L. The association of gabapentin initiation and neurocognitive changes in older adults with normal cognition.Front. Pharmacol.20221391071910.3389/fphar.2022.910719 36506564
    [Google Scholar]
  22. HuangY.H. PanM.H. YangH.I. The association between Gabapentin or Pregabalin use and the risk of dementia: An analysis of the National Health Insurance Research Database in Taiwan.Front. Pharmacol.202314112860110.3389/fphar.2023.1128601 37324474
    [Google Scholar]
  23. Medicine spending and affordability in the U.S.Available from: https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/medicine-spending-and-affordability-in-the-us 2020
  24. MMWR Morb. Mortal Wkly. Rep.20227119664666
    [Google Scholar]
  25. SmithR.V. HavensJ.R. WalshS.L. Gabapentin misuse, abuse and diversion: A systematic review.Addiction201611171160117410.1111/add.13324 27265421
    [Google Scholar]
  26. QuinteroG.C. Review about gabapentin misuse, interactions, contraindications and side effects.J. Exp. Pharmacol.20179132110.2147/JEP.S124391 28223849
    [Google Scholar]
  27. AlkhalafA.A. BukhariR.A. AlshehriE.A. AlshehriS.O. BadrA.F. Abuse liability of gabapentin in the Saudi population after the pregabalin restriction: A cross-sectional study.J. Taibah Univ. Med. Sci.202116570070510.1016/j.jtumed.2021.04.009 34690650
    [Google Scholar]
  28. SmithB.H. HigginsC. BaldacchinoA. KiddB. BannisterJ. Substance misuse of gabapentin.Br. J. Gen. Pract.20126260140640710.3399/bjgp12X653516 22867659
    [Google Scholar]
  29. MiddletonO. Suicide by gabapentin overdose.J. Forensic Sci.20115651373137510.1111/j.1556‑4029.2011.01798.x 21554310
    [Google Scholar]
  30. JalalizadehH. SouriE. TehraniM.B. JahangiriA. Validated HPLC method for the determination of gabapentin in human plasma using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene and its application to a pharmacokinetic study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078541-2434710.1016/j.jchromb.2007.03.039 17517538
    [Google Scholar]
  31. EbrahimzadehH. YaminiY. FirozjaeiH.A. KamareiF. TavassoliN. RouiniM.R. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of gabapentin in biological samples.Anal. Chim. Acta2010665222122610.1016/j.aca.2010.03.028 20417334
    [Google Scholar]
  32. MercoliniL. MandrioliR. AmoreM. RaggiM.A. Simultaneous HPLC-F analysis of three recent antiepileptic drugs in human plasma.J. Pharm. Biomed. Anal.2010531626710.1016/j.jpba.2010.02.036 20363577
    [Google Scholar]
  33. MartincB. RoškarR. GrabnarI. VovkT. Simultaneous determination of gabapentin, pregabalin, vigabatrin, and topiramate in plasma by HPLC with fluorescence detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014962828810.1016/j.jchromb.2014.05.030 24907547
    [Google Scholar]
  34. YagiT. NaitoT. MinoY. TakashinaY. UmemuraK. KawakamiJ. Rapid and validated fluorometric HPLC method for determination of gabapentin in human plasma and urine for clinical application.J. Clin. Pharm. Ther.2012371899410.1111/j.1365‑2710.2010.01243.x 21276028
    [Google Scholar]
  35. SagirliO. ÇetinS.M. ÖnalA. Determination of gabapentin in human plasma and urine by high-performance liquid chromatography with UV–vis detection.J. Pharm. Biomed. Anal.200642561862410.1016/j.jpba.2006.05.012 16822634
    [Google Scholar]
  36. OertelR. ArenzN. PietschJ. KirchW. Simultaneous determination of three anticon‐vulsants using hydrophilic interaction LC‐MS.J. Sep. Sci.200932223824310.1002/jssc.200800461 19072899
    [Google Scholar]
