Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Prefilled syringe is a multi-component injector drug packaging system in which liquid drugs are directly loaded for direct use by patients. It has two functions, drug storage and regular injection, which belongs to high-risk pharmaceutical packaging containers. In recent years, more and more injections have been packaged with prefilled syringes worldwide. However, no guidelines about compatibility of chemical injections and prefilled syringes was set up. In current review, studies related to the compatibility study was summarized. Structural composition, material composition and production technology are analyzed first. After that, extraction test, interaction study and safety study are summarized. Glass components, plastic components, seal elastomer components, other components and materials, adsorption test and physical properties are the main focusing points. Based on the studies mentioned above, together with the results of extraction test, migration test and adsorption test, safety evaluation indexes could be formed. The current review aims to provide strategies for the setting up of compatibility study guidelines.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110327434240920110053
2024-09-30
2025-10-13
Loading full text...

Full text loading...

References

  1. BenhamouD. WeissM. BormsM. Assessing the clinical, economic, and health resource utilization impacts of prefilled syringes versus conventional medication administration methods: Results from a systematic literature review.Ann. Pharmacother.202458992193438014840
    [Google Scholar]
  2. SwiftR. Prefilled Syringes for biopharmaceuticals. formulation and process development strategies for manufacturing biopharmaceuticals.John Wiley & Sons, Inc.2010
    [Google Scholar]
  3. MajumdarS. FordB.M. MarK.D. SullivanV.J. UlrichR.G. D’souzaA.J.M. Evaluation of the effect of syringe surfaces on protein formulations.J. Pharm. Sci.201110072563257310.1002/jps.2251521319164
    [Google Scholar]
  4. StoutD. VilivalamV. Plastic prefilled syringes: A better fit for autoinjector systems.Advanstar Communications Inc2009
    [Google Scholar]
  5. BasuB. DharamsiA. MakwanaS. MakasanaY. Prefilled syringes: An innovation in parenteral packaging.Int. J. Pharm. Investig.20111420020610.4103/2230‑973X.9300423071944
    [Google Scholar]
  6. JezekJ. DartonN.J. DerhamB.K. RoyleN. SimpsonI. Biopharmaceutical formulations for pre-filled delivery devices.Expert Opin. Drug Deliv.201310681182810.1517/17425247.2013.78002323506207
    [Google Scholar]
  7. KellyF.E. FrerkC. Prefilled syringes have significant human factors benefits and would improve anaesthetic medication safety.Anaesthesia202378792110.1111/anae.1602337020326
    [Google Scholar]
  8. NinomiyaN. KoidoY. YamamotoY. Aseptic efficacy of prefilled syringes in a polluted environment.Prehosp. Disaster Med.2001161141710.1017/S1049023X0002548611367931
    [Google Scholar]
  9. BellefleurJ.P. MilhaudY. BeconciniG. ZieleskiewiczL. OrtegaD. MartinC. LeoneM. Use of ephedrine prefilled syringes reduces anesthesia costs.Ann. Fr. Anesth. Réanim.200928321121410.1016/j.annfar.2008.12.00419278808
    [Google Scholar]
  10. SassalosT.M. PaulusY.M. Prefilled syringes for intravitreal drug delivery.Clin. Ophthalmol.2019131370170610.2147/OPTH.S16904431114147
    [Google Scholar]
  11. ShibaT. TsuneokaH. Prefilled syringes and usability of ophthalmic viscosurgical devices.Clin. Ophthalmol.201481697170210.2147/OPTH.S6768925228786
    [Google Scholar]
  12. Secukinumab prefilled syringes demonstrate patient satisfaction: analysis of the self-injection assessment questionnaire (SIAQ) in the FEATURE study.Retour au Numéro2014705AB187
    [Google Scholar]
  13. SouiedE. Nghiem-BuffetS. LeteneuxC. BayerS. DerveloyA. SagkriotisA. BeckerG. CohenS.Y. Ranibizumab prefilled syringes: Benefits of reduced syringe preparation times and less complex preparation procedures.Eur. J. Ophthalmol.201525652953410.5301/ejo.500062926044375
