Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The subject of medical and biological research using nanotechnology, which blends nanoscience with biology and biomedicine, is currently gaining a lot of attention. Nanomaterials come in a wide range of sizes, shapes, and compositions and are widely used in various applications. Their stimulating potentials mainly enhance our capacity to identify naturally occurring processes.

Methods

Moreover, point-of-care (POC) methods offer quick and easy medication analysis at home, in a physician's office, or anywhere else. The pregnancy test and the blood glucose test are the two most well-known examples. From a more global standpoint, they offer the enticing prospect of saving lives from incurable illnesses: their rapid, sometimes instantaneous data significantly minimize analysis times, and their more economical variants make them accessible to healthcare facilities, individuals worldwide, and even in developing countries. Determining biomarkers in disease analysis, such as enzymes, proteins, circulating tumor cells, tiny compounds, and DNA/RNA in biological examples, including full serum, blood, saliva, plasma, fluid, cerebral spinal, and urine, may also be included in applications.

Results

Globally, cardiovascular diseases (CVDs) are the primary cause of death. Finding cardiac biomarkers is crucial for the diagnosis, management, and prevention of cardiovascular diseases. By giving vital information about a patient's cardiac health, these indications help doctors make the best decisions and give the best care. The efficiency, promptness, and patient-centeredness of cardiac treatment are significantly enhanced by POC methods for cardiac biomarker identification, which improves patient outcomes and healthcare delivery. For this reason, the primary emphasis of this investigation was on POC instruments and sensors that are now available commercially and have been published within the previous five years for the assessment of cardiac biomarkers. We discuss the POC devices that have been developed recently using a variety of cutting-edge technologies, sophisticated materials, and analytical methods.

Conclusion

The current study also includes an overview of several companies and the products they sell for cardiac function monitoring and rapid, precise heart failure diagnosis. Ultimately, important conclusions are reached about POC devices for medical applications, namely for CVDs. The global market values and potential directions for POC device development are also taken into consideration.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110287874240629095513
2024-07-10
2025-10-12
Loading full text...

Full text loading...

References

  1. KunitzS.J. The health of populations: general theories and particular realities.USAOxford University Press20070195308077
    [Google Scholar]
  2. McEvoyP. Chronic disease management: A new paradigm for care.CRC Press2014191022705610.1201/b20745
    [Google Scholar]
  3. ChokkareddyR. ThondavadaN. ThakurS. KanchiS. Recent trends in sensors for health and agricultural applications.Advanced Biosensors for Health Care Applications.Elsevier201934135510.1016/B978‑0‑12‑815743‑5.00013‑5
    [Google Scholar]
  4. ChokkareddyR. ThondavadaN. ThakurS. KanchiS. Cholesterol-based enzymatic and nonenzymatic sensors.Advanced Biosensors for Health Care Applications.Elsevier201931533910.1016/B978‑0‑12‑815743‑5.00012‑3
    [Google Scholar]
  5. KaushikA. MujawarM. Point of care sensing devices: Better care for everyone.Sensors20181812430310.3390/s18124303 30563249
    [Google Scholar]