  37. HouX.L. WuY.L. ChenR.X. ZhuY. LvY. XuX.Q. Evaluation of two modified quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation methods for the analysis of baclofen and gabapentin in feeds by liquid chromatography tandem mass spectrometry.J. Pharm. Biomed. Anal.201488535910.1016/j.jpba.2013.08.026 24036362
    [Google Scholar]
  38. KolocouriF. DotsikasY. LoukasY.L. Dried plasma spots as an alternative sample collection technique for the quantitative LC-MS/MS determination of gabapentin.Anal. Bioanal. Chem.201039831339134710.1007/s00216‑010‑4048‑2 20694811
    [Google Scholar]
  39. JiaS. ParkJ.H. LeeJ. KwonS.W. Comparison of two aerosol-based detectors for the analysis of gabapentin in pharmaceutical formulations by hydrophilic interaction chromatography.Talanta20118552301230610.1016/j.talanta.2011.04.012 21962646
    [Google Scholar]
  40. WattananatT. AkarawutW. Validated LC-MS-MS method for the determination of gabapentin in human plasma: Application to a bioequivalence study.J. Chromatogr. Sci.2009471086887110.1093/chromsci/47.10.868 19930796
    [Google Scholar]
  41. JiaS. LeeH.S. ChoiM.J. SungS.H. HanS.B. ParkJ.H. HongS.S. KwonS.W. LeeJ. Non-derivatization method for the determination of gabapentin in pharmaceutical formulations, rat serum and rat urine using high performance liquid chromatography coupled with charged aerosol detection.Curr. Anal. Chem.2012815916710.2174/157341112798472161
    [Google Scholar]
  42. RaghamP.K. ChandrasekharK.B. Development and validation of a stability-indicating RP-HPL C-CAD method for gabapentin and its related impurities in presence of degradation products.J. Pharm. Biomed. Anal.201612512212910.1016/j.jpba.2016.03.035 27018505
    [Google Scholar]
  43. ThemelisD.G. TzanavarasP.D. BoulimariE.A. Genetic automated fluorimetric assay for the quality control of gamma aminobutyric acid-analogue anti-epileptic drugs using sequential injection.Anal. Lett.201043690591810.1080/00032710903491146
    [Google Scholar]
  44. LinX. CaiY. YanJ. ZhangL. WuD. LiH. Determination of gabapentin in human plasma and urine by capillary electrophoresis with laser-induced fluorescence detection.J. Chromatogr. Sci.201553698699210.1093/chromsci/bmu134 25352536
    [Google Scholar]
  45. AlmalkiA.H. AbdelazimA.H. AlosaimiM.E. AbduljabbarM.H. AlnemariR.M. BamagaA.K. SeragA. Efficient and eco-friendly detection of gabapentin using nitrogen-doped carbon quantum dots: An analytical and green chemistry approach.RSC Advances20241464089409610.1039/D3RA07365C 38288149
    [Google Scholar]
  46. KazemipourM. FakhariI. AnsariM. Gabapentin determination in human plasma and capsule by coupling of solid phase extraction, derivatization reaction, and UV-Vis spectrophotometry.Iran. J. Pharm. Res.2013123247253 24250630
    [Google Scholar]
  47. SiddiquiF.A. ArayneM.S. SultanaN. QureshiF. MirzaA.Z. ZuberiM.H. BahadurS.S. AfridiN.S. ShamshadH. RehmanN. Spectrophotometric determination of gabapentin in pharmaceutical formulations using ninhydrin and π-acceptors.Eur. J. Med. Chem.20104572761276710.1016/j.ejmech.2010.02.058 20381213
    [Google Scholar]
  48. MuL. XieF. LiS. YuP. Determination of strong acidic drugs in biological matrices: A review of separation methods.Chromatogr. Res. Int.2014201411010.1155/2014/469562
    [Google Scholar]
  49. YariA. PapiF. FarhadiS. Voltammetric determination of trace antiepileptic gabapentin with a silver-nanoparticle modified multiwalled carbon nanotube paste electrode.Electroanalysis201123122949295410.1002/elan.201100454
    [Google Scholar]