    [Google Scholar]
  14. SubhiY. KjerB. MunchI.C. Prefilled syringes for intravitreal injection reduce preparation time.Dan. Med. J.2016634A521427034182
    [Google Scholar]
  15. RathoreN. PranayP. EuB. JiW. WallsE. Variability in syringe components and its impact on functionality of delivery systems.PDA J. Pharm. Sci. Technol.201165546848010.5731/pdajpst.2011.0078522293836
    [Google Scholar]
  16. YonedaS. TorisuT. UchiyamaS. Development of syringes and vials for delivery of biologics: Current challenges and innovative solutions.Expert Opin. Drug Deliv.202118445947010.1080/17425247.2021.185369933217252
    [Google Scholar]
  17. KiminamiH. TakeuchiK. NakamuraK. AbeY. LauwersP. DierickW. YoshinoK. SuzukiS. Low leachable container system consisting of a polymer-based syringe with chlorinated isoprene isobutene rubber plunger stopper.PDA J. Pharm. Sci. Technol.201569671372410.5731/pdajpst.2015.0108026659102
    [Google Scholar]
  18. SachaG. RogersJ.A. MillerR.L. Pre-filled syringes: A review of the history, manufacturing and challenges.Pharm. Dev. Technol.201520111110.3109/10837450.2014.98282525589433
    [Google Scholar]
  19. ISO 10093-1: 2018.International Organization for Standardization2018
    [Google Scholar]
  20. GerhardtA. McgrawN.R. SchwartzD.K. BeeJ.S. CarpenterJ.F. RandolphT.W. Protein aggregation and particle formation in prefilled glass syringes.J. Pharm. Sci.201410361601161210.1002/jps.2397324729310
    [Google Scholar]
  21. MarshM. Risk of air embolism from prefilled syringes.Anaesthesia200762997310.1111/j.1365‑2044.2007.05245.x17697243
    [Google Scholar]
  22. GuangxiangZ. YangL. XiaoyuanC. Research on Chemical Stability of Glass Needle Tube Inner Surface of Prefilled Syringe.Clinical Medicine & Engineering2016
    [Google Scholar]
  23. ShieuW. StauchO.B. MaaY.F. Filling of high-concentration monoclonal antibody formulations into pre-filled syringes: investigating formulation-nozzle interactions to minimize nozzle clogging.PDA J. Pharm. Sci. Technol.201569341742610.5731/pdajpst.2015.0105526048747
    [Google Scholar]
  24. ShiG.H. GopalrathnamG. ShinkleS.L. DongX. HoferJ.D. JensenE.C. RajagopalanN. Impact of drug formulation variables on silicone oil structure and functionality of prefilled syringe system.PDA J. Pharm. Sci. Technol.2018721506110.5731/pdajpst.2017.00816929030531
    [Google Scholar]
  25. Van LimptH. BeerkensR. CookS. O’ConnorR. SimonJ. Modelling the evaporation of boron species. Part 1. glass containers determinated by atomic fluorescence spectrometry simultaneously.Drug Standards of China20111204311313
    [Google Scholar]
  26. RonkM. LiuJ. GallegosA. LuoY. FujimoriK. LiK. LeeH. Nashed-SamuelY. Holistic extractables and leachables program: Evaluations of prefilled syringe Systems for biotechnology products.PDA J. Pharm. Sci. Technol.202074662764310.5731/pdajpst.2019.01137932675308
    [Google Scholar]
  27. BohrerD. NascimentoP.C. BinottoR. BeckerE. Influence of the glass packing on the contamination of pharmaceutical products by aluminium. Part III: Interaction container-chemicals during the heating for sterilisation.J. Trace Elem. Med. Biol.200317210711510.1016/S0946‑672X(03)80006‑814531639
    [Google Scholar]
  28. GuadagninoE. ZuccatoD. Delamination propensity of pharmaceutical glass containers by accelerated testing with different extraction media.PDA J. Pharm. Sci. Technol.201266211612510.5731/pdajpst.2012.0085322492597
    [Google Scholar]
  29. GuichardN. BonnabryP. RudazS. Fleury-SouverainS. Long-term stability of ganciclovir in polypropylene containers at room temperature.J. Oncol. Pharm. Pract.2017252107815521773262928975863
    [Google Scholar]
  30. BignardiC. CavazzaA. CorradiniC. SalvadeoP. Targeted and untargeted data-dependent experiments for characterization of polycarbonate food-contact plastics by ultra high performance chromatography coupled to quadrupole orbitrap tandem mass spectrometry.J. Chromatogr. A2014137213314410.1016/j.chroma.2014.10.10425465011