  6. KaushikA. VasudevA. AryaS.K. PashaS.K. BhansaliS. Recent advances in cortisol sensing technologies for point-of-care application.Biosens. Bioelectron.20145349951210.1016/j.bios.2013.09.060 24212052
    [Google Scholar]
  7. VashistS.K. LuppaP.B. YeoL.Y. OzcanA. LuongJ.H.T. Emerging technologies for next-generation point-of-care testing.Trends Biotechnol.2015331169270510.1016/j.tibtech.2015.09.001 26463722
    [Google Scholar]
  8. ChokkareddyR. RedhiG.G. Green synthesis of metal nanoparticles and its reaction mechanisms. Green metal nanoparticles: synthesis, characterization and their applications.Wiley Online Library2018113139
    [Google Scholar]
  9. ChokkareddyR. BhajanthriN.K. KabaneB. RedhiG.G. Bio‐sensing performance of magnetite nanocomposite for biomedical applications.Biomedical Environmental, and Engineering Applications Nanomaterials2018165196
    [Google Scholar]
  10. BhajanthriN.K. ChokkareddyR. RedhiG.G. Aspects of Recent Advances in Smart Ionic Liquid Based Sensors. EftekhariA. The Royal Society of Chemistry2017321336
    [Google Scholar]
  11. ItzkanI. QiuL. FangH. ZamanM.M. VitkinE. GhiranI.C. SalahuddinS. ModellM. AnderssonC. KimererL.M. CipolloniP.B. LimK.H. FreedmanS.D. BigioI. SachsB.P. HanlonE.B. PerelmanL.T. Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels.Proc. Natl. Acad. Sci.200710444172551726010.1073/pnas.0708669104 17956980
    [Google Scholar]
  12. SunY. PhippsJ. ElsonD.S. StoyH. TinlingS. MeierJ. PoirierB. ChuangF.S. FarwellD.G. MarcuL. Fluorescence lifetime imaging microscopy: In vivo application to diagnosis of oral carcinoma.Opt. Lett.200934132081208310.1364/OL.34.002081 19572006
    [Google Scholar]
  13. WilliamsS. HenricksW.H. BecichM.J. ToscanoM. CarterA.B. Telepathology for patient care: What am I getting myself into?Adv. Anat. Pathol.201017213014910.1097/PAP.0b013e3181cfb788 20179435
    [Google Scholar]
  14. YousefiF. MovahedpourA. ShabaninejadZ. GhasemiY. RabbaniS. Sobnani-NasabA. MohammadiS. HajimoradiB. RezaeiS. SavardashtakiA. MazoochiM. MirzaeiH. Electrochemical-based biosensors: New diagnosis platforms for cardiovascular disease.Curr. Med. Chem.202027152550257510.2174/0929867326666191024114207 31696797
    [Google Scholar]
  15. BakirhanN.K. OzcelikayG. OzkanS.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors.J. Pharm. Biomed. Anal.201815940642410.1016/j.jpba.2018.07.021 30036704
    [Google Scholar]
  16. da SilvaE.T. SoutoD.E. BarraganJ.T. Electrochemical biosensors in point‐of‐care devices: Recent advances and future trends.ChemElectroChem20174477879410.1002/celc.201600758
    [Google Scholar]
  17. ReganB. O’KennedyR. CollinsD. Advances in point-of-care testing for cardiovascular diseases.Adv. Clin. Chem.202110417010.1016/bs.acc.2020.09.001 34462053
    [Google Scholar]
  18. AlawiehH. ChemalyT.E. AlamS. KhraicheM. Towards point-of-care heart failure diagnostic platforms: BNP and NT-proBNP biosensors.Sensors20191922500310.3390/s19225003 31744130
    [Google Scholar]
  19. GaoW. SaqibM. QiL. ZhangW. XuG. Recent advances in electrochemiluminescence devices for point-of-care testing.Curr. Opin. Electrochem.20173141010.1016/j.coelec.2017.03.003
    [Google Scholar]
  20. ZhangM. CuiX. LiN. Smartphone-based mobile biosensors for the point-of-care testing of human metabolites.Mater. Today Bio20221410025410.1016/j.mtbio.2022.100254 35469257
    [Google Scholar]
  21. Koteswara RaoV. Point of care diagnostic devices for rapid detection of novel coronavirus (SARS-nCoV19) pandemic: A review.Front. Nanotechnol.2021259361910.3389/fnano.2020.593619
    [Google Scholar]