  50. YurdemA. AslanM. AralH. LeventA. First electrochemical investigation and determination of non-steroidal anti-inflammatory drug etofenamate using disposable pencil graphite electrode with voltammetric techniques.Anal. Chim. Acta2024129934237710.1016/j.aca.2024.342377 38499410
    [Google Scholar]
  51. HegdeR.N. Kumara SwamyB.E. ShettiN.P. NandibewoorS.T. Electro-oxidation and determination of gabapentin at gold electrode.J. Electroanal. Chem. (Lausanne)20096351515710.1016/j.jelechem.2009.08.004
    [Google Scholar]
  52. ValadbeigiY. IlbeigiV. MamozaiW. SoleimaniM. Rapid and simple determination of gabapentin in urine by ion mobility spectrometry.J. Pharm. Biomed. Anal.202119711398010.1016/j.jpba.2021.113980 33636645
    [Google Scholar]
  53. El-TohamyM. RazeqS. ShalabyA. Electrochemical sensors for determination of anticonvulsant drug gabapentin in bulk powder and pharmaceutical dosage forms.Int. J. Electrochem. Sci.2012765374538710.1016/S1452‑3981(23)19628‑3
    [Google Scholar]
  54. ZabihollahpoorA. RahimnejadM. NajafpourG. MoghadamniaA.A. Gold nanoparticle prepared by electrochemical deposition for electrochemical determination of gabapentin as an antiepileptic drug.J. Electroanal. Chem. (Lausanne)201983528128610.1016/j.jelechem.2019.01.039
    [Google Scholar]
  55. HajianR. TayebiZ. ShamsN. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA.J. Pharm. Anal.201771273310.1016/j.jpha.2016.07.005 29404015
    [Google Scholar]
  56. ZabihollahpoorA. RahimnejadM. Najafpour-DarziG. MoghadamniaA.A. Biomedical application of a novel nanostructured-based electrochemical platform for therapeutic monitoring of an antiepileptic drug.Gabapentin. Anal. Bioanal. Electrochem.2020124536552
    [Google Scholar]
  57. AghazadehH. EbnetorabS.M.A. ShahriariN. GhaffariH. GheshlaghiE.F. TaheriP. Design and production of DNA-based electrochemical and biological biosensors for the detection and measurement of gabapentin medication in clinical specimens.J. Electrochem. Soc.2022169707751710.1149/1945‑7111/ac8247
    [Google Scholar]
  58. JalaliF. HassanvandZ. DorrajiP.S. Voltammetric determination of gabapentin by a carbon ceramic electrode modified with multiwalled carbon nanotubes and nickel-catechol complex.J. Braz. Chem. Soc.20142591537154410.5935/0103‑5053.20140137
    [Google Scholar]
  59. El-CheickF.M. RashwanF.A. MahmoudH.A. El-RoubyM. Gold nanoparticle-modified glassy carbon electrode for electrochemical investigation of aliphatic di-carboxylic acids in aqueous media.J. Solid State Electrochem.20101481425144310.1007/s10008‑009‑0957‑4
    [Google Scholar]
  60. El-SaidW.A. KimT.H. ChungY.H. ChoiJ.W. Fabrication of new single cell chip to monitor intracellular and extracellular redox state based on spectroelectrochemical method.Biomaterials201540808710.1016/j.biomaterials.2014.11.023 25433609
    [Google Scholar]
  61. El-SaidW.A. Al-BogamiA.S. AlshitariW. El-HadyD.A. SalehT.S. El-MokhtarM.A. ChoiJ.W. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern.Biochip J.202115328729510.1007/s13206‑021‑00030‑3 34394845
    [Google Scholar]
  62. KimT.H. El-SaidW.A. ChoiJ.W. Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip.Biosens. Bioelectron.201232126627210.1016/j.bios.2011.12.035 22226411
    [Google Scholar]
  63. El-SaidW.A. YeaC-H. KwonI-K. ChoiJ-W. Fabrication of electrical cell chip for the detection of anticancer drugs and environmental toxicants effect.Biochip J.200932105112
    [Google Scholar]
  64. El-SaidW.A. Abd El-HameedK. Abo El-MaaliN. SayyedH.G. Label‐free electrochemical sensor for ex‐vivo monitoring of Alzheimer’s disease biomarker.Electroanalysis201729374875510.1002/elan.201600467