    [Google Scholar]
  31. FangX. VitracO. Predicting diffusion coefficients of chemicals in and through packaging materials.Crit. Rev. Food Sci. Nutr.201757227531210.1080/10408398.2013.84965425831407
    [Google Scholar]
  32. JenkeD. Materials in manufacturing and packaging systems as sources of elemental impurities in packaged drug products: An updated literature review.PDA J. Pharm. Sci. Technol.202074332434710.5731/pdajpst.2019.01003331843988
    [Google Scholar]
  33. SunY. GuoB. WangA. ZhangH. SongG. LiP. MaJ. TianM. GaoJ. Migration of additives and substances in the contact materials propene polymer of food and drug by liquid chromatography.Shipin Anquan Zhiliang Jiance Xuebao201670311891196
    [Google Scholar]
  34. BarnesA.R. Compatibility of a commercially available low–density polyethylene eye–drop container with antimicrobial preservatives and potassium ascorbate.J. Clin. Pharm. Ther.199520634134410.1111/j.1365‑2710.1995.tb00708.x8847373
    [Google Scholar]
  35. ZhangJ. Properties and development of butyl rubber and halogenated butyl rubber.Petrochemical Industry Technology200916016468
    [Google Scholar]
  36. LiX. QianP. Identification of an exposure risk to heavy metals from pharmaceutical-grade rubber stoppers.Yao Wu Shi Pin Fen Xi201725372373028911658
    [Google Scholar]
  37. CorredorC.C. HabyT.A. YoungJ.D. ShahP.A. VariaS.A. Comprehensive determination of extractables from five different brands of stoppers used for injectable products.PDA J. Pharm. Sci. Technol.200963652753620169859
    [Google Scholar]
  38. CorredorC. TomasellaF.P. YoungJ. Drug interactions with potential rubber closure extractables.J. Chromatogr. A200912161434810.1016/j.chroma.2008.11.02119041978
    [Google Scholar]
  39. RubertoM.A. PaskietD. MillerK. Chemical and physical attributes of plastics and elastomers: impact on the extractables profile of container closure systems. Leachables and Extractables Handbook.John Wiley & Sons, Inc.2012
    [Google Scholar]
  40. RichterC. LipperheideC. LipkeU. LamprechtA. Impact of extractables from rubber closures on protein stability under heat stress.Eur. J. Pharm. Biopharm.2018130222910.1016/j.ejpb.2018.06.00929894815
    [Google Scholar]
  41. ChenH. JiangY. WeiM. HongZ. LiJ. ChenL. ChengC. Study of the factors influencing chromium ion migration of stainless steel tableware and kitchenware and their quality control.Xiandai Shipin Keji2010214476482
    [Google Scholar]
  42. LeeB.J. HendricksD.G. Meta‐catalyzed oxidation of ascorbate, deoxyribose and linoleic acid as affected by phytic acid in a model system.J. Food Sci.199762593598410.1111/j.1365‑2621.1997.tb15010.x
    [Google Scholar]
  43. RonkM. LeeH. FujimoriK. YehP. Nashed-SamuelY. Characterization of protein aggregating tungstates: Electrospray mass spectrometry analysis of extracts from prefilled syringes and from tungsten pins used in the manufacture of syringes.PDA J. Pharm. Sci. Technol.2016701516110.5731/pdajpst.2015.00554626797967
    [Google Scholar]
  44. LiuW. SwiftR. TorracaG. Nashed-SamuelY. WenZ.Q. JiangY. VanceA. Mire-SluisA. FreundE. DavisJ. NarhiL. Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes.PDA J. Pharm. Sci. Technol.2010641111921501999
    [Google Scholar]
  45. FujimoriK. LeeH. PhillipsJ. Nashed-SamuelY. Development of an inductively coupled plasma mass spectrometry method for quantification of extracted tungsten from glass prefilled syringes used as a primary packaging for pharmaceutical and therapeutic protein products.PDA J. Pharm. Sci. Technol.201367667067910.5731/pdajpst.2013.0094124265307
    [Google Scholar]
  46. RonkM. LeeH. FujimoriK. YehP. Nashed-SamuelY. Characterization of protein aggregating tungstates: Electrospray mass spectrometry analysis of extracts from prefilled syringes and tungsten pins used in the manufacture of syringes.PDA J. Pharm. Sci. Technol.2016701516110.5731/pdajpst.2015.00554626797967