  22. Saviñon-FloresA.I. Saviñon-FloresF. TrejoG. MéndezE. ŢăluŞ. González-FuentesM.A. Méndez-AlboresA. A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: Under the spotlight of point-of-care testing.Front Chem.202210101730510.3389/fchem.2022.1017305 36311415
    [Google Scholar]
  23. KimK. Kashefi-KheyrabadiL. JoungY. KimK. DangH. ChavanS.G. LeeM.H. ChooJ. Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases.Sens. Actuators B Chem.202132912921410.1016/j.snb.2020.129214 36568647
    [Google Scholar]
  24. SatalkarP. ElgerB.S. HunzikerP. ShawD. Challenges of clinical translation in nanomedicine: A qualitative study.Nanomedicine201612489390010.1016/j.nano.2015.12.376 26772431
    [Google Scholar]
  25. ChinC.D. LinderV. SiaS.K. Commercialization of microfluidic point-of-care diagnostic devices.Lab Chip201212122118213410.1039/c2lc21204h 22344520
    [Google Scholar]
  26. WangJ. XuanJ. 3-D Spine Imaging and Image-Guided Minimally Invasive Spine Surgery.Available from: https://www.medtronic.com/us-en/patients/treatments-therapies/considering-back-surgery/guided-imaging.html 1996
  27. SimoffM.J. LallyB. SladeM.G. GoldbergW.G. LeeP. MichaudG.C. WahidiM.M. ChawlaM. Symptom management in patients with lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidencebased clinical practice guidelines.Chest20131435)(Suppl.e455Se497S10.1378/chest.12‑2366 23649452
    [Google Scholar]
  28. Lopez-BarbosaN. GamarraJ.D. OsmaJ.F. The future point-of-care detection of disease and its data capture and handling.Anal. Bioanal. Chem.2016408112827283710.1007/s00216‑015‑9249‑2 26780711
    [Google Scholar]
  29. ThévenotD.R. TothK. DurstR.A. WilsonG.S. Electrochemical biosensors: Recommended definitions and classification.Biosens. Bioelectron.2001161-2121131 11261847
    [Google Scholar]
  30. LiglerF.S. Perspective on optical biosensors and integrated sensor systems.Anal. Chem.200981251952610.1021/ac8016289 19140774
    [Google Scholar]
  31. ChuaJ.H. CheeR.E. AgarwalA. WongS.M. ZhangG.J. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays.Anal. Chem.200981156266627110.1021/ac901157x 20337397
    [Google Scholar]
  32. LiuQ. YuenC. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles.Europ. Conf. Biomed. Opt.p. 80870E.201110.1364/ECBO.2011.80870E
    [Google Scholar]
  33. LiM. CushingS.K. WuN. Plasmon-enhanced optical sensors: A review.Analyst2015140238640610.1039/C4AN01079E 25365823
    [Google Scholar]
  34. GeS. LiuF. LiuW. YanM. SongX. YuJ. Colorimetric assay of K-562 cells based on folic acid-conjugated porous bimetallic Pd@Au nanoparticles for point-of-care testing.Chem. Commun.201450447547710.1039/C3CC47622G 24257545
    [Google Scholar]
  35. MehrvarM. AbdiM. Recent developments, characteristics, and potential applications of electrochemical biosensors.Anal. Sci.20042081113112610.2116/analsci.20.1113 15352497
    [Google Scholar]
  36. HellerA. FeldmanB. Electrochemical glucose sensors and their applications in diabetes management.Chem. Rev.200810872482250510.1021/cr068069y 18465900
    [Google Scholar]
  37. Tomazelli ColtroW.K. ChengC.M. CarrilhoE. de JesusD.P. Recent advances in low‐cost microfluidic platforms for diagnostic applications.Electrophoresis201435162309232410.1002/elps.201400006 24668896
    [Google Scholar]
  38. SharmaS. Zapatero-RodríguezJ. EstrelaP. O’KennedyR. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics.Biosensors20155357760110.3390/bios5030577 26287254
    [Google Scholar]
  39. SongQ. SunX. DaiZ. GaoY. GongX. ZhouB. WuJ. WenW. Point-of-care testing detection methods for COVID-19.Lab Chip20212191634166010.1039/D0LC01156H 33705507
    [Google Scholar]
  40. SachdevaS. DavisR.W. SahaA.K. Microfluidic point-of-care testing: commercial landscape and future directions.Front. Bioeng. Biotechnol.2021860265910.3389/fbioe.2020.602659 33520958