    [Google Scholar]
  65. El-SaidW.A. KimT.H. KimH. ChoiJ.W. Three-dimensional mesoporous gold film to enhance the sensitivity of electrochemical detection.Nanotechnology2010214545550110.1088/0957‑4484/21/45/455501 20947947
    [Google Scholar]
  66. ZhangJ. GuanP. LiY. LiW. GuoQ. Polyaniline/cerium oxide hybrid modified carbon paste electrode for non‐enzymatic glucose detection.Bull. Korean Chem. Soc.201637798598610.1002/bkcs.10813
    [Google Scholar]
  67. Al-SulamiA.I. FatimaA. Al-SulamiF.M.H. SamiA. AldahiriR.H. KhanM. Al-GhamdiA.A. AkhtarN. El SaidW.A. C-entrapped Cu nanoparticles-infused polyaniline-modified cellulose nanofibers for the precise monitoring of xanthine in urine samples.New J. Chem.20244862817282410.1039/D3NJ05380F
    [Google Scholar]
  68. ZayedM.A. HusseinM.A. El-ShishtawyR.M. AlbukhariS.M. El-SaidW.A. ElshehyE.A. Molybdenum oxide grafted-polyaniline nanocomposite modified ITO electrode for electrochemical sensing of arsenic oxyanion.J. Mater. Res. Technol.20232450351310.1016/j.jmrt.2023.02.195
    [Google Scholar]
  69. El-SaidW.A. NasrO. SolimanA.I.A. ElshehyE.A. KhanZ.A. Abdel-WadoodF.K. Fabrication of polypyrrole/Au nanoflowers modified gold electrode for highly sensitive sensing of paracetamol in pharmaceutical formulation.Appl. Surf. Sci.2021410006510.1016/j.apsadv.2021.100065
    [Google Scholar]
  70. KyomuhimboH.D. FeleniU. Electroconductive green metal‐polyaniline nanocomposites: Synthesis and application in sensors.Electroanalysis2023352e20210063610.1002/elan.202100636
    [Google Scholar]
  71. HeliH. FaramarziF. SattarahmadyN. Oxidation and determination of Gabapentin on nanotubes of nickel oxide-modified carbon paste electrode.J. Solid State Electrochem.2012161455210.1007/s10008‑010‑1272‑9
    [Google Scholar]
  72. Karim-NezhadG. PashazadehS. Kinetic study of the electrocatalytic oxidation of acetaldehyde at Ni/Al layered double hydroxide modified sol-gel derived carbon ceramic electrode.Iran. Chem. Commun.201532103113
    [Google Scholar]
  73. HaghighiB. HamidiH. GortonL. Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode.Sens. Actuators B Chem.2010147127027610.1016/j.snb.2010.03.020
    [Google Scholar]
  74. AdekunleA.S. FarahA.M. PillayJ. OzoemenaK.I. MambaB.B. AgboolaB.O. Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine.Colloids Surf. B Biointerfaces20129518619410.1016/j.colsurfb.2012.02.043 22475526
    [Google Scholar]
  75. SamainL. GrandjeanF. LongG.J. MartinettoP. BordetP. StrivayD. Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers.J. Phys. Chem. C2013117199693971210.1021/jp3111327
    [Google Scholar]
  76. FarahA.M. ShootoN.D. ThemaF.T. ModiseJ.S. DikioE.D. Fabrication of prussian blue/multi-walled carbon nanotubes modified glassy carbon electrode for electrochemical detection of hydrogen peroxide.Int. J. Electrochem. Sci.2012754302431310.1016/S1452‑3981(23)19539‑3
    [Google Scholar]
  77. CuiL. ZhuJ. MengX. YinH. PanX. AiS. Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite.Sens. Actuators B Chem.2012161164164710.1016/j.snb.2011.10.083
    [Google Scholar]
  78. XiaM. ZhangX. LiuT. YuH. ChenS. PengN. ZhengR. ZhangJ. ShuJ. Commercially available Prussian blue get energetic in aqueous K-ion batteries.Chem. Eng. J.202039412492310.1016/j.cej.2020.124923
    [Google Scholar]
  79. El-SaidW.A. ChoiJ.W. Electrochemical biosensor consisted of conducting polymer layer on gold nanodots patterned Indium Tin Oxide electrode for rapid and simultaneous determination of purine bases.Electrochim. Acta2014123515710.1016/j.electacta.2013.12.144