    [Google Scholar]
  47. TokumuraF. MatsuiT. SuzukiY. SadoM. TaniguchiM. KobayashiI. KamiyamaM. SudaS. NakamuraA. YamazakiY. YamoriA. IgarashiR. KawaiJ. OkaK. The potential dermal irritating effect of residual (meth)acrylic monomers in pressure sensitive adhesive tapes.Drug Chem. Toxicol.20103311710.3109/0148054090331104320001660
    [Google Scholar]
  48. ChanE. HubbardA. SaneS. MaaY.F. Syringe siliconization process investigation and optimization.PDA J. Pharm. Sci. Technol.2012662136150
    [Google Scholar]
  49. WenZ.Q. VanceA. VegaF. CaoX. EuB. SchulthesisR. Distribution of silicone oil in prefilled glass syringes probed with optical and spectroscopic methods.PDA J. Pharm. Sci. Technol.200963214915819634353
    [Google Scholar]
  50. LiJ. PinnamaneniS. QuanY. JaiswalA. AnderssonF.I. ZhangX. LukA. Mechanistic understanding of protein-silicone oil interactions.Pharm. Res.20122961689169710.1007/s11095‑012‑0696‑622350802
    [Google Scholar]
  51. DixitN. MaloneyK.M. KaloniaD.S. Protein-silicone oil interactions: Comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein.Pharm. Res.20133071848185910.1007/s11095‑013‑1028‑123568525
    [Google Scholar]
  52. BasuP. Particles in therapeutic protein formulations relevance to air-water and silicone oil-water interfaces.Dissertations & Theses - Gradworks2014
    [Google Scholar]
  53. ShiG.H. GopalrathnamG. ShinkleS.L. DongX. HoferJ.D. JensenE.C. RajagopalanN. Impact of formulation variables on silicone oil distribution and functionality of prefilled syringe syste.PDA J. Pharm. Sci. Technol.2018721506110.5731/pdajpst.2017.00816929030531
    [Google Scholar]
  54. WaxmanL. VilivalamV.D. A comparison of protein stability in prefillable syringes made of glass and plastic.PDA J. Pharm. Sci. Technol.201771646247710.5731/pdajpst.2016.00714628819049
    [Google Scholar]
  55. ChenL. SloeyC. ZhangZ. BondarenkoP.V. KimH. Sekhar KanapuramD.R. KanapuramS. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.J. Pharm. Sci.2015104273173910.1002/jps.2425725407640
    [Google Scholar]
  56. WoźniakK. BłasiakJ. Free radicals-mediated induction of oxidized DNA bases and DNA−protein cross-links by nickel chloride.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20025141-223324310.1016/S1383‑5718(01)00344‑811815261
    [Google Scholar]
  57. DuJ. GebickiJ.M. DNA degradation and protein peroxidation in cells exposed to hydroxyl free radicals.Redox Rep.20027532933110.1179/13510000212500091012688522
    [Google Scholar]
  58. Chinese Pharmacopoeia.Vol IV2020547548
    [Google Scholar]
  59. Chinese Pharmacopoeia.Vol IV2020549550
    [Google Scholar]
  60. Dorival-GarcíaN. LarssonI. BonesJ. Non-volatile extractable analysis of prefilled syringes for parenteral administration of drug products.J. Pharm. Biomed. Anal.201714233734210.1016/j.jpba.2017.05.00828538204
    [Google Scholar]
  61. USP20194282798293
    [Google Scholar]
  62. USP20194282938305
    [Google Scholar]
  63. TR73 Prefilled Syringe User Requirements for Biotechnology Applications.Parenteral Drug Assoc.20158795
    [Google Scholar]
  64. KöhlerO. MüllerC. HermsdörferA. RöhlH. ZieglerC. Initial bioadhesion on medical glass packaging materials investigated by dynamic contact angle measurements.Phys. Status Solidi., A Appl. Mater. Sci.2013210598398710.1002/pssa.201200764
    [Google Scholar]
  65. Guidelines of evaluating compatibility between pharmaceutical packaging and pharmaceuticals.Natl. Standards Pharm. Pack. Mater.2015381382
    [Google Scholar]
  66. JenkeD.R. Linking extractables and leachables in container/closure applications.PDA J. Pharm. Sci. Technol.200559426528116218205
    [Google Scholar]
  67. NorwoodD.L. JenkeD. ManolescuC. PenninoS. GrinbergN. HPLC and LC/MS analysis of pharmaceutical container closure system leachables and extractables.J. Liq. Chromatogr. Relat. Technol.20093211-121768182710.1080/10826070902959497