    [Google Scholar]
  41. CardosoA.G. AhmedS.R. Keshavarz-MotamedZ. SrinivasanS. RajabzadehA.R. Recent advancements of nanomodified electrodes-towards Point-of-Care detection of cardiac biomarkers. Bioelectrochem2023154108440
    [Google Scholar]
  42. NazirS. IqbalR.A. Biosensor for rapid and accurate detection of cardiovascular biomarkers: Progress and prospects in biosensors.Biosens. Bioelectron.202314100388
    [Google Scholar]
  43. GoswamiP.P. DeshpandeT. RotakeD.R. SinghS.G. Near perfect classification of cardiac biomarker Troponin-I in human serum assisted by SnS2-CNT composite, explainable ML, and operating-voltage-selection-algorithm.Biosens. Bioelectron.202322011491510.1016/j.bios.2022.114915 36403491
    [Google Scholar]
  44. YangQ. HaoY. ChenZ. LanN. HeX. HuD. XuZ. LiangL. CaoD. GuoJ. RanY. GuanB-O. Rapid and sensitive detection of cardiac markers using plasmonic gold nanostar-engineered microfiber Bragg grating biosensor.Sens. Actuators B Chem.202339313424810.1016/j.snb.2023.134248
    [Google Scholar]
  45. ParkG. LeeH. JangM. ParkJ.A. ParkH. ParkC. KimT.H. LeeM.H. LeeT. Rapid electrical biosensor consisting of DNA aptamer/carbon nanonetwork on microelectrode array for cardiac troponin I in human serum.Sens. Actuators B Chem.202339313429510.1016/j.snb.2023.134295
    [Google Scholar]
  46. YenginC. DerF.G. AlcinI. CihanB. KilincE. Non-invasive electrochemical immunosensor for reverse iontophoretic determination of cardiac troponins (cTnT & cTnI) in a simulated artificial skin model. Significance of raw DPV and CV data for chemometric discrimination.Talanta202325612427610.1016/j.talanta.2023.124276 36731212
    [Google Scholar]
  47. LiY. ZuoS. DingL. XuP. WangK. LiuY. LiJ. LiuC. Sensitive immunoassay of cardiac troponin I using an optimized microelectrode array in a novel integrated microfluidic electrochemical device.Anal. Bioanal. Chem.2020412308325833810.1007/s00216‑020‑02968‑z 33011840
    [Google Scholar]
  48. AmoresiR.A.C. RozaN.A.V. MazonT. Applying CeO2 nanorods in flexible electrochemical immunosensor to detect C-reactive protein.J. Electroanal. Chem.202393511735310.1016/j.jelechem.2023.117353
    [Google Scholar]
  49. LiuD. ZhouL. HuangL. ZuoZ. HoV. JinL. LuY. ChenX. ZhaoJ. QianD. LiuH. MaoH. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection.Analyst2021146175380538810.1039/D1AN00464F 34338259
    [Google Scholar]
  50. BoonyasitY. ChailapakulO. LaiwattanapaisalW. A folding affinity paper-based electrochemical impedance device for cardiovascular risk assessment.Biosens. Bioelectron.201913038939610.1016/j.bios.2018.09.031 30268669
    [Google Scholar]
  51. Ben HalimaH. BellagambiF.G. HangouëtM. AlcacerA. PfeifferN. HeubergerA. ZineN. BausellsJ. ElaissariA. ErrachidA. A novel electrochemical strategy for NT-proBNP detection using IMFET for monitoring heart failure by saliva analysis.Talanta202325112375910.1016/j.talanta.2022.123759 35952499
    [Google Scholar]
  52. ColomG. SalvadorJ.P. AcostaG. AlbericioF. RoyoM. MarcoM.P. Competitive ELISA for N-terminal pro-brain natriuretic peptide (NT-proBNP) determination in human plasma.Analyst2020145206719672710.1039/D0AN00650E 32815928
    [Google Scholar]
  53. RajN. CrooksR.M. Detection efficiency of Ag nanoparticle labels for a heart failure marker using linear and square-wave anodic stripping voltammetry.Biosensors202212420310.3390/bios12040203 35448263
    [Google Scholar]
  54. LiZ. AusriI.R. ZilbermanY. TangX.S. Towards label-free, wash-free and quantitative B-type natriuretic peptide detection for heart failure diagnosis.Nanoscale20191139183471835710.1039/C9NR05386G 31573591