    [Google Scholar]
  80. El-SaidW.A. AlshitariW. ChoiJ. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022911789010.1016/j.saa.2019.117890 31839573
    [Google Scholar]
  81. AlahmadiN. El-SaidW.A. Electrochemical sensing of dopamine using polypyrrole/molybdenum oxide bilayer-modified ITO electrode.Biosensors (Basel)202313657810.3390/bios13060578 37366943
    [Google Scholar]
  82. Abdel-RahmanM.A. El-SaidW.A. SayedE.M. Abdel-WahabA.M.A. Synthesis, characterization of some conductive aromatic polyamides/Fe3O4 NPs/ITO, and their utilization for methotrexate sensing.Surfaces202361839610.3390/surfaces6010007
    [Google Scholar]
  83. El-SaidW.A. LeeJ.H. OhB.K. ChoiJ.W. Electrochemical sensor to detect neurotransmitter using gold nano-island coated ITO electrode.J. Nanosci. Nanotechnol.20111176539654310.1166/jnn.2011.4377 22121752
    [Google Scholar]
  84. El-SaidW.A. YeaC.H. ChoiJ.W. KwonI.K. Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect.Thin Solid Films2009518266166710.1016/j.tsf.2009.07.062
    [Google Scholar]
  85. ChoiJ.H. El-SaidW.A. ChoiJ.W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor.Appl. Surf. Sci.202050614466910.1016/j.apsusc.2019.144669
    [Google Scholar]
  86. MarkebA.A. AbdelhameedK. El-SaidW.A. El-MaaliN.A. Water remediation using mesoporous silica monolith nanocomposites functionalized with Prussian blue.Int. J. Environ. Sci. Technol.202421117615763010.1007/s13762‑024‑05506‑x
    [Google Scholar]
  87. ChangL. ChangS. ChenW. HanW. LiZ. ZhangZ. DaiY. ChenD. Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal.RSC Advances2016698962239622810.1039/C6RA17525B
    [Google Scholar]
  88. KumarA. XagorarakiI. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: A proposed ranking system.Sci. Total Environ.2010408235972598910.1016/j.scitotenv.2010.08.048 20869754
    [Google Scholar]
  89. JalaliF. ArkanE. BahramiG. Preparation of a gabapentin potentiometric sensor and its application to pharmaceutical analysis.Sens. Actuators B Chem.2007127130430910.1016/j.snb.2007.07.019
    [Google Scholar]
  90. ZhangK. ZhangY. Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application.Mikrochim. Acta20101691-216116510.1007/s00604‑010‑0331‑3
    [Google Scholar]
  91. SoleymaniJ. HasanzadehM. ShadjouN. Khoubnasab JafariM. GharamalekiJ.V. YadollahiM. JouybanA. A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode.Mater. Sci. Eng. C20166163865010.1016/j.msec.2016.01.003 26838892
    [Google Scholar]
  92. ChaneyE.N.Jr BaldwinR.P. Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes.Anal. Chem.198254142556256010.1021/ac00251a034 7158780
    [Google Scholar]
  93. EvtugynG. PorfirevaA. StepanovaV. BudnikovH. Electrochemical biosensors based on native DNA and nanosized mediator for the detection of anthracycline preparations.Electroanalysis201527362963710.1002/elan.201400564
    [Google Scholar]
  94. HahnY. LeeH.Y. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride.Arch. Pharm. Res.2004271313410.1007/BF02980041 14969334
    [Google Scholar]
  95. HashemzadehN. HasanzadehM. ShadjouN. Eivazi-ZiaeiJ. KhoubnasabjafariM. JouybanA. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma.J. Pharm. Anal.20166423524110.1016/j.jpha.2016.03.003 29403988
    [Google Scholar]
/content/journals/cac/10.2174/0115734110334449240925064834
Loading
/content/journals/cac/10.2174/0115734110334449240925064834
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test