    [Google Scholar]
  68. LegrandP. DesdionA. BoccadifuocoG. Dufaÿ WojcickiA. WorsleyA. BoudyV. DufayS.G. Development of an HPLC/UV method for the evaluation of extractables and leachables in plastic: Application to a plastic-packaged calcium gluconate glucoheptonate solution.J. Pharm. Biomed. Anal.201815529830510.1016/j.jpba.2018.03.04429679874
    [Google Scholar]
  69. MüllerL. GockeE. Considerations regarding a permitted daily exposure calculation for ethyl methanesulfonate.Toxicol. Lett.2009190333033210.1016/j.toxlet.2009.03.01519857798
    [Google Scholar]
  70. ParrisP. DuncanJ.N. FleetwoodA. BeierschmittW.P. Calculation of a permitted daily exposure value for the solvent 2-methyltetrahydrofuran.Regul. Toxicol. Pharmacol.201787546310.1016/j.yrtph.2017.04.01228461231
    [Google Scholar]
  71. SehnerC. SchwindM. TuschlG. Lovsin BarleE. What to consider for a good quality PDE document?Pharm. Dev. Technol.201924780381110.1080/10837450.2019.159218830865481
    [Google Scholar]
  72. MunroI.C. RenwickA.G. Danielewska-NikielB. The threshold of toxicological concern (TTC) in risk assessment.Toxicol. Lett.2008180215115610.1016/j.toxlet.2008.05.00618573621
    [Google Scholar]
  73. NorwoodD.L. NagaoL.M. StultsC.L.M. Perspectives on the PQRI extractables and leachables “safety thresholds and best practices” recommendations for inhalation drug products.PDA J. Pharm. Sci. Technol.201367541342910.5731/pdajpst.2013.0093424084658
    [Google Scholar]
  74. BallD. BlanchardJ. Jacobson-KramD. McClellanR.O. McGovernT. NorwoodD.L. VogelW. WolffR. NagaoL. Development of safety qualification thresholds and their use in orally inhaled and nasal drug product evaluation.Toxicol. Sci.200797222623610.1093/toxsci/kfm05817369604
    [Google Scholar]
  75. Technical guidelines for the study of chemical injections and pharmaceutical glass packaging containers (Consultation Draft).State Food and Drug Admin. Drug Eval. Center2015
    [Google Scholar]
  76. JohnsS.M. JickellsS.M. ReadW.A. CastleL. CastleL. Studies on functional barriers to migration. 3. Migration of benzophenone and model ink components from cartonboard to food during frozen storage and microwave heating.Packag. Technol. Sci.20001339910410.1002/1099‑1522(200005)13:3<99::AID‑PTS499>3.0.CO;2‑K
    [Google Scholar]
  77. Technical guidelines for the study of compatibility between chemical injection and plastic packaging materials (consultation draft).State Food and Drug Admin. Drug Eval. Center2012
    [Google Scholar]
  78. MutsugaM. YamaguchiM. KawamuraY. Analysis of N-nitrosamine migration from rubber teats and soothers.Am. J. Anal. Chem.20134627728510.4236/ajac.2013.46035
    [Google Scholar]
  79. SenthongP. BoriboonU. Evaluation of occupational exposure to nitrosamine, carbon black and dust in rubber processing industry.Int. J. Occup. Environ. Med.20178318118310.15171/ijoem.2017.109828689215
    [Google Scholar]
  80. BohrerD. VianaC. BarichelloM.M. de MouraJ.F. de CarvalhoL.M. NascimentoP.C. Presence of polycyclic aromatic hydrocarbons in rubber packaging materials and in parenteral formulations stored in bottles with rubber stoppers.JPEN J. Parenter. Enteral Nutr.20174161037104410.1177/014860711663380126979280
    [Google Scholar]
  81. BarichelloM.M. BohrerD. VianaC. CarvalhoL.M. NascimentoP.C. Determination of polycyclic aromatic hydrocarbons in commercial parenteral formulations and medications using high-performance liquid chromatography with diode array detection.J. AOAC Int.201710041070107610.5740/jaoacint.16‑034228720176
    [Google Scholar]
  82. JayawardenaI. GodakumburaP.I. PrashanthaM.A.B. Migration of BTEX and phthalates from natural rubber latex balloons obtained from the Sri Lankan market.Springerplus2016512010.1186/s40064‑015‑1660‑926759759
    [Google Scholar]