    [Google Scholar]
  55. AlmehiziaA.A. NaglahA.M. AlrasheedL.S. AlanaziM.G. AmrA.E.G.E. KamelA.H. Point-of-care paper-based analytical device for potentiometric detection of myoglobin as a cardiovascular disease biomarker.RSC Advances20231322151991520710.1039/D3RA02375C 37213337
    [Google Scholar]
  56. BoonkaewS. JangI. NovianaE. SiangprohW. ChailapakulO. HenryC.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers.Sens. Actuators B Chem.202133012933610.1016/j.snb.2020.129336
    [Google Scholar]
  57. CaoJ.T. MaY. LvJ.L. RenS.W. LiuY.M. A potentiometric resolved photoelectrochemical system based on CdS nanowires and SnNb 2 O 6 nanosheets: A case application for dual biomarker analysis.Chem. Commun.202056101513151610.1039/C9CC09102E 31919482
    [Google Scholar]
  58. SinghN. RaiP. AliM.A. KumarR. SharmaA. MalhotraB.D. JohnR. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I.J. Mater. Chem.201972438263839
    [Google Scholar]
  59. XuW. WangL. ZhangR. SunX. HuangL. SuH. WeiX. ChenC.C. LouJ. DaiH. QianK. Diagnosis and prognosis of myocardial infarction on a plasmonic chip.Nat. Commun.2020111165410.1038/s41467‑020‑15487‑3 32245966
    [Google Scholar]
  60. LiangC. LiuY. NiuA. LiuC. LiJ. NingD. Smartphone-app based point-of-care testing for myocardial infarction biomarker cTnI using an autonomous capillary microfluidic chip with self-aligned on-chip focusing (SOF) lenses.Lab Chip201919101797180710.1039/C9LC00259F 30976769
    [Google Scholar]
  61. XuA. LiJ. ZhangS. PanH. An integrated immunochromatographic device for C-reactive protein detection using hierarchical dendritic gold nanostructure films.Anal. Chim. Acta2023126934140210.1016/j.aca.2023.341402 37290857
    [Google Scholar]
  62. GoryachevaO.A. KokorinaA.A. PodkolodnayaY.A. MishraP.K. GoryachevaI.Y. Express test for NT-proBNP competitive detection based on lateral flow immunoassay using silanized fluorescent quantum dots.Talanta Open2023710018610.1016/j.talo.2023.100186
    [Google Scholar]
  63. ZouJ. LiuX. RenX. TanL. FuC. WuQ. HuangZ. MengX. Rapid and simultaneous detection of heart-type fatty acid binding protein and cardiac troponin using a lateral flow assay based on metal organic framework@CdTe nanoparticles.Nanoscale202113167844785010.1039/D1NR00702E 33881110
    [Google Scholar]
  64. NechaevaN.L. SorokinaO.N. KonstantinovaT.S. VasilyevaA.D. YurinaL.V. ByzovaN.A. BugrovaA.E. YanovichS.V. EremenkoA.V. KurochkinI.N. Simultaneous express immunoassay of multiple cardiac biomarkers with an automatic platform in human plasma.Talanta202122412186010.1016/j.talanta.2020.121860 33379071
    [Google Scholar]
  65. HuangL. ZhangY. SuE. LiuY. DengY. JinL. ChenZ. LiS. ZhaoY. HeN. Eight biomarkers on a novel strip for early diagnosis of acute myocardial infarction.Nanoscale Adv.2020231138114310.1039/C9NA00644C 36133047
    [Google Scholar]
  66. WangY.T. WuN. YangT. WangJ.H. Unusual selective response to glycoprotein over sugar facilitates ultrafast universal fluorescent immunoassay of biomarkers.Anal. Chem.20209275540554510.1021/acs.analchem.0c00403 32141734
    [Google Scholar]
  67. GuoX. ZongL. JiaoY. HanY. ZhangX. XuJ. LiL. ZhangC. LiuZ. JuQ. LiuJ. XuZ. YuH.D. HuangW. Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires.Anal. Chem.201991149300930710.1021/acs.analchem.9b02557 31241314
    [Google Scholar]
  68. JiJ. LuW. ZhuY. JinH. YaoY. ZhangH. ZhaoY. Porous hydrogel-encapsulated photonic barcodes for multiplex detection of cardiovascular biomarkers.ACS Sens.2019451384139010.1021/acssensors.9b00352 30985109
    [Google Scholar]
  69. WangX. ZhangW. WangS. LiuW. LiuN. ZhangD. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper.Biochem. Eng. J.202117610817610.1016/j.bej.2021.108176
    [Google Scholar]
  70. Ulloa-GomezA.M. AgredoA. LucasA. SomvanshiS.B. StanciuL. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing.Biosens. Bioelectron.202322211493810.1016/j.bios.2022.114938 36462432
    [Google Scholar]
  71. PanferovV.G. ByzovaN.A. ZherdevA.V. DzantievB.B. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein.Mikrochim. Acta2021188930910.1007/s00604‑021‑04968‑x 34453188
    [Google Scholar]
  72. OuyangM. Di CarloD. Nanoplasmonic swarm biosensing using single nanoparticle colorimetry.Biosens. Bioelectron.201913216217010.1016/j.bios.2019.02.056 30875628
    [Google Scholar]
  73. DongH. HuangL. LiuD. ZhouL. WuZ. ChengZ. LiuH. MaoH. Robust and multiplexed colorimetric immunoassay for cardiovascular disease biomarkers detection in serum with high specificity.Microchem. J.202015210433410.1016/j.microc.2019.104334
    [Google Scholar]
  74. OzenM.O. SridharK. OgutM.G. ShanmugamA. AvadhaniA.S. KobayashiY. WuJ.C. HaddadF. DemirciU. Total microfluidic chip for multiplexed diagnostics (ToMMx).Biosens. Bioelectron.202015011193010.1016/j.bios.2019.111930 31929083
    [Google Scholar]
  75. LimW.Y. ThevarajahT.M. GohB.T. KhorS.M. Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection.Biosens. Bioelectron.201912817618510.1016/j.bios.2018.12.049 30685097
    [Google Scholar]
  76. PuQ. YangX. GuoY. DaiT. YangT. OuX. LiJ. ShengS. XieG. Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay.Mikrochim. Acta2019186313810.1007/s00604‑019‑3242‑y
    [Google Scholar]
  77. ByzovaN.A. ZherdevA.V. VengerovY.Y. StarovoitovaT.A. DzantievB.B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers.Mikrochim. Acta2017184246347110.1007/s00604‑016‑2022‑1
    [Google Scholar]
  78. ZhuL. FuW. ZhuB. FengQ. YingX. LiS. ChenJ. XieX. PanC. LiuJ. ChenC. ChenX. ZhuD. An integrated microfluidic electrochemiluminescence device for point-of-care testing of acute myocardial infarction.Talanta202326212462610.1016/j.talanta.2023.124626 37244239
    [Google Scholar]
  79. SinhaA. TaiT.Y. LiK.H. GopinathanP. ChungY.D. SarangadharanI. MaH.P. HuangP.C. ShieshS.C. WangY.L. LeeG.B. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples.Biosens. Bioelectron.201912915516310.1016/j.bios.2019.01.001 30703568
    [Google Scholar]
  80. ZhaoJ. DuJ. LuoJ. ChenS. YuanR. A novel potential-resolved electrochemiluminescence immunosensor for the simultaneous determination of brain natriuretic peptide and cardiac troponin I.Sens. Actuators B Chem.202031112793410.1016/j.snb.2020.127934
    [Google Scholar]
  81. LiF. GuoL. HuY. LiZ. LiuJ. HeJ. CuiH. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles.Talanta202020712034610.1016/j.talanta.2019.120346 31594588
    [Google Scholar]
  82. ZhaoK. TangM. WangH. ZhouZ. WuY. LiuS. Simultaneous detection of three biomarkers related to acute myocardial infarction based on immunosensing biochip.Biosens. Bioelectron.201912676777210.1016/j.bios.2018.11.044 30554098
    [Google Scholar]
  83. YangR. LiF. ZhangW. ShenW. YangD. BianZ. CuiH. Chemiluminescence immunoassays for simultaneous detection of three heart disease biomarkers using magnetic carbon composites and three-dimensional microfluidic paper-based device.Anal. Chem.20199120130061301310.1021/acs.analchem.9b03066 31525898
    [Google Scholar]
  84. HosseinniayS. RezayanA.H. GhasemiF. MalekmohamadiM. TaheriR.A. HosseiniM. AlvandiH. Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP.Anal. Chim. Acta2023123734058010.1016/j.aca.2022.340580 36442946
    [Google Scholar]