  83. VermeulenR. JönssonB.A.G. LindhC.H. KromhoutH. Biological monitoring of carbon disulphide and phthalate exposure in the contemporary rubber industry.Int. Arch. Occup. Environ. Health200578866366910.1007/s00420‑005‑0017‑z16041606
    [Google Scholar]
  84. HinesC.J. HopfN.B.N. DeddensJ.A. SilvaM.J. CalafatA.M. Estimated daily intake of phthalates in occupationally exposed groups.J. Expo. Sci. Environ. Epidemiol.201121213314110.1038/jes.2009.6220010977
    [Google Scholar]
  85. SungJ.H. KwakI.S. ParkS.K. KimH.I. LimH.S. ParkH.J. KimS.H. Liquid chromatography-tandem mass spectrometry determination of N-nitrosamines released from rubber or elastomer teats and soothers.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201027121745175410.1080/19440049.2010.50818421108095
    [Google Scholar]
  86. LucasA.D. StratmeyerM.E. Extraction and stability of ethylene oxide residue in medical devices.Biomed. Instrum. Technol.2008421767910.2345/0899‑8205(2008)42[76:EASOEO]2.0.CO;218257644
    [Google Scholar]
  87. ISO 10993-7: 2008.International Organization for Standardization2008
    [Google Scholar]
  88. Technical Guidelines for the Study of Compatibility Between Chemicals and Elastomer Seals (Consultation Draft).State Food and Drug Admin. Drug Eval. Center2018
    [Google Scholar]
  89. FelsovalyiF. JanvierS. JouffrayS. SoukiassianH. MangiagalliP. Silicone-oil-based subvisible particles: Their detection, interactions, and regulation in prefilled container closure systems for biopharmaceuticals.J. Pharm. Sci.2012101124569458310.1002/jps.2332823023774
    [Google Scholar]
  90. ChaoC. DandanC. LeiC. Study on extraction of silicone oil from rubber plunger surface of prefilled syringe and its migration into methotrexate injection.Chinese J. Modern Appl. Pharm.202239911871191
    [Google Scholar]
  91. ISO 11040-4: 2015.International Organization for Standardization2015
    [Google Scholar]
  92. USP-NF 2022.202268496855
    [Google Scholar]
  93. USP-NF 2022.202279597965
    [Google Scholar]
  94. DennisJ. Compatibility of phamaceutical products and contact materials-safety consideration associated with extractables and leachables.BeijingChemical Industry Press2012
    [Google Scholar]
  95. BallD.J. NorwoodD.L. StultsC.L.M. NagaoL.M. Leachables and extractables handbook - safety evaluation, qualification, and best practices applied to inhalation drug products.BeijingChemical Industry Press2014
    [Google Scholar]
  96. TeskaB.M. BrakeJ.M. TrontoG.S. CarpenterJ.F. Aggregation and particle formation of therapeutic proteins in contact with a novel fluoropolymer surface versus siliconized surfaces: Effects of agitation in vials and in prefilled syringes.J. Pharm. Sci.201610572053206510.1016/j.xphs.2016.04.01527233685
    [Google Scholar]
  97. DepazR.A. ChevolleauT. JouffrayS. NarwalR. DimitrovaM.N. Cross-linked silicone coating: A novel prefilled syringe technology that reduces subvisible particles and maintains compatibility with biologics.J. Pharm. Sci.201410351384139310.1002/jps.2394724643773
    [Google Scholar]
  98. YoshinoK. NakamuraK. YamashitaA. AbeY. IwasakiK. KanazawaY. FunatsuK. YoshimotoT. SuzukiS. Functional evaluation and characterization of a newly developed silicone oil-free prefillable syringe system.J. Pharm. Sci.201410351520152810.1002/jps.2394524643749
    [Google Scholar]
  99. HoulihanS. DecarieD. BenesC. CleveR. VidlerM. MageeL.A. EnsomM.H.H. von DadelszenP. Magnocaine: Physical compatibility and chemical stability of magnesium sulphate and lidocaine hydrochloride in prefilled syringes.J. Obstet. Gynaecol. Can.20163810936944.e310.1016/j.jogc.2016.04.09727720093
    [Google Scholar]
/content/journals/cac/10.2174/0115734110327434240920110053
Loading
/content/journals/cac/10.2174/0115734110327434240920110053
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): compatibility study; extraction; injection; interaction; Prefilled syringe; safety
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test