  85. ZhuY. SunS. YinX. LiuY. YangW. ChenY. Carbon nanotube-gold nanoparticle-based self-powered electrochemical biosensors for highly sensitive and stable detection of myoglobin.ACS Appl. Nano Mater.2023613110851109410.1021/acsanm.3c00910
    [Google Scholar]
  86. NavarroC. FishlockS.J. SteeleD.N. PuttaswamyS.V. LubarskyG. RajS. MclaughlinJ. A point-of-care measurement of NT-proBNP for heart failure patients.IEEE Access2020813897313898310.1109/ACCESS.2020.3007988
    [Google Scholar]
  87. ChenJ.S. ChenP.F. LinH.T.H. HuangN.T. A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection.Analyst2020145237654766110.1039/D0AN01201G 32966364
    [Google Scholar]
  88. SinhaA. GopinathanP. ChungY.D. ShieshS.C. LeeG.B. Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system.Lab Chip20191991676168510.1039/C9LC00115H 30942226
    [Google Scholar]
  89. SongE. KimI. JeonC. PyunS. Development and optimization of surface-enhancement Raman scattering-based lateral flow immunoassays for the ultrasensitive detection of cardiac troponin I.Microchem. J.202319310896210.1016/j.microc.2023.108962
    [Google Scholar]
  90. WenX. OuY.C. ZarickH.F. ZhangX. HmeloA.B. VictorQ.J. PaulE.P. SlocikJ.M. NaikR.R. BellanL.M. LinE.C. BardhanR. PRADA: Portable reusable accurate diagnostics with nanostar antennas for multiplexed biomarker screening.Bioeng. Transl. Med.202053e1016510.1002/btm2.10165
    [Google Scholar]
  91. HuC. MaL. GuanM. MiF. PengF. GuoC. SunS. WangX. LiuT. LiJ. SERS-based magnetic immunoassay for simultaneous detection of cTnI and H-FABP using core–shell nanotags.Anal. Methods202012455442544910.1039/D0AY01564D 33165490
    [Google Scholar]
  92. LimW.Y. GohC.H. ThevarajahT.M. GohB.T. KhorS.M. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers.Biosens. Bioelectron.202014711179210.1016/j.bios.2019.111792 31678828
    [Google Scholar]
  93. SuY. XuS. ZhangJ. ChenX. JiangL.P. ZhengT. ZhuJ.J. Plasmon near-field coupling of bimetallic nanostars and a hierarchical bimetallic SERS “Hot Field”: toward ultrasensitive simultaneous detection of multiple cardiorenal syndrome biomarkers.Anal. Chem.201991186487210.1021/acs.analchem.8b03573 30499654
    [Google Scholar]
  94. CrapnellR.D. CanfarottaF. CzulakJ. JohnsonR. BetlemK. MecozziF. DownM.P. EerselsK. van GrinsvenB. CleijT.J. LawR. BanksC.E. PeetersM. Thermal detection of cardiac biomarkers heart-fatty acid binding protein and ST2 using a molecularly imprinted nanoparticle-based multiplex sensor platform.ACS Sens.20194102838284510.1021/acssensors.9b01666 31571480
    [Google Scholar]
  95. VIDAS®, Multiparametric immunoassay system for medium throughput.Available from: https://www.biomerieux-diagnostics.com/vidasr-0
  96. VITROS® 3600 Immunodiagnostic System.Available from: https://go.orthoclinicaldiagnostics.com/nl/en/clinical-labs/vitros-systems/Immunoassay/vitros-3600-immunodiagnostics-system
  97. ARCHITECT C8000Available from: https://www.corelaboratory.abbott/int/en/offerings/brands/architect/architect-c8000.html
  98. Fast Throughput For Time-Saving Results Walkaway performance that enables confident delivery of fast, accurate results UniCel DxI Access Immunoassay Systems.Available from: https://www.beckmancoulter.com/products/immunoassay/
  99. Stratus® CS Acute Care™ Troponin Analyzer.Available from: https://www.siemens-healthineers.com/en-in/cardiac/cardiac-systems/stratus-cs-acute-care
  100. cobas h 232 POC system.Available from: https://diagnostics.roche.com/global/en/products/instruments/cobas-h-232.html
  101. Abbott, Cardiac Troponin I / (cTnI).2019Available from: https://www.globalpointofcare.abbott/us/en/products-solutions/product-catalog.html
  102. High sensitivity Troponin I,Available from: https://www.phchd.com/eu/lsimedience/pathfast/emergency-marker/high-sensitivity-troponin
  103. AFIAS-6, Automated Immunoassay Analyzer with the all-in-one cartridge system.Available from: https://www.boditech.co.kr/en/product/instruments/id/2
  104. IchromaI.I. A compact and easy-to-use, fluorescence based POCT immunoassay analyser.Available from: https://www.boditech.co.kr/en/product/instruments/id/4
  105. MINI VIDASCompact multiparametric immunoanalyzer.Available from: https://www.biomerieux-diagnostics.com/mini-vidas
  106. DZ-Lite c270, A Fully-Automated, Reliable, Bench-Top Solution.Available from: https://www.diazyme.com/dz-lite-c270-instrument
  107. RAMP is the only rapid, quantitative, self-calibrating platform in acute care.Available from: https://responsebio.com/acute-care-diagnostics/cardiovascular/
  108. AQT90 FLEX immunoassay analyser, Point-of-care biomarker testing made simple.Available from: http://backup.biognostic.de/products/
  109. QuickSens Ω100Available from: http://backup.biognostic.de/products/
  110. Nano-CheckTM AMI 2IN1 cTnI/MYO.Available from: https://www.nanoditech.com/product/nano-checktm-ami-2in1-ctni-myo/
  111. Nano-CheckTM AMI 3IN1 cTnI/CK-MB/MYO.Available from: https://www.nanoditech.com/product/nano-checktm-ami-3in1-ctni-ck-mb-myo/
  112. Troponin I/ CKMB/ Myoglobin RapiCard™ InstaTest, Cat # 166779-1-37.Available from: http://www.rapidtest.com/index.php?i=Cardiac-markers-Rapid-tests&id=238&cat=23
  113. Cardiac TripleSimultaneous testing for Tn-I, CK-MB, and Myoglobin.Available from: https://www.boditech.co.kr/en/product/reagents/id/39
  114. Fluoro-CheckTM AMI 3 IN 1, ND-TF3154.Available from: https://www.nanoditech.com/product/fluoro-checktm-ami-3-in-1/
  115. Nano-CheckTM 4IN1, ND-CD402P.Available from: https://www.nanoditech.com/product/nano-checktm-4in1/
  116. LifeSign MI CK-MB/Myo/TnI For The Rapid Qualitative Detection Of Cardiac Markers To Aid In The Diagnosis Of Acute Myocardial Infarction.Available from: https://www.lifesignmed.com/product-catalog/cardiac-care/caradic-markers/lifesign-mi-ck-mbmyotni
  117. Quidel Triage Cardio3 Panel, 97400EU.Available from: https://www.quidel.com/immunoassays/triage-test-kits/triage-cardio3-panel
  118. Randox Acusera Cardiac Array Control.Available from: https://www.randox.com/cardiac-array-quality-control/
  119. CardioDetect® combi detects h-FABP and Troponin I.Available from: http://tanmayenterprise.com/Website/Cardiodetect.html
  120. ManiV. DurmusC. KhushaimW. FerreiraD.C. TimurS. ArduiniF. SalamaK.N. Multiplexed sensing techniques for cardiovascular disease biomarkers: A review.Biosens. Bioelectron.202221611468010.1016/j.bios.2022.114680 36113389
    [Google Scholar]
  121. OuyangM. TuD. TongL. SarwarM. BhimarajA. LiC. CotéG.L. Di CarloD. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care.Biosens. Bioelectron.202117111262110.1016/j.bios.2020.112621 33120234
    [Google Scholar]
  122. SavonnetM. RollandT. CubizollesM. RoupiozY. BuhotA. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies.J. Pharm. Biomed. Anal.202119411377710.1016/j.jpba.2020.113777 33293175
    [Google Scholar]
  123. FuE. YagerP. FlorianoP.N. ChristodoulidesN. McDevittJ.T. Perspective on diagnostics for global health.IEEE Pulse201126405010.1109/MPUL.2011.942766 22147068
    [Google Scholar]
  124. HuckleD. Point-of-care diagnostics: An advancing sector with nontechnical issues.Expert Rev. Mol. Diagn.20088667968810.1586/14737159.8.6.679 18999920
    [Google Scholar]
/content/journals/cac/10.2174/0115734110287874240629095513
Loading
/content/journals/cac/10.2174/0115734110287874240629095513